Newer Insights into the Biochemical Physiology of the Renin–Angiotensin System: Role of Angiotensin-(1-7), Angiotensin Converting Enzyme 2, and Angiotensin-(1-12)

  • Carlos M. Ferrario
  • Jewell A. Jessup
  • Jasmina Varagic
Conference paper

Abstract

Knowledge of the mechanisms by which the rennin–angiotensin system contributes to cardiovascular pathology continues to advance at a rapid pace as newer methods and therapies uncover the nature of this complex system and its fundamental role in the regulation of blood pressure and tissue function. The characterization of the biochemical pathways and functions mediated by angiotensin-(1-7) [Ang-(1-7)], angiotensin converting enzyme 2 (ACE2), and the mas receptor has revealed a vasodepressor and antiproliferative axis that within the rennin–angiotensin system opposes the biological actions of angiotensin II (Ang II). In addition, new research expands on this knowledge by demonstrating additional mechanisms for the formation of Ang II and Ang-(1-7) through the existence of an alternate form of the angiotensinogen substrate [angiotensin-(1-12)] which generates Ang II and even Ang-(1-7) through a non-renin dependent action. Altogether, this research paves the way for a better understanding of the intracellular mechanisms involved in the synthesis of angiotensin peptides and its consequences in terms of cell function in both physiology and pathology.

Keywords

Carbohydrate Angiotensin Renin Captopril Mast 

References

  1. 1.
    Berlaimont V, Billiouw JM, Brohet C, et al. Lessons from ONTARGET. Acta Clin Belg. 2008;63:142–151.PubMedGoogle Scholar
  2. 2.
    Liakishev AA. Telmisartan, ramipril, or both in patients at high risk for vascular events. Results of the ONTARGET trial. Kardiologiia. 2008;48:72.PubMedGoogle Scholar
  3. 3.
    Julius S, Kjeldsen SE, Brunner H, et al. VALUE trial: long-term blood pressure trends in 13,449 patients with hypertension and high cardiovascular risk. Am J Hypertens. 2003;16:544–548.PubMedCrossRefGoogle Scholar
  4. 4.
    Chrysant SG, Murray AV, Hoppe UC, et al. Long-term safety, tolerability and efficacy of aliskiren in combination with valsartan in patients with hypertension: a 6-month interim analysis. Curr Med Res Opin. 2008;24:1039–1047.PubMedCrossRefGoogle Scholar
  5. 5.
    Legrand D, Krzesinski JM, Scheen AJ. What is the purpose of dual or triple inhibition of the renin-angiotensin-aldosterone system?. Rev Med Suisse. 2008;4:1792–1797.PubMedGoogle Scholar
  6. 6.
    Lux TR, Taegtmeyer H. Aliskiren combined with losartan: Thor's hammer or Sigurd's sword? Curr Hypertens Rep. 2008;10:432–433.PubMedCrossRefGoogle Scholar
  7. 7.
    Oparil S, Yarows SA, Patel S, Zhang J, Satlin A. Dual inhibition of the renin system by aliskiren and valsartan. Lancet. 2007;370:1126–1127.PubMedCrossRefGoogle Scholar
  8. 8.
    Sealey JE, Laragh JH. Aliskiren fails to lower blood pressure in patients who have either low PRA levels or whose PRA falls insufficiently or reactively rises. Am J Hypertens. 2009;22:112–121.Google Scholar
  9. 9.
    Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system byangiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA. 1988;85:4095–4098.PubMedCrossRefGoogle Scholar
  10. 10.
    Khosla MC, Leese RA, Maloy WL, Ferreira AT, Smeby RR, Bumpus FM. Synthesis of some analogs of angiotensin II as specific antagonists of the parent hormone. J Med Chem. 1972;15:792–795.PubMedCrossRefGoogle Scholar
  11. 11.
    Khosla MC, Hall MM, Smeby RR, Bumpus FM. Factors that influence the antagonistic properties of angiotensin II antagonists. J Med Chem. 1973;16:829–832.PubMedCrossRefGoogle Scholar
  12. 12.
    Khosla MC, Hall MM, Smeby RR, Bumpus FM. Agonist and antagonist relationships in 1- and 8-substituted analogs of angiotensin II. J Med Chem. 1974;17:1156–1160.PubMedCrossRefGoogle Scholar
  13. 13.
    Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of angiotensin(1-7). Peptides. 1993;14:679–684.PubMedCrossRefGoogle Scholar
  14. 14.
    Benter IF, Ferrario CM, Morris M, Diz DI. Antihypertensive actions of angiotensin-(1-7) in spontaneously hypertensive rats. Am J Physiol. 1995;269:H313–H319.PubMedGoogle Scholar
  15. 15.
    Benter IF, Diz DI, Ferrario CM. Pressor and reflex sensitivity is altered in spontaneously hypertensive rats treated with angiotensin-(1-7). Hypertension. 1995;26:1138–1144.PubMedGoogle Scholar
  16. 16.
    Brosnihan KB, Li P, Tallant EA, Ferrario CM. Angiotensin-(1-7): a novel vasodilator of the coronary circulation. Biol Res. 1998;31:227–234.PubMedGoogle Scholar
  17. 17.
    Chappell MC, Diz DI, Yunis C, Ferrario CM. Differential actions of angiotensin-(1-7) in the kidney. Kidney Int Suppl. 1998;68:S3–S6.PubMedGoogle Scholar
  18. 18.
    Chappell MC, Allred AJ, Ferrario CM. Pathways of angiotensin-(1-7) metabolism in the kidney. Nephrol Dial Transplant. 2001;16(Suppl 1):22–26.PubMedGoogle Scholar
  19. 19.
    Ferrario CM, Brosnihan KB, Diz DI, et al. Angiotensin-(1-7): a new hormone of the angiotensin system. Hypertension. 1991;18:III126–III133.PubMedGoogle Scholar
  20. 20.
    Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1-7). Hypertension. 1997;30:535–541.PubMedGoogle Scholar
  21. 21.
    Ferrario CM, Martell N, Yunis C, et al. Characterization of angiotensin-(1-7) in the urine of normal and essential hypertensive subjects. Am J Hypertens. 1998;11:137–146.PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrario CM, Smith RD, Brosnihan B, et al. Effects of omapatrilat on the renin-angiotensin system in salt-sensitive hypertension. Am J Hypertens. 2002;15:557–564.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrario CM, Averill DB, Brosnihan KB, et al. Vasopeptidase inhibition and Ang-(1-7) in the spontaneously hypertensive rat. Kidney Int. 2002;62:1349–1357.PubMedCrossRefGoogle Scholar
  24. 24.
    Ferrario CM. Contribution of angiotensin-(1-7) to cardiovascular physiology and pathology. Curr Hypertens Rep. 2003;5:129–134.PubMedCrossRefGoogle Scholar
  25. 25.
    Handa RK, Ferrario CM, Strandhoy JW. Renal actions of angiotensin-(1-7): in vivo and in vitro studies. Am J Physiol. 1996;270:F141–F147.PubMedGoogle Scholar
  26. 26.
    Iyer SN, Chappell MC, Averill DB, Diz DI, Ferrario CM. Vasodepressor actions of angiotensin-(1-7) unmasked during combined treatment with lisinopril and losartan. Hypertension. 1998;31:699–705.PubMedGoogle Scholar
  27. 27.
    Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998;31:356–361.PubMedGoogle Scholar
  28. 28.
    Iyer SN, Yamada K, Diz DI, Ferrario CM, Chappell MC. Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1-7) during chronic blockade of the renin-angiotensin system. J Cardiovasc Pharmacol. 2000;36:109–117.PubMedCrossRefGoogle Scholar
  29. 29.
    Kohara K, Brosnihan KB, Chappell MC, Khosla MC, Ferrario CM. Angiotensin-(1-7). A member of circulating angiotensin peptides. Hypertension. 1991;17:131–138.PubMedGoogle Scholar
  30. 30.
    Kohara K, Brosnihan KB, Ferrario CM. Angiotensin(1-7) in the spontaneously hypertensive rat. Peptides. 1993;14:883–891.PubMedCrossRefGoogle Scholar
  31. 31.
    Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin-(1-7) in essential hypertension. J Hypertens. 1996;14:799–805.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamoto H, Ferrario CM, Fuller SB, Robaczewski DL, Winicov E, Dean RH. Angiotensin-(1-7) and nitric oxide interaction in renovascular hypertension. Hypertension. 1995;25:796–802.PubMedGoogle Scholar
  33. 33.
    Neves LA, Averill DB, Ferrario CM, et al. Characterization of angiotensin-(1-7) receptor subtype in mesenteric arteries. Peptides. 2003;24:455–462.PubMedCrossRefGoogle Scholar
  34. 34.
    Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA. Angiotensin-(1-7) inhibits vascular smooth muscle cell growth. Hypertension. 1996;28:104–108.PubMedGoogle Scholar
  35. 35.
    Jaiswal N, Jaiswal RK, Tallant EA, Diz DI, Ferrario CM. Alterations in prostaglandin production in spontaneously hypertensive rat smooth muscle cells. Hypertension. 1993;21:900–905.PubMedGoogle Scholar
  36. 36.
    Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1-7) reduces smooth muscle growth after vascular injury. Hypertension. 1999;33:207–211.PubMedGoogle Scholar
  37. 37.
    Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension. 1998;31:362–367.PubMedGoogle Scholar
  38. 38.
    Chappell MC, Gomez MN, Pirro NT, Ferrario CM. Release of angiotensin-(1-7) from the rat hindlimb: influence of angiotensin-converting enzyme inhibition. Hypertension. 2000;35:348–352.PubMedGoogle Scholar
  39. 39.
    Welches WR, Santos RA, Chappell MC, Brosnihan KB, Greene LJ, Ferrario CM. Evidence that prolyl endopeptidase participates in the processing of brain angiotensin. J Hypertens. 1991;9:631–638.PubMedCrossRefGoogle Scholar
  40. 40.
    Welches WR, Brosnihan KB, Ferrario CM. A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci. 1993;52:1461–1480.PubMedCrossRefGoogle Scholar
  41. 41.
    Reyes-Engel A, Morcillo L, Aranda FJ, et al. Influence of gender and genetic variability on plasma angiotensin peptides. J Renin Angiotensin Aldosterone Syst. 2006;7:92–97.PubMedCrossRefGoogle Scholar
  42. 42.
    Schindler C, Bramlage P, Kirch W, Ferrario CM. Role of the vasodilator peptide angiotensin-(1-7) in cardiovascular drug therapy. Vasc Health Risk Manag. 2007;3:125–137.PubMedGoogle Scholar
  43. 43.
    Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol. 2005;289:H2281–H2290.PubMedCrossRefGoogle Scholar
  44. 44.
    Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. Hypertension. 2006;47:515–521.PubMedCrossRefGoogle Scholar
  45. 45.
    Santos RA, Simoes E Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA. 2003;100:8258–8263.PubMedCrossRefGoogle Scholar
  46. 46.
    Santos RA, Ferreira AJ, Simoes E Silva AC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp Physiol. 2008;93:519–527.PubMedCrossRefGoogle Scholar
  47. 47.
    Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1–E9.PubMedGoogle Scholar
  48. 48.
    Turner AJ, Tipnis SR, Guy JL, Rice G, Hooper NM. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002;80:346–353.PubMedCrossRefGoogle Scholar
  49. 49.
    Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383:45–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48:914–920.PubMedCrossRefGoogle Scholar
  51. 51.
    Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277:14838–14843.PubMedCrossRefGoogle Scholar
  52. 52.
    Gallagher PE, Chappell MC, Ferrario CM, Tallant EA. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol. 2006;290:C420–C426.PubMedCrossRefGoogle Scholar
  53. 53.
    Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. Am J Physiol Heart Circ Physiol. 2008;295:H2373–H2379.Google Scholar
  54. 54.
    Gallagher PE, Ferrario CM, Tallant EA. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. Am J Physiol Cell Physiol. 2008;295:C1169–C1174.PubMedCrossRefGoogle Scholar
  55. 55.
    Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004;43:970–976.PubMedCrossRefGoogle Scholar
  56. 56.
    Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.PubMedCrossRefGoogle Scholar
  57. 57.
    Grobe JL, Der SS, Stewart JM, Meszaros JG, Raizada MK, Katovich MJ. ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond). 2007;113:357–364.CrossRefGoogle Scholar
  58. 58.
    Guy JL, Lambert DW, Turner AJ, Porter KE. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Exp Physiol. 2008;93:579–588.PubMedCrossRefGoogle Scholar
  59. 59.
    Huentelman MJ, Grobe JL, Vazquez J, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol. 2005;90:783–790.PubMedCrossRefGoogle Scholar
  60. 60.
    Igase M, Kohara K, Nagai T, Miki T, Ferrario CM. Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res. 2008;31:553–559.PubMedCrossRefGoogle Scholar
  61. 61.
    Ingelfinger JR. ACE2: a new target for prevention of diabetic nephropathy? J Am Soc Nephrol. 2006;17:2957–2959.PubMedCrossRefGoogle Scholar
  62. 62.
    Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295:H1377–H1384.PubMedCrossRefGoogle Scholar
  63. 63.
    Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23:177–183.PubMedCrossRefGoogle Scholar
  64. 64.
    Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25:291–294.PubMedCrossRefGoogle Scholar
  65. 65.
    Yagil Y, Yagil C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension. 2003;41:871–873.PubMedCrossRefGoogle Scholar
  66. 66.
    Nagata S, Kato J, Sasaki K, Minamino N, Eto T, Kitamura K. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun. 2006;350:1026–1031.PubMedCrossRefGoogle Scholar
  67. 67.
    Baker KM, Chernin MI, Schreiber T, et al. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004;120:5–13.PubMedCrossRefGoogle Scholar
  68. 68.
    Baker KM, Kumar R. Intracellular angiotensin II induces cell proliferation independent of AT1 receptor. Am J Physiol Cell Physiol. 2006;291:C995–C1001.PubMedCrossRefGoogle Scholar
  69. 69.
    Campbell DJ. Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol. 1987;10 (Suppl 7):S1–S8.PubMedCrossRefGoogle Scholar
  70. 70.
    Danser AH, Schalekamp MA. Is there an internal cardiac renin-angiotensin system? Heart. 1996;76:28–32.PubMedCrossRefGoogle Scholar
  71. 71.
    De Mello WC, Danser AH. Angiotensin II and the heart: on the intracrine renin-angiotensin system. Hypertension. 2000;35:1183–1188.Google Scholar
  72. 72.
    Dostal DE, Baker KM. The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85:643–650.PubMedGoogle Scholar
  73. 73.
    Dostal DE. The cardiac renin-angiotensin system: novel signaling mechanisms related to cardiac growth and function. Regul Pept. 2000;91:1–11.PubMedCrossRefGoogle Scholar
  74. 74.
    Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: implications in cardiovascular remodeling. Curr Opin Nephrol Hypertens. 2008;17:168–173.PubMedCrossRefGoogle Scholar
  75. 75.
    Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin ii production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008;57:3297–3306.Google Scholar
  76. 76.
    Singh VP, Baker KM, Kumar R. Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production. Am J Physiol Heart Circ Physiol. 2008;294: H1675–H1684.PubMedCrossRefGoogle Scholar
  77. 77.
    Mackins CJ, Kano S, Seyedi N, et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest. 2006;116:1063–1070.PubMedCrossRefGoogle Scholar
  78. 78.
    Ichihara A, Kobori H, Nishiyama A, Navar LG. Renal renin-angiotensin system. Contrib Nephrol. 2004;143: 17–130.Google Scholar
  79. 79.
    Ichihara A, Kaneshiro Y, Takemitsu T, et al. Nonproteolytic activation of prorenin contributes to development of cardiac fibrosis in genetic hypertension. Hypertension. 2006;47:894–900.PubMedCrossRefGoogle Scholar
  80. 80.
    Ichihara A, Suzuki F, Nakagawa T, et al. Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2006;17:1950–1961.PubMedCrossRefGoogle Scholar
  81. 81.
    Holtz J. The cardiac renin-angiotensin system: physiological relevance and pharmacological modulation. Clin Investig. 1993;71:S25–S34.PubMedCrossRefGoogle Scholar
  82. 82.
    Cook JL, Zhang Z, Re RN. In vitro evidence for an intracellular site of angiotensin action. Circ Res. 2001;89:1138–1146.PubMedCrossRefGoogle Scholar
  83. 83.
    Cook JL, Mills SJ, Naquin R, Alam J, Re RN. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol. 2006;40:696–707.PubMedCrossRefGoogle Scholar
  84. 84.
    De Mello WC. Opposite effects of angiotensin II and angiotensin (1-7) on impulse propagation, excitability and cardiac arrhythmias. Is the overexpression of ACE2 arrhythmogenic? Regul Pept. 2008;153:7–10.Google Scholar
  85. 85.
    Miyazaki H, Shibata T, Fujii N. Intracellular signaling pathways of angiotensin II receptor type 1 involved in the development of cardiovascular diseases. Nippon Rinsho. 1998;56:1906–1911.PubMedGoogle Scholar
  86. 86.
    Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci. 2006;100:391–397.PubMedCrossRefGoogle Scholar
  87. 87.
    Re R. Intracellular renin-angiotensin system: the tip of the intracrine physiology iceberg. Am J Physiol Heart Circ Physiol. 2007;293:H905–H906.PubMedCrossRefGoogle Scholar
  88. 88.
    Re RN. Intracellular renin and the nature of intracrine enzymes. Hypertension. 2003;42:117–122.PubMedCrossRefGoogle Scholar
  89. 89.
    Re RN, Messerli FH. Renin excess after renin inhibition: malefactor or innocent bystander? Int J Clin Pract. 2007;61:1427–1429.PubMedCrossRefGoogle Scholar
  90. 90.
    Jessup JA, Trask AJ, Chappell MC, et al. Localization of the novel angiotensin peptide, angiotensin-(1-12), in heart and kidney of hypertensive and normotensive rats. Am J Physiol Heart Circ Physiol. 2008;294:H2614–H2618.PubMedCrossRefGoogle Scholar
  91. 91.
    Trask AJ, Jessup JA, Chappell MC, Ferrario CM. Angiotensin-(1-12) is an alternate substrate for angiotensin peptide production in the heart. Am J Physiol Heart Circ Physiol. 2008;294:H2242–H2247.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferrario CM, Varagic J, Habibi J, et al. Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ Physiol. 2009;296:H1184–H1192.Google Scholar
  93. 93.
    Ferrario CM, Jessup JA. Renin inhibitor pharmacotherapy for hypertension. Armonk, NY: Summit Communications, LLC; 2008.Google Scholar
  94. 94.
    Drummond W, Munger MA, Rafique EM, Maboudian M, Khan M, Keefe DL. Antihypertensive efficacy of the oral direct renin inhibitor aliskiren as add-on therapy in patients not responding to amlodipine monotherapy. J Clin Hypertens. (Greenwich). 2007;9:742–750.CrossRefGoogle Scholar
  95. 95.
    Nussberger J, Wuerzner G, Jensen C, Brunner HR. Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension. 2002;39:E1–E8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Carlos M. Ferrario
    • 1
  • Jewell A. Jessup
    • 1
  • Jasmina Varagic
    • 1
  1. 1.Department of Physiology and Pharmacology, The Hypertension and Vascular Research CenterWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations