Skip to main content

Salt and Heart: RAAS Involvement

  • Conference paper
  • First Online:
The Local Cardiac Renin-Angiotensin Aldosterone System

Abstract

The role of high dietary salt intake was previously thought to be restricted only to the effects on arterial pressure. However, a large body of evidence has accumulated over the last two decades pointing to the potent adverse effects of salt excess on cardiac structure and function. The role of the renin–angiotensin–aldosterone system as a key player in mediating these effects has been increasingly appreciated in recent years. Moreover, identification of angiotensin-(1-7), its receptor mas, and enzymes involved in its metabolism challenges our concept that only increased angiotensin II activity is responsible for cardiac injury in salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn J, Varagic J, Slama M, Susic D, Frohlich ED. Cardiac structural and functional responses to salt loading in SHR. Am J Physiol Heart Circ Physiol. 2004;287:H767–H772.

    Article  PubMed  CAS  Google Scholar 

  2. Alderman MH, Madhavan S, Cohen H, Sealey JE, Laragh JH. Low urinary sodium is associated with greater risk of myocardial infarction among treated hypertensive men. Hypertension. 1995;25:1144–1152.

    PubMed  CAS  Google Scholar 

  3. Allred AJ, Diz DI, Ferrario CM, Chappell MC. Pathways for angiotensin-(1-7) metabolism in pulmonary and renal tissues. Am J Physiol Renal Physiol. 2000;279:F841–F850.

    PubMed  CAS  Google Scholar 

  4. Bayorh MA, Eatman D, Walton M, Socci RR, Thierry-Palmer M, Emmett N. 1A-779 attenuates angiotensin-(1-7) depressor response in salt-induced hypertensive rats. Peptides. 2002;23:57–64.

    Article  PubMed  CAS  Google Scholar 

  5. Brown L, Duce B, Miric G, Sernia C. Reversal of cardiac fibrosis in deoxycorticosterone acetate-salt hypertensive rats by inhibition of the renin-angiotensin system. J Am Soc Nephrol. 1999;10 (Suppl 11):S143–S148.

    PubMed  CAS  Google Scholar 

  6. Castro CH, Santos RA, Ferreira AJ, Bader M, Alenina N, Almeida AP. Effects of genetic deletion of angiotensin-(1-7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sci. 2006;80:264–268.

    Article  PubMed  CAS  Google Scholar 

  7. Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1-7) by angiotensin-converting enzyme. Hypertension. 1998;31:362–367.

    PubMed  CAS  Google Scholar 

  8. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–828.

    Article  PubMed  CAS  Google Scholar 

  9. Der SS, Grobe JL, Yuan L, et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension. 2008;51:712–718.

    Article  Google Scholar 

  10. Doi R, Masuyama T, Yamamoto K, et al. Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens. 2000;18:111–120.

    Article  PubMed  CAS  Google Scholar 

  11. du CG, Ribstein J, Grolleau R, Mimran A. Influence of sodium intake on left ventricular structure in untreated essential hypertensives. J Hypertens. 1989;7:S258–S259.

    Google Scholar 

  12. du CG, Ribstein J, Mimran A..Dietary sodium and target organ damage in essential hypertension. Am J Hypertens. 2002;15:222–229.

    Article  Google Scholar 

  13. Eatman D, Wang M, Socci RR, Thierry-Palmer M, Emmett N, Bayorh MA. Gender differences in the attenuation of salt-induced hypertension by angiotensin (1-7). Peptides. 2001;22:927–933.

    Article  PubMed  CAS  Google Scholar 

  14. Elliott P, Stamler J, Nichols R, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ. 1996;312:1249–1253.

    PubMed  CAS  Google Scholar 

  15. Endemann DH, Touyz RM, Iglarz M, Savoia C, Schiffrin EL. Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2004;43:1252–1257.

    Article  PubMed  CAS  Google Scholar 

  16. Feron O, Salomone S, Godfraind T. Blood pressure-independent inhibition by lacidipine of endothelin-1-related cardiac hypertrophy in salt-loaded, stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1995;26(Suppl 3):S459–S461.

    Google Scholar 

  17. Feron O, Salomone S, Godfraind T. Influence of salt loading on the cardiac and renal preproendothelin-1 mRNA expression in stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun. 1995;209:161–166.

    Article  PubMed  CAS  Google Scholar 

  18. Feron O, Salomone S, Godfraind T. Inhibition by lacidipine of salt-dependent cardiac hypertrophy and endothelin gene expression in stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun. 1995;210:219–224.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111:2605–2610.

    Article  PubMed  CAS  Google Scholar 

  20. Ferrario CM, Jessup J, Gallagher PE, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int. 2005;68:2189–2196.

    Article  PubMed  CAS  Google Scholar 

  21. Ferrario CM, Smith RD, Brosnihan KB, et al. Effects of omapatrilat on the renin angiotensin system in salt sensitive hypertension. Am J Hyperten. 2002;15:557–564.

    Article  CAS  Google Scholar 

  22. Fields NG, Yuan BX, Leenen FH. Sodium-induced cardiac hypertrophy. Cardiac sympathetic activity versus volume load. Circ Res. 1991;68:745–755.

    PubMed  CAS  Google Scholar 

  23. Frohlich ED. State of the Art lecture. Risk mechanisms in hypertensive heart disease. Hypertension. 1999;34:782–789.

    PubMed  CAS  Google Scholar 

  24. Frohlich ED, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med. 1992;327:998–1008.

    Article  PubMed  CAS  Google Scholar 

  25. Gallagher PE, Chappell MC, Ferrario CM, Tallant EA. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol. 2006;290:C420–C426.

    Article  PubMed  CAS  Google Scholar 

  26. Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in Cardiac Myocytes and Fibroblasts. Am J Physiol Heart Circ Physiol. 2008;295:H2373–H2379.

    Google Scholar 

  27. Grassi G, Dell'Oro R, Seravalle G, Foglia G, Trevano FQ, Mancia G. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation. 2002;106:1957–1961.

    Article  PubMed  CAS  Google Scholar 

  28. Grobe JL, Mecca AP, Lingis M, et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol. 2007;292:H736–H742.

    Article  PubMed  CAS  Google Scholar 

  29. Gu JW, Anand V, Shek EW, et al. Sodium induces hypertrophy of cultured myocardial myoblasts and vascular smooth muscle cells. Hypertension. 1998;31:1083–1087.

    PubMed  CAS  Google Scholar 

  30. Gurley SB, Allred A, Le TH, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218–2225.

    Article  PubMed  CAS  Google Scholar 

  31. Hamming I, van GH, Turner AJ, et al. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp Physiol. 2008;93:631–638.

    Article  PubMed  CAS  Google Scholar 

  32. Hodge G, Ye VZ, Duggan KA. Dysregulation of angiotensin II synthesis is associated with salt sensitivity in the spontaneous hypertensive rat. Acta Physiol Scand. 2002;174:209–215.

    Article  PubMed  CAS  Google Scholar 

  33. Huentelman MJ, Grobe JL, Vazquez J, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol. 2005;90:783–790.

    Article  PubMed  CAS  Google Scholar 

  34. Igase M, Kohara K, Nagai T, Miki T, Ferrario CM. Increased expression of angiotensin converting enzyme 2 in conjunction with reduction of neointima by angiotensin II type 1 receptor blockade. Hypertens Res. 2008;31:553–559.

    Article  PubMed  Google Scholar 

  35. Iyer SN, Averill DB, Chappell MC, Yamada K, Allred AJ, Ferrario CM. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension. 2000;36:417–422.

    PubMed  CAS  Google Scholar 

  36. Jessup JA, Gallagher PE, Averill DB, et al. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am J Physiol Heart Circ Physiol. 2006;291:H2166–H2172.

    Article  PubMed  CAS  Google Scholar 

  37. Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation. 2001;103:148–154.

    PubMed  CAS  Google Scholar 

  38. Kocks MJ, Lely AT, Boomsma F, de Jong PE, Navis G. Sodium status and angiotensin-converting enzyme inhibition: effects on plasma angiotensin-(1-7) in healthy man. J Hypertens. 2005;23:597–602.

    Article  PubMed  CAS  Google Scholar 

  39. Kreutz R, Fernandez-Alfonso MS, Liu Y, Ganten D, Paul M. Induction of cardiac angiotensin I-converting enzyme with dietary NaCl-loading in genetically hypertensive and normotensive rats. J Mol Med. 1995;73:243–248.

    Article  PubMed  CAS  Google Scholar 

  40. Lal A, Veinot JP, Leenen FH. Prevention of high salt diet-induced cardiac hypertrophy and fibrosis by spironolactone. Am J Hypertens. 2003;16:319–323.

    Article  PubMed  CAS  Google Scholar 

  41. Leenen FH, Yuan B. Dietary-sodium-induced cardiac remodeling in spontaneously hypertensive rat versus Wistar-Kyoto rat. J Hypertens. 1998;16:885–892.

    Article  PubMed  CAS  Google Scholar 

  42. Limas C, Limas CJ. Cardiac beta-adrenergic receptors in salt-dependent genetic hypertension. Hypertension. 1985;7:760–766.

    PubMed  CAS  Google Scholar 

  43. MacPhee AA, Blakesley HL, Graci KA, Frohlich ED, Cole FE. Altered cardiac beta-adrenoreceptors in spontaneously hypertensive rats receiving salt excess. Clin Sci (Lond). 1980;59(Suppl 6):169s–170s.

    CAS  Google Scholar 

  44. Musiari L, Ceriati R, Taliani U, Montesi M, Novarini A. Early abnormalities in left ventricular diastolic function of sodium-sensitive hypertensive patients. J Hum Hypertens. 1999;13:711–716.

    Article  PubMed  CAS  Google Scholar 

  45. Neri Serneri GG, Boddi M, Coppo M, et al. Evidence for the existence of a functional cardiac renin-angiotensin system in humans. Circulation. 1996;94:1886–1893.

    PubMed  CAS  Google Scholar 

  46. Nickenig G, Strehlow K, Roeling J, Zolk O, Knorr A, Bohm M. Salt induces vascular AT1 receptor overexpression in vitro and in vivo. Hypertension. 1998;31:1272–1277.

    PubMed  CAS  Google Scholar 

  47. Nishiyama A, Yoshizumi M, Rahman M, et al. Effects of AT1 receptor blockade on renal injury and mitogen-activated protein activity in Dahl salt-sensitive rats. Kidney Int. 2004;65:972–981.

    Article  PubMed  CAS  Google Scholar 

  48. Oudit GY, Kassiri Z, Patel MP, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75:29–39.

    Article  PubMed  CAS  Google Scholar 

  49. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension. 1998;31:451–458.

    PubMed  CAS  Google Scholar 

  50. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci USA. 1988;85:4095–4098.

    Article  PubMed  CAS  Google Scholar 

  51. Schlaich MP, Klingbeil A, Hilgers K, Schobel HP, Schmieder RE. Relation between the renin-angiotensin-aldosterone system and left ventricular structure and function in young normotensive and mildly hypertensive subjects. Am Heart J. 1999;138:810–817.

    Article  PubMed  CAS  Google Scholar 

  52. Schlaich MP, Schobel HP, Langenfeld MR, Hilgers K, Schmieder RE. Inadequate suppression of angiotensin II modulates left ventricular structure in humans. Clin Nephrol. 1998;49:153–159.

    PubMed  CAS  Google Scholar 

  53. Schmieder RE, Langenfeld MR, Friedrich A, Schobel HP, Gatzka CD, Weihprecht H. Angiotensin II related to sodium excretion modulates left ventricular structure in human essential hypertension. Circulation. 1996;94:1304–1309.

    PubMed  CAS  Google Scholar 

  54. Stamler J. The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65:626S–642S.

    PubMed  CAS  Google Scholar 

  55. Takeda Y, Yoneda T, Demura M, Furukawa K, Miyamori I, Mabuchi H. Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke-prone spontaneously hypertensive rats. J Hypertens. 2001;19:635–639.

    Article  PubMed  CAS  Google Scholar 

  56. Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H. Sodium-induced cardiac aldosterone synthesis causes cardiac hypertrophy. Endocrinology. 2000;141:1901–1904.

    Article  PubMed  CAS  Google Scholar 

  57. Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20:1119–1124.

    Article  PubMed  CAS  Google Scholar 

  58. Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). Hypertension. 2003;42:574–579.

    Article  PubMed  CAS  Google Scholar 

  59. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol. 2005;289:H1560–H1566.

    Article  PubMed  Google Scholar 

  60. Trask AJ, Averill DB, Ganten D, Chappell MC, Ferrario CM. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats. Am J Physiol Heart Circ Physiol. 2007;292:H3019–H3024.

    Article  PubMed  CAS  Google Scholar 

  61. Varagic J, Frohlich ED, Diez J, et al. Myocardial fibrosis, impaired coronary hemodynamics, and biventricular dysfunction in salt-loaded SHR. Am J Physiol Heart Circ Physiol. 2006;290:H1503–H1509.

    Article  PubMed  CAS  Google Scholar 

  62. Varagic J, Frohlich ED, Susic D, et al. AT1 receptor antagonism attenuates target organ effects of salt excess in SHRs without affecting pressure. Am J Physiol Heart Circ Physiol. 2008;294:H853–H858.

    Article  PubMed  CAS  Google Scholar 

  63. Varagic J, Trask AJ, Jessup JA, Chappell MC, Ferrario CM. New angiotensins. J Mol Med. 2008;86:663–671.

    Article  PubMed  CAS  Google Scholar 

  64. Wang JM, Veerasingham SJ, Tan J, Leenen FH. Effects of high salt intake on brain AT1 receptor densities in Dahl rats. Am J Physiol Heart Circ Physiol. 2003;285:H1949–H1955.

    PubMed  CAS  Google Scholar 

  65. Widimsky J, Kuchel O, Tremblay J, Hamet P. Distinct plasma atrial natriuretic factor, renin and aldosterone responses to prolonged high-salt intake in hypertensive and normotensive rats. J Hypertens. 1991;9:241–247.

    Article  PubMed  CAS  Google Scholar 

  66. Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM. Converting enzyme determines plasma clearance of angiotensin-(1-7). Hypertension. 1998;32:496–502.

    PubMed  CAS  Google Scholar 

  67. Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–726.

    Article  PubMed  CAS  Google Scholar 

  68. Yu HC, Burrell LM, Black MJ, et al. Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation. 1998;98:2621–2628.

    PubMed  CAS  Google Scholar 

  69. Zhao X, White R, Van HJ, Leenen FH. Cardiac hypertrophy and cardiac renin-angiotensin system in Dahl rats on high salt intake. J Hypertens. 2000;18:1319–1326.

    Article  PubMed  CAS  Google Scholar 

  70. Zhu Z, Zhu S, Wu Z, et al. Effect of sodium on blood pressure, cardiac hypertrophy, and angiotensin receptor expression in rats. Am J Hypertens. 2004;17:21–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by awards from the National Institutes of Health (HL-51952 to CMF), American Heart Association, Mid-Atlantic Affiliate (0765308U to JV), and WFUSM Venture Fund (to JV). Additionally, the authors gratefully acknowledge grant support in part provided by Unifi, Inc., Greensboro, NC, and Farley-Hudson Foundation, Jacksonville, NC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmina Varagic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Varagic, J., Ferrario, C.M. (2009). Salt and Heart: RAAS Involvement. In: Frohlich, E., Re, R. (eds) The Local Cardiac Renin-Angiotensin Aldosterone System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0528-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0528-4_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0527-7

  • Online ISBN: 978-1-4419-0528-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics