Exploiting Rat Genetics to Investigate Hypertensive End-Organ Damage

  • Xiaoujun Liu
  • Christopher O.C. Bellamy
  • Linda J. Mullins
  • Donald Dunbar
  • John J. Mullins
Conference paper


Transgenic animal models are important tools, which have been extensively used to gain insight into the molecular mechanisms of human diseases. We have created two transgenic consomic rat strains, in which malignant hypertension can be induced by administration of a nontoxic xenobiotic. Studies combining quantitative trait locus (QTL) analysis, pathological examination and molecular biological investigation have demonstrated that the renal renin–angiotensin system (RAS), especially angiotensin converting enzyme (Ace), is a key factor affecting the degree of hypertensive kidney damage in these strains.


Quantitative Trait Locus Malignant Hypertension Gastric Gavage Consomic Strain Kim1 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Wellcome Trust CVRI and Functional Genomics initiatives. JM is a recipient of the Wellcome Trust Principle Fellowship.


  1. 1.
    Herrera VL, Ruiz-Opazo N. Genetic studies in rat models: insights into cardiovascular disease. Curr Opin Lipidol. 2005;16(2):179–191.PubMedCrossRefGoogle Scholar
  2. 2.
    Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990 ;344:541–544.PubMedCrossRefGoogle Scholar
  3. 3.
    Engler S, Paul M, Pinto Y. The TGR(mRen2)27 transgenic rat model of hypertension. Regul Pept. 1998;77(1–3):3–8.CrossRefGoogle Scholar
  4. 4.
    Whitworth CE, Fleming S, Cumming AD, et al. Spontaneous development of malignant hypertension in transgenic Ren-2 rats. Kidney Int. 1994;46:1528–1532.CrossRefGoogle Scholar
  5. 5.
    Whitworth CE, Fleming S, Kotelevtsev Y, et al. A genetic model of malignant phase hypertension in rats. Kidney Int. 1995;47:529–535.PubMedCrossRefGoogle Scholar
  6. 6.
    Kantachuvesiri S, Haley CS, Fleming S, et al. Genetic mapping of modifier loci affecting malignant hypertension in TGRmRen2 rats. Kidney Int. 1999;56:414–420.PubMedCrossRefGoogle Scholar
  7. 7.
    Montgomery HE, Kiernan LA, Whitworth CE, et al. Inhibition of tissue angiotensin converting enzyme activity prevents malignant hypertension in TGR(mRen2)27. J Hypertens. 1998;16:635–643.PubMedCrossRefGoogle Scholar
  8. 8.
    Kantachuvesiri S, Fleming S, Peters J, et al. Controlled hypertension, a transgenic toggle switch reveals differential mechanisms underlying vascular disease. J Biol Chem. 2001;276(39):36727–36733.PubMedCrossRefGoogle Scholar
  9. 9.
    Santos RA, Krieger EM, Greene LJ. An improved fluorometric assay of rat serum and plasma converting enzyme. Hypertension. 1985;7(2):244–252.Google Scholar
  10. 10.
    Ichimura T, Bonventre JV, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 1998;273(7):4135–4142.PubMedCrossRefGoogle Scholar
  11. 11.
    Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–244.PubMedCrossRefGoogle Scholar
  12. 12.
    <Journl>12.Kuehn EW, Park KM, Somlo S, Bonventre JV. Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol. 2002;283(6):F1326–F1336.PubMedGoogle Scholar
  13. 13.
    de Borst MH, Diks SH, Bolbrinker J, et al. Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol. 2007;293(1):F428–F437.CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Humphreys BD, Bonventre JV. Shedding of the urinary biomarker kidney injury molecule-1 (KIM-1) is regulated by MAP kinases and juxtamembrane region. J Am Soc Nephrol. 2007;18(10):2704–2714.PubMedCrossRefGoogle Scholar
  15. 15.
    de Borst MH, Van Timmeren MM, Vaidya VS, et al. Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the renin-angiotensin system or p38 MAP kinase. Am J Physiol Renal Physiol. 2007;292(1):F313–F320.CrossRefGoogle Scholar
  16. 16.
    Whitebread S, Mele M, Kamber B, de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun. 1989;163(1):284–291.PubMedCrossRefGoogle Scholar
  17. 17.
    de Gasparo M, Whitebread S, Mele M, et al. Biochemical characterization of two angiotensin II receptor subtypes in the rat. J Cardiovasc Pharmacol. 1990;16(Suppl 4):S31–S35.CrossRefGoogle Scholar
  18. 18.
    Lee MA, Böhm M, Paul M, Ganten D. Tissue renin-angiotensin systems. Their role in cardiovascular disease. Circulation. 1993;87(5 Suppl):IV7–IV13PubMedGoogle Scholar
  19. 19.
    Dzau J, Brenner A, Emmett NL. Evidence for renin in rat brain: differentiation from other reninlike enzymes. Am J Physiol. 1982;242(5):E292–E297.PubMedGoogle Scholar
  20. 20.
    Field LJ, McGowan RA, Dickinson DP, Gross KW. Tissue and gene specificity of mouse renin expression. Hypertension. 1984;6(4):597–603.PubMedGoogle Scholar
  21. 21.
    Lilly LS, Pratt RE, Alexander RW, et al. Renin expression by vascular endothelial cells in culture. Circ Res. 1985;57(2):312–318.PubMedGoogle Scholar
  22. 22.
    Naruse K, Takii Y, Inagami T. Immunohistochemical localization of renin in luteinizing hormone-producing cells of rat pituitary. Proc Natl Acad Sci USA CrossRefGoogle Scholar
  23. 23.
    Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85(7):643–650.PubMedGoogle Scholar
  24. 24.
    Siragy HM. AT(1) and AT(2) receptors in the kidney: role in disease and treatment. Am J Kidney Dis. 2000;36(3 Suppl 1):S4–S9.PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper AC, Robinson G, Vinson GP, Cheung WT, Broungton Pipkin F. The localization and expression of the renin-angiotensin system in the human placenta throughout pregnancy. Placenta. 1999;20(5–6):467–474.PubMedCrossRefGoogle Scholar
  26. 26.
    Leung PS, Wong TP, Lam SY, Chan HC, Wong PYD. Testicular hormonal regulation of the renin-angiotensin system in the rat epididymis. Life Sci. 2000;66(14):1317–1324.PubMedCrossRefGoogle Scholar
  27. 27.
    Engeli S, Sharma AM. Role of adipose tissue for cardiovascular-renal regulation in health and disease. Horm Metab Res. 2000;32(11–12):485–499.PubMedCrossRefGoogle Scholar
  28. 28.
    Wagner J, Jan Danser AH, Derkx FH, et al. Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system. Br J Ophthalmic. 1996;80(2):159–163.CrossRefGoogle Scholar
  29. 29.
    Johns DW, Peach MJ, Gomez RA, Inagami T, Carey RM. Angiotensin II regulates renin gene expression. Am J Physiol. 1990;259(6 Pt 2):F882–F887.PubMedGoogle Scholar
  30. 30.
    Unger T, Ganten D, Lang RE, Schölkens BA. Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors? Studies with the two different compounds, Hoe498 and MK421, in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1984;6:5872–5880.CrossRefGoogle Scholar
  31. 31.
    Unger T, Ganten D, Lang RE, Schölkens BA, et al. Persistent tissue converting enzyme inhibition following chronic treatment with Hoe498 and MK421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1985;7(1):36–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen ML, Kurz KD. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J Pharmacol Exp Ther. 1982;220(1):63–69.PubMedGoogle Scholar
  33. 33.
    Esther CR Jr, Howard TE, Marino EM, Goddard JM, Cappecchi MR, Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest. 1996;74(5):953–965.PubMedGoogle Scholar
  34. 34.
    Esther CR, Marino EM, Howard TE, et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest. 1997;99(10):2375–2385.PubMedCrossRefGoogle Scholar
  35. 35.
    Jafarian-Tehrani M, Listwak S, Barrientos RM, Michaud A, Corvol P, Sternberg EM. Exclusion of angiotensin I-converting enzyme as a candidate gene involved in exudative inflammatory resistance in F344/N rats. Mol Med. 2000;6:4319–331.Google Scholar
  36. 36.
    Smit-van Oosten A, Henning RH, Van Goor H, et al. Strain differences in angiotensin-converting enzyme and angiotensin II type I receptor expression. Possible implications for experimental chronic renal transplant failure. J Renin Angiotensin Aldosterone Syst. 2002;3(1): 46–53.CrossRefGoogle Scholar
  37. 37.
    Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–287.PubMedCrossRefGoogle Scholar
  38. 38.
    Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension. 2001;37(5):1329–1335.PubMedGoogle Scholar
  39. 39.
    Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12(3):431–439.PubMedGoogle Scholar
  40. 40.
    Gonzalez-Villalobos RA, Seth DM, Satou R, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295(3):F772–F779.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaoujun Liu
    • 1
  • Christopher O.C. Bellamy
    • 1
  • Linda J. Mullins
    • 1
  • Donald Dunbar
    • 1
  • John J. Mullins
    • 1
  1. 1.Molecular Physiology Laboratory, Centre for Cardiovascular ScienceQueen’s Medical Research Institute, University of EdinburghEdinburghUK

Personalised recommendations