Competitive-Cooperative Automated Reasoning from Distributed and Multiple Source of Data

Abstract

Knowledge extraction from distributed database systems, have been investigated during past decade in order to analyze billions of information records. In this work a competitive deduction approach in a heterogeneous data grid environment is proposed using classic data mining and statistical methods. By applying a game theory concept in a multi-agent model, we tried to design a policy for hierarchical knowledge discovery and inference fusion. To show the system run, a sample multi-expert system has also been developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frawley, W., Piatetsky-Shapiro G., Matheus C.: Knowledge Discovery in Databases: An Overview, pp: 213–228. AI Magazine (1992)Google Scholar
  2. 2.
    Milani Fard A., Kamyar H., Naghibzadeh M.: Multi-expert Disease Diagnosis System over Symptom Data Grids on the Internet: World Applied Sciences Journal, ISSN 1818–4952, Volume 3 Number 2, (2008)Google Scholar
  3. 3.
    Shortliffe, E. H.: MYCIN: A rule-based computer program for advising physicians regarding antimicrobial therapy selection, Ph.D. dissertation, Stanford University (1974)Google Scholar
  4. 4.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A modern Approach, Prentice Hall (1995)MATHGoogle Scholar
  5. 5.
    Waterhouse, S.R.: Classification and regression using mixtures of experts, Ph.D. dissertation, Department of Engineering, Cambridge University (1997)Google Scholar
  6. 6.
    Si, L., Callan, J.: A Semisupervised Learning Method to Merge Search Engine Results. ACM Transactions on Information Systems, Vol. 21, No. 4, 457–491, (2003)CrossRefGoogle Scholar
  7. 7.
    Callan, J.: Distributed information retrieval. In: Advances in Information Retrieval, W. B. Croft, Ed., pp. 127150, Kluwer Academic Publishers(2000)Google Scholar
  8. 8.
    Pasi, G., Yager, R. R.: Document retrieval from multiple sources of information. In: Uncertainty in Intelligent and Information Systems, Bouchon-Meunier, B., Yager, R. R., Zadeh, L. A. (eds.), pp. 250–261, World Scientific, Singapore (2000)CrossRefGoogle Scholar
  9. 9.
    Baeza-Yates, R., Ribeiro-Neto B.: Modern Information Retrieval. Addison-Wesley, (1999)Google Scholar
  10. 10.
    Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: JADE Programmers Guide. (2006)Google Scholar
  11. 11.
    JADE Board: JADE WSIG Add-On Guide JADE Web Services Integration Gateway (WSIG) Guide. 03 March, (2005)Google Scholar
  12. 12.
    Cortese, E., Quarta, F., Vitaglione, G., Vrba, P.: Scalability and Performance of the JADE Message Transport System. (2002)Google Scholar
  13. 13.
    Liu, S., Kngas, P., Matskin, M.: Agent-Based Web Service Composition with JADE and JXTA. In: SWWS 2006, Las Vegas, USA, June 26–29, (2006)Google Scholar
  14. 14.
    Gradecki, J. D.: Mastering JXTA: Building Java Peer-to-Peer Applications JohnWiley (2002)Google Scholar
  15. 15.
    Milani Fard, A., Kahani, M., Ghaemi, R., Tabatabaee, H.: Multi-agent Data Fusion Architecture for Intelligent Web Information Retrieval. In: International Journal of Intelligent Technology Volume 2 Number 3 (2007)Google Scholar
  16. 16.
    Mohebbi, M., Akbarzadeh T., M. R., Milnai Fard, A.: Microorganism DNA PatternSearch in a Multi-agent Genomic Engine Framework. In World Applied Science Journal, Volume 2 Number 5, Sep–Oct (2007)Google Scholar
  17. 17.
    Tabatabaee, H., Milani Fard, A., Akbarzadeh T., M. R.: Cooperative Criminal Face Recognition in Distributed Web Environment. In: The 6th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA-08), Doha, Qatar, March 31 - April 4 (2008)Google Scholar
  18. 18.
    Agrawal, R., Imielinski, T., Swami, A. N.: Mining Association Rules between Sets of Items in Large Databases. In: SIGMOD, 22(2):207–16, June (1993)CrossRefGoogle Scholar
  19. 19.
    Kantardzic, M.: Data Mining: Concepts, Methods, and Algorithms. JohnWiley (2003)MATHGoogle Scholar
  20. 20.
    Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press (1944)MATHGoogle Scholar
  21. 21.
    Vidal, J. M.: Learning in Multiagent Systems: An Introduction from a Game-Theoretic Perspective. In: Alonso, E. (eds.) Adaptive Agents. LNAI 2636. Springer Verlag (2003)Google Scholar
  22. 22.
    Mor, Y., Goldman, C. V., Rosenschein, J. S.: Learn your Opponent’s strategy (in Polynomial Time)!. In: Adaptation and Learning in Multi-Agent Systems, IJCAI95 Workshop, Montreal, Canada, August 1995, In: Proceedings. Lecture Notes in Artificial Intelligence Vol. 1042, G. Weiss and S. Sen (eds.) Springer Verlag, (1996)Google Scholar
  23. 23.
    Dempster, A.: A generalization ofba yesian inference. In: Journal of the Royal Statistical Society, 30:205–247 (1968)MATHMathSciNetGoogle Scholar
  24. 24.
    Schafer, G.: A mathematical theory of evidence., Princetown University Press (1976)Google Scholar
  25. 25.
    Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene M., Gelzinis, A.: Soft combination of neural classifiers: A comparative study In: Pattern Recognition Letters, 20:429–444 (1999)CrossRefGoogle Scholar
  26. 26.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation and active learning. In: G. Tesauro, D.S. Touretzky, T. K., Leen, (eds.) Advances in Neural Information Processing Systems, volume 7, pp. 231–238. MIT Press, Cambridge, MA (1995)Google Scholar
  27. 27.
    Kuncheva, L. I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley (2004)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Computing ScienceSimon Fraser UniversityVancouverCanada

Personalised recommendations