Advertisement

Intrarenal Angiotensin II Augmentation in Hypertension

  • Romer A. Gonzalez-Villalobos
  • L.G. Navar
Conference paper

Abstract

Angiotensin (Ang) II-dependent hypertension is characterized by an augmentation in intrarenal Ang II content beyond circulating levels that is associated with functional and morphological derangements in the kidney. This augmentation is due to Ang II sequestration from the general circulation by the Ang II type 1 receptor (AT1R) and to intrarenal Ang II formation by a local renin–angiotensin system (RAS). This review summarizes the evidence in favor of the contribution of these two processes to the observed augmentation of intrarenal Angiotensin II as well as their impact on the regulation of kidney function and blood pressure regulation.

Keywords

Human Angiotensinogen Angiotensinogen mRNA Intrarenal Angiotensin Intrarenal Renin Angiotensinogen Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by grants from the Institutional Award (IDeA) program of NCRR (P20RR017659), the National Heart, Lung, and Blood Institute (HL26371), the National Institute of Diabetes and Digestive and Kidney Diseases (DK072408) and a postdcotoral fellowship from the Consortium for Southeastern Hypertension Control.

References

  1. 1.
    Becker BN, Cheng HF, Harris RC. Apical ANG II-stimulated PLA2 activity and Na+ flux: a potential role for Ca2+-independent PLA2. Am J Physiol. 1997;273:F554–562.PubMedGoogle Scholar
  2. 2.
    Braam B, Mitchell KD, Fox J, Navar LG. Proximal tubular secretion of angiotensin II in rats. Am J Physiol. 1993;264:F891–898.PubMedGoogle Scholar
  3. 3.
    Campbell DJ, Alexiou T, Xiao HD, et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension. 2004;43:854–859.PubMedCrossRefGoogle Scholar
  4. 4.
    Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin II levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension. 1999;33:102–107.PubMedGoogle Scholar
  5. 5.
    Gonzalez-Villalobos R, Klassen RB, Allen PL, et al. Megalin binds and internalizes angiotensin-(1-7). Am J Physiol Renal Physiol. 2006;290:F1270–1275.PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005;288:F420–427.PubMedCrossRefGoogle Scholar
  7. 7.
    Gonzalez-Villalobos RA, Satou R, Katsurada A, Kobori H, Hammond TG, Navar LG. Megalin mediates the uptake of angiotensin II in proximal tubule cells. FASEB J.2007; 21:A1245-c-.Google Scholar
  8. 8.
    Gonzalez-Villalobos RA, Satou R, Seth DM, et al. Angiotensin-Converting Enzyme-Derived Angiotensin II formation during Angiotensin II-induced hypertension. Hypertension. 2009;53:351–355.PubMedCrossRefGoogle Scholar
  9. 9.
    Gonzalez-Villalobos RA, Seth DM, Satou R, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295:F772–779.PubMedCrossRefGoogle Scholar
  10. 10.
    Guan S, Fox J, Mitchell KD, Navar LG. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one clip hypertensive rats. Hypertension. 1992;20:763–767.PubMedGoogle Scholar
  11. 11.
    Harrison-Bernard LM, Zhuo J, Kobori H, Ohishi M, Navar LG. Intrarenal AT(1) receptor and ACE binding in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol. 2002;282:F19–25.PubMedGoogle Scholar
  12. 12.
    Ingelfinger JR, Jung F, Diamant D, et al. Rat proximal tubule cell line transformed with origin-defective SV40 DNA: autocrine ANG II feedback. Am J Physiol. 1999;276:F218–227.PubMedGoogle Scholar
  13. 13.
    Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension. 2001;37:1329–1335.PubMedGoogle Scholar
  14. 14.
    Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12:431–439.PubMedGoogle Scholar
  15. 15.
    Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61:579–585.PubMedCrossRefGoogle Scholar
  16. 16.
    Kobori H, Ozawa Y, Satou R, et al. Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice. Am J Physiol Renal Physiol. 2007;293:F938–945.PubMedCrossRefGoogle Scholar
  17. 17.
    Koike G, Krieger JE, Jacob HJ, Mukoyama M, Pratt RE, Dzau VJ. Angiotensin converting enzyme and genetic hypertension: cloning of rat cDNAs and characterization of the enzyme. Biochem Biophys Res Commun. 1994;198:380–386.PubMedCrossRefGoogle Scholar
  18. 18.
    Li XC, Zhuo JL. Intracellular ANG II directly induces in vitro transcription of TGF-beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. Am J Physiol Cell Physiol. 2008;294:C1034–1045.PubMedCrossRefGoogle Scholar
  19. 19.
    Licea H, Walters MR, Navar LG. Renal nuclear Angiotensin II receptors in normal and hypertensive rats. Acta Physiol Hung. 2002;89:427–438.PubMedCrossRefGoogle Scholar
  20. 20.
    Mitchell KD, Jacinto SM, Mullins JJ. Proximal tubular fluid, kidney, and plasma levels of angiotensin II in hypertensive ren-2 transgenic rats. Am J Physiol. 1997;273:F246–253.PubMedGoogle Scholar
  21. 21.
    Moe OW, Ujiie K, Star RA, et al. Renin expression in renal proximal tubule. J Clin Invest. 1993;91:774–779.PubMedCrossRefGoogle Scholar
  22. 22.
    Navar LG, Imig JD, Zou L, Wang CT. Intrarenal production of angiotensin II. Semin Nephrol. 1997;17:412–422.PubMedGoogle Scholar
  23. 23.
    Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep. 2003;5:135–143.PubMedCrossRefGoogle Scholar
  24. 24.
    Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39:129–134.PubMedCrossRefGoogle Scholar
  25. 25.
    Pendergrass KD, Averill DB, Ferrario CM, Diz DI, Chappell MC. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol. 2006;290:F1497–1506.PubMedCrossRefGoogle Scholar
  26. 26.
    Prieto-Carrasquero MC, Botros FT, Pagan J, et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip goldblatt hypertensive rats. Hypertension. 2008;51: 1590–1596.PubMedCrossRefGoogle Scholar
  27. 27.
    Prieto-Carrasquero MC, Harrison-Bernard LM, Kobori H, et al. Enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Hypertension. 2004;44:223–229.PubMedCrossRefGoogle Scholar
  28. 28.
    Re RN, Cook JL. The basis of an intracrine pharmacology. J clin pharmacol. 2008;48:344–350.PubMedCrossRefGoogle Scholar
  29. 29.
    Sachetelli S, Liu Q, Zhang SL, et al. RAS blockade decreases blood pressure and proteinuria in transgenic mice overexpressing rat angiotensinogen gene in the kidney. Kidney Int. 2006;69:1016–1023.PubMedCrossRefGoogle Scholar
  30. 30.
    Sadjadi J, Kramer GL, Yu CH, Welborn MB, 3rd, Modrall JG. Angiotensin II exerts positive feedback on the intrarenal renin-angiotensin system by an angiotensin converting enzyme-dependent mechanism. J Surg Res. 2005;129:272–277.PubMedCrossRefGoogle Scholar
  31. 31.
    Satou R, Gonzalez-Villalobos RA, Miyata K, et al. Costimulation with angiotensin II and interleukin 6 augments angiotensinogen expression in cultured human renal proximal tubular cells. Am J Physiol Renal Physiol. 2008;295:F283–289.PubMedCrossRefGoogle Scholar
  32. 32.
    Schelling JR, Linas SL. Angiotensin II-dependent proximal tubule sodium transport requires receptor-mediated endocytosis. Am J Physiol. 1994;266:C669–675.PubMedGoogle Scholar
  33. 33.
    Shao W, Seth DM, Navar LG. Augmenation of endogenous Angiotensin II levels in Val5-Ang II infused rats. JIM. 2008;56:344–492.Google Scholar
  34. 34.
    Thekkumkara T, Linas SL. Role of internalization in AT(1A) receptor function in proximal tubule epithelium. Am J Physiol Renal Physiol. 2002;282:F623–629.PubMedGoogle Scholar
  35. 35.
    Vio CP, Jeanneret VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. Kidney Int Suppl. 2003;64:S57–63.CrossRefGoogle Scholar
  36. 36.
    Zhuo JL, Carretero OA, Li XC. Effects of AT1 receptor-mediated endocytosis of extracellular Ang II on activation of nuclear factor-kappa B in proximal tubule cells. Ann N Y Acad Sci. 2006;1091:336–345.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhuo JL, Imig JD, Hammond TG, Orengo S, Benes E, Navar LG. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT(1) receptor. Hypertension. 2002;39:116–121.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhuo JL, Li XC, Garvin JL, Navar LG, Carretero OA. Intracellular ANG II induces cytosolic Ca2+ mobilization by stimulating intracellular AT1 receptors in proximal tubule cells. Am J Physiol Renal Physiol. 2006;290:F1382–1390.PubMedCrossRefGoogle Scholar
  39. 39.
    Zou LX, Imig JD, Hymel A, Navar LG. Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor. Am J Hypertens. 1998;11:570–578.PubMedCrossRefGoogle Scholar
  40. 40.
    Zou LX, Imig JD, von Thun AM, Hymel A, Ono H, Navar LG. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. Hypertension. 1996;28:669–677.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Romer A. Gonzalez-Villalobos
    • 1
  • L.G. Navar
    • 1
  1. 1.Physiology DepartmentTulane UniversityNew OrleansUSA

Personalised recommendations