Skip to main content

Exploiting Rat Genetics to Investigate Hypertensive End-Organ Damage

  • Conference paper
  • First Online:
  • 532 Accesses

Abstract

Transgenic animal models are important tools, which have been extensively used to gain insight into the molecular mechanisms of human diseases. We have created two transgenic consomic rat strains, in which malignant hypertension can be induced by administration of a nontoxic xenobiotic. Studies combining quantitative trait locus (QTL) analysis, pathological examination and molecular biological investigation have demonstrated that the renal renin–angiotensin system (RAS), especially angiotensin converting enzyme (Ace), is a key factor affecting the degree of hypertensive kidney damage in these strains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Herrera VL, Ruiz-Opazo N. Genetic studies in rat models: insights into cardiovascular disease. Curr Opin Lipidol. 2005;16(2):179–191.

    Article  PubMed  CAS  Google Scholar 

  2. Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990 ;344:541–544.

    Article  PubMed  CAS  Google Scholar 

  3. Engler S, Paul M, Pinto Y. The TGR(mRen2)27 transgenic rat model of hypertension. Regul Pept. 1998;77(1–3):3–8.

    Article  Google Scholar 

  4. Whitworth CE, Fleming S, Cumming AD, et al. Spontaneous development of malignant hypertension in transgenic Ren-2 rats. Kidney Int. 1994;46:1528–1532.

    Article  Google Scholar 

  5. Whitworth CE, Fleming S, Kotelevtsev Y, et al. A genetic model of malignant phase hypertension in rats. Kidney Int. 1995;47:529–535.

    Article  PubMed  CAS  Google Scholar 

  6. Kantachuvesiri S, Haley CS, Fleming S, et al. Genetic mapping of modifier loci affecting malignant hypertension in TGRmRen2 rats. Kidney Int. 1999;56:414–420.

    Article  PubMed  CAS  Google Scholar 

  7. Montgomery HE, Kiernan LA, Whitworth CE, et al. Inhibition of tissue angiotensin converting enzyme activity prevents malignant hypertension in TGR(mRen2)27. J Hypertens. 1998;16:635–643.

    Article  PubMed  CAS  Google Scholar 

  8. Kantachuvesiri S, Fleming S, Peters J, et al. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276(39):36727–36733.

    Article  PubMed  CAS  Google Scholar 

  9. Santos RA, Krieger EM, Greene LJ. An improved fluorometric assay of rat serum and plasma converting enzyme. Hypertension. 1985;7(2):244–252.

    Google Scholar 

  10. Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–4142.

    Article  PubMed  CAS  Google Scholar 

  11. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–244.

    Article  PubMed  CAS  Google Scholar 

  12. <Journl>12.Kuehn EW, Park KM, Somlo S, Bonventre JV. Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol. 2002;283(6):F1326–F1336.

    PubMed  CAS  Google Scholar 

  13. de Borst MH, Diks SH, Bolbrinker J, et al. Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol. 2007;293(1):F428–F437.

    Article  CAS  Google Scholar 

  14. Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol. 2007;18(10):2704–2714.

    Article  PubMed  CAS  Google Scholar 

  15. de Borst MH, Van Timmeren MM, Vaidya VS, et al. Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the renin-angiotensin system or p38 MAP kinase. Am J Physiol Renal Physiol. 2007;292(1):F313–F320.

    Article  CAS  Google Scholar 

  16. Whitebread S, Mele M, Kamber B, de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989;163(1):284–291.

    Article  PubMed  CAS  Google Scholar 

  17. de Gasparo M, Whitebread S, Mele M, et al. Biochemical characterization of two angiotensin II receptor subtypes in the rat. J Cardiovasc Pharmacol. 1990;16(Suppl 4):S31–S35.

    Article  CAS  Google Scholar 

  18. Lee MA, Böhm M, Paul M, Ganten D. Tissue renin-angiotensin systems. Their role in cardiovascular disease. Circulation. 1993;87(5 Suppl):IV7–IV13

    PubMed  CAS  Google Scholar 

  19. Dzau J, Brenner A, Emmett NL. Evidence for renin in rat brain: differentiation from other reninlike enzymes. Am J Physiol. 1982;242(5):E292–E297.

    PubMed  CAS  Google Scholar 

  20. Field LJ, McGowan RA, Dickinson DP, Gross KW. Tissue and gene specificity of mouse renin expression. Hypertension. 1984;6(4):597–603.

    PubMed  CAS  Google Scholar 

  21. Lilly LS, Pratt RE, Alexander RW, et al. Renin expression by vascular endothelial cells in culture. Circ Res. 1985;57(2):312–318.

    PubMed  Google Scholar 

  22. Naruse K, Takii Y, Inagami T. Immunohistochemical localization of renin in luteinizing hormone-producing cells of rat pituitary. Proc Natl Acad Sci USA

    Article  Google Scholar 

  23. Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85(7):643–650.

    PubMed  CAS  Google Scholar 

  24. Siragy HM. AT(1) and AT(2) receptors in the kidney: role in disease and treatment. Am J Kidney Dis. 2000;36(3 Suppl 1):S4–S9.

    Article  PubMed  CAS  Google Scholar 

  25. Cooper AC, Robinson G, Vinson GP, Cheung WT, Broungton Pipkin F. The localization and expression of the renin-angiotensin system in the human placenta throughout pregnancy. Placenta. 1999;20(5–6):467–474.

    Article  PubMed  CAS  Google Scholar 

  26. Leung PS, Wong TP, Lam SY, Chan HC, Wong PYD. Testicular hormonal regulation of the renin-angiotensin system in the rat epididymis. Life Sci. 2000;66(14):1317–1324.

    Article  PubMed  CAS  Google Scholar 

  27. Engeli S, Sharma AM. Role of adipose tissue for cardiovascular-renal regulation in health and disease. Horm Metab Res. 2000;32(11–12):485–499.

    Article  PubMed  CAS  Google Scholar 

  28. Wagner J, Jan Danser AH, Derkx FH, et al. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmic. 1996;80(2):159–163.

    Article  CAS  Google Scholar 

  29. Johns DW, Peach MJ, Gomez RA, Inagami T, Carey RM. Angiotensin II regulates renin gene expression. Am J Physiol. 1990;259(6 Pt 2):F882–F887.

    PubMed  CAS  Google Scholar 

  30. Unger T, Ganten D, Lang RE, Schölkens BA. Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors? Studies with the two different compounds, Hoe498 and MK421, in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1984;6:5872–5880.

    Article  Google Scholar 

  31. Unger T, Ganten D, Lang RE, Schölkens BA, et al. Persistent tissue converting enzyme inhibition following chronic treatment with Hoe498 and MK421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1985;7(1):36–41.

    Article  PubMed  CAS  Google Scholar 

  32. Cohen ML, Kurz KD. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J Pharmacol Exp Ther. 1982;220(1):63–69.

    PubMed  CAS  Google Scholar 

  33. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Cappecchi MR, Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996;74(5):953–965.

    PubMed  CAS  Google Scholar 

  34. Esther CR, Marino EM, Howard TE, et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest. 1997;99(10):2375–2385.

    Article  PubMed  CAS  Google Scholar 

  35. Jafarian-Tehrani M, Listwak S, Barrientos RM, Michaud A, Corvol P, Sternberg EM. Exclusion of angiotensin I-converting enzyme as a candidate gene involved in exudative inflammatory resistance in F344/N rats. Mol Med. 2000;6:4319–331.

    Google Scholar 

  36. Smit-van Oosten A, Henning RH, Van Goor H, et al. Strain differences in angiotensin-converting enzyme and angiotensin II type I receptor expression. Possible implications for experimental chronic renal transplant failure. J Renin Angiotensin Aldosterone Syst. 2002;3(1): 46–53.

    Article  CAS  Google Scholar 

  37. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–287.

    Article  PubMed  CAS  Google Scholar 

  38. Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension. 2001;37(5):1329–1335.

    PubMed  CAS  Google Scholar 

  39. Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12(3):431–439.

    PubMed  CAS  Google Scholar 

  40. Gonzalez-Villalobos RA, Seth DM, Satou R, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295(3):F772–F779.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Wellcome Trust CVRI and Functional Genomics initiatives. JM is a recipient of the Wellcome Trust Principle Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Liu, X., Bellamy, C.O., Mullins, L.J., Dunbar, D., Mullins, J.J. (2009). Exploiting Rat Genetics to Investigate Hypertensive End-Organ Damage. In: Frohlich, E., Re, R. (eds) The Local Cardiac Renin-Angiotensin Aldosterone System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0528-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0528-4_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0527-7

  • Online ISBN: 978-1-4419-0528-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics