Renin Cell Identity and Homeostasis

  • R. Ariel Gómez
  • Maria Luisa S. Sequeira Lopez
  • Xuan Jin
  • Magali Cordaillat
  • Ellen Steward Pentz
Conference paper


Renin-expressing cells are precursors for vascular smooth muscle cells within the kidney, which in turn are capable of dedifferentiating and synthesize renin in response to challenges to homeostasis. The mechanisms that determine the identity of renin cells are the subject of many studies. Using a cell model of renal arteriolar smooth muscle cells dually labeled with fluorescent markers we showed that in vitro the cells can reexpress renin upon cAMP stimulation. In addition, reexpression of renin through the cAMP pathway involves chromatin remodeling by acetylation of histone 4. Further experiments confirmed that histone acetyl transferases play an essential role in the maintenance of the renin cell identity.


Yellow Fluorescent Protein Cyan Fluorescent Protein cAMP Pathway cAMP Responsive Element Histone Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Della Bruna R, Kurtz A, Schricker K. Regulation of renin synthesis in the juxtaglomerular cells. Curr Opin Nephrol Hypertens. Jan 1996;5(1):16–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Everett AD, Carey RM, Chevalier RL, Peach MJ, Gomez RA. Renin release and gene expression in intact rat kidney microvessels and single cells. J Clin Invest. July 1990;86(1):169–175.PubMedCrossRefGoogle Scholar
  3. 3.
    Friis UG, Jensen BL, Sethi S, Andreasen D, Hansen PB, Skott O. Control of renin secretion from rat juxtaglomerular cells by cAMP-specific phosphodiesterases. Circ Res. May 17 2002;90(9):996–1003.PubMedCrossRefGoogle Scholar
  4. 4.
    Gomez RA, Lynch KR, Sturgill BC, et al. Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol. Nov 1989;257(5 Pt 2):F850–F858.PubMedGoogle Scholar
  5. 5.
    Gomez RA, Norwood VF. Developmental consequences of the renin-angiotensin system. Am J Kidney Dis. Sep 1995;26(3):409–431.PubMedCrossRefGoogle Scholar
  6. 6.
    Hilgers KF, Norwood VF, Gomez RA. Angiotensin's role in renal development. Semin Nephrol. Sep 1997;17(5):492–501.PubMedGoogle Scholar
  7. 7.
    Karginova EA, Pentz ES, Kazakova IG, Norwood VF, Carey RM, Gomez RA. Zis: a developmentally regulated gene expressed in juxtaglomerular cells. Am J Physiol. Nov 1997;273 (5 Pt 2):F731–F738.PubMedGoogle Scholar
  8. 8.
    Keeton TK, Campbell WB. The pharmacologic alteration of renin release. Pharmacol Rev. June 1980;32(2):81–227.PubMedGoogle Scholar
  9. 9.
    Makhanova N, Sequeira-Lopez ML, Gomez RA, Kim HS, Smithies O. Disturbed homeostasis in sodium-restricted mice heterozygous and homozygous for aldosterone synthase gene disruption. Hypertension. Dec 2006;48(6):1151–1159.PubMedCrossRefGoogle Scholar
  10. 10.
    Morris BJ, Adams DJ, Beveridge DJ, van der WL, Mangs H, Leedman PJ. cAMP controls human renin mRNA stability via specific RNA-binding proteins. Acta Physiol Scand. Aug 2004;181(4):369–373.PubMedCrossRefGoogle Scholar
  11. 11.
    Nishimura H. Physiological evolution of the renin-angiotensin system. Jpn Heart J. Sep 1978;19(5):806–822.PubMedGoogle Scholar
  12. 12.
    Novak A, Guo C, Yang W, Nagy A, Lobe CG. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis. Nov 2000;28(3–4):147–155.PubMedCrossRefGoogle Scholar
  13. 13.
    Pentz ES, Sequeira Lopez ML, Cordaillat M, Gomez RA. Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol Heart Circ Physiol. Feb 2008;294(2):H699–H707.PubMedCrossRefGoogle Scholar
  14. 14.
    Rayson BM. Juxtaglomerular cells cultured on a reconstituted basement membrane. Am J Physiol. Mar 1992;262(3 Pt 1):C563–C568.PubMedGoogle Scholar
  15. 15.
    Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell. May 2004;6(5):719–728.CrossRefGoogle Scholar
  16. 16.
    Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA. Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol Renal Physiol. Aug 2001;281(2):F345–F356.Google Scholar
  17. 17.
    Sigmund CD, Okuyama K, Ingelfinger J, et al. Isolation and characterization of renin-expressing cell lines from transgenic mice containing a renin-promoter viral oncogene fusion construct. J Biol Chem. Nov 15 1990;265(32):19916–19922.PubMedGoogle Scholar
  18. 18.
    Sinn PL, Sigmund CD. Human renin mRNA stability is increased in response to cAMP in Calu-6 cells. Hypertension. Mar 1999;33(3):900–905.PubMedGoogle Scholar
  19. 19.
    Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. Jan 1999;21(1):70–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Taugner R, Hackenthal E. The Juxtaglomerular Apparatus: Structure and Function. Heidelberg: Springer Verlag; 1989.Google Scholar
  21. 21.
    Wilson JX. The renin-angiotensin system in nonmammalian vertebrates. Endocr Rev. 1984;5(1):45–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Ariel Gómez
    • 2
  • Maria Luisa S. Sequeira Lopez
    • 1
  • Xuan Jin
    • 1
  • Magali Cordaillat
    • 1
  • Ellen Steward Pentz
    • 1
  1. 1.Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Pediatrics & BiologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations