Multiagent Systems for Large Data Clustering

  • T. Ravindra Babu
  • M. Narasimha Murty
  • S. V. Subrahmanya


Multiagent system is an applied research area encompassing many disciplines. With increasing computing power and easy availability of storage devices vast volumes of data is available containing enormous amount of hidden information. Generating abstractions from such large data is a challenging data mining task. Efficient large data clustering schemes are important in dealing with such large data. In the current work we provide two different efficient approaches of multiagent based large pattern clustering that would generate abstraction with single database scan, integrating domain knowledge, multiagent systems, data mining and intelligence through agent-mining interaction. We illustrate the approaches based on implementation on practical data.


Data Mining Association Rule Domain Knowledge Multiagent System Prototype Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abonyi, J. and Feil, B. and Abraham, A.: Computational Intelligence in Data Mining. In: Informatica(Slovenia), 29, 1, 3–12 (2005)Google Scholar
  2. 2.
    Agent-Mining Interaction and Integration(AMII):
  3. 3.
    Agogino, A., Tumer, K.: Efficient Agent-Based Clustering Ensembles. AAMAS’ 06, 1079–1086 (2006)Google Scholar
  4. 4.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data(SIGMOD’93), Washington D.C., 266–271 (1993)Google Scholar
  5. 5.
    Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing Multiclass to Binary - A Unifying Approach for Margin Classifiers. Machine Learning. No. 1, 113–141 (2000)MathSciNetGoogle Scholar
  6. 6.
    Baghshah, M.S., Shouraki, S.B., Lucas, C.: An agent-based clustering algorithm using potential fields. AICCSA, IEEE, 551–558 (2008)Google Scholar
  7. 7.
    Bajaj, C.: Data Visualization Techniques. John Wiley & Sons, John Wiley & Sons, New York (1999)Google Scholar
  8. 8.
    Bekkerman, R., Zilberstein, S., Allan, J.: Web page clustering using heuristic search in the web graph. IJCAI, 2280–2285 (2007)Google Scholar
  9. 9.
    Tian, Z., Ramakrishnan R., Micon, L.: BIRCH: An efficient data clustering method for very large databases. Proceedings of ACM SIGMOD, 103–114 (1996)Google Scholar
  10. 10.
    Bradley, P. and Fayyad, U.M., Reina, C., Scaling clustering algorithms to large databases, Proceedings of 4th Intl. Conf. Knowledge Discovery and Data Mining, AAAI Press, New York, 9–15 (1998)Google Scholar
  11. 11.
    Breban, S., Vissileva, J.: A coalition formation mechanism based on inter-agent trust relationships. In proc. of the 1st Conference on Autonomous Agents and Multi-Agent Systems, Italy, 306–308 (2002)Google Scholar
  12. 12.
    Buccafurri, F., Rosaci, D., Sarne, G.M.L., Ursino, D.: An agent-based hierarchical clustering approach for e-commerce environments. In Proceedings of E-Commerce and Web Technologies, 3rd International Conference (EC-Web 2002), France. Lecture Notes in Computer Science, Vol.2455. Springer, 109–118 (2002)Google Scholar
  13. 13.
    Cao, L., Zhang, C.: F-Trade: An agent-mining symbiont for financial services. AAMAS’07, May 14–18, Hawaii, USA (2007)Google Scholar
  14. 14.
    Cao, L., Yu, P.S., Zhang, C., Zhao, Y., Williams, G.: DDDM2007: Domain Driven Data Mining, SIGKDD Explorations, Vol.9. Issue 2, 84–86 (2007)CrossRefGoogle Scholar
  15. 15.
    Cover, T.M., Hart, P.: Nearest Neighbour pattern classification. IEEE Transactions on Information Theory, Vol 13, 21–27 (1967)CrossRefMATHGoogle Scholar
  16. 16.
    Devijver, P.A., J. Kittler, J.: Pattern Recognition: A Statistical Approach, Prentice Hall, Englewood Cliffs (1986)Google Scholar
  17. 17.
    Distributed Data Mining Bibliography,∼hillol/DDMBIB/
  18. 18.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, John Wiley & Sons, Wiley-interscience (2000)Google Scholar
  19. 19.
    DuMouchel, W., Volinksy, C., Johnson, T., Cortez, C., Pregibon, D.: Squashing Flat Files Flatter. Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining, AAAI Press, San Diego, CA. 6–15, (1999)Google Scholar
  20. 20.
    Durfee, E.H., Rosenschein, J.S.: Distrubuted Problem Solving and Multi-Agent Systems - Comparisons and Examples. (1994)Google Scholar
  21. 21.
    Edwards, P., W. Davies, W.: A Heterogeneous multi-agent learning system. In Proc. of the special interest group on cooperating knowledge based systems, 163–184 (1993)Google Scholar
  22. 22.
    Ferber, J.: Multi-Agent Systems. Addison-Wesley, Harlow (1999)Google Scholar
  23. 23.
    Freias, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms. Springer, New York. (2002)CrossRefGoogle Scholar
  24. 24.
    Ghosh, J., Strehl, A., Merugu, S.: A concensus framework for integrating distributed clusterings under limited knowledge sharing. In NSF Workshop on Next Generation Data Mining, 99–108 (2002)Google Scholar
  25. 25.
    Integration of Agents and Data Mining∼lbcao/publication/IntegrationofAgentandDataMining.ppt
  26. 26.
    Garruzzo, S., Rasaci, D.: Agent Clustering Based on Semantic Negotiatiion. ACM Trans. on Autonomous and Adaptive Systems, Vol.3, No.2, Article 7, 7:1–7:40 (2008)CrossRefGoogle Scholar
  27. 27.
    Golfarelli, M., Rizzi, S.: Spatio-Temporal Clustering of Tasks for Swap-Based Negotiation Protocols in Multi-Agent Systems.Google Scholar
  28. 28.
    Gomez, J., Dasgupta, D., Nasraoui, O.: A new gravitational clustering algorithm. In Proc. of the Third SIAM International Conference on Data MINING, San Francisco, 83–94 (2003)Google Scholar
  29. 29.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation, Proceedings of ACM SIGMOD International Conference of Management of Data(SIGMOD 00), Dallas, Texas, USA, 1–12 (2000)Google Scholar
  30. 30.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman, San Francisco, CA (2001)Google Scholar
  31. 31.
    Hart, P.E.: The condensed nearest neighbour rule, IEEE Transactions on Information Theory, Vol 14, 515–516 (1968)CrossRefGoogle Scholar
  32. 32.
    Jain, A.K., and Murty, M.N. and P.J. Flynn.: Data Clustering: A Review, ACM Computing Review, 264–323 (1999)Google Scholar
  33. 33.
    Jan Tozicka, Michael Rovatsos, Michal Pechoucek: A Framework for Agent-Based Distributed Machine Learning and Data Mining. In Autonomous Agents and Multi-Agent Systems, Article No.96, (AAMAS 2007) ACM Press (2007)Google Scholar
  34. 34.
  35. 35.
    Kaufman, L., Rouseeuw, P.: Finding Groups in Data - An Introduction to Cluster Analysis. John Wiley & Sons, New York (1990)Google Scholar
  36. 36.
    Kazienko, P.: Multiagent system for web advertising,∼kazienko/pub/2005/KazienkoKES05.pdf
  37. 37.
    Kearns, M., Valiant, L.G.: Leaving Boolean formulae or finite automata is as hard as factoring. Harward University Aiken Computation Laboratory. TR-14-88. (1988)Google Scholar
  38. 38.
    Kearns, M., Valiant, L.G.: Cryptographic limitations on learning Boolean formulae and finite automata. Journal of the Association for Computing MachineryVol. 41, No.1, 67–95 (1994)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Meyer, J., Intelligent Systems Group:
  40. 40.
    Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York. (2003)Google Scholar
  41. 41.
    Mitra, P., and Pal, S.K.: Density based Multiscale Data Condensation, IEEE Trans. on Patter Analysis and Machine Intelligence, Vol.24, No.6, 734–747 (2002)CrossRefGoogle Scholar
  42. 42.
    Multiagent Research Group:$\sim$mas
  43. 43.
  44. 44.
    Ogston, E., Overreinder, R., van Steen, M., Brazier, F.: A method for decentralizing clustering in large multi-agent systems. AAMAS’03, Australia (2003)Google Scholar
  45. 45.
    Ogston, E., Overreinder, R., van Steen, M., Brazier, F.: Group formation among peer-to-peer agents: Learning group characteristics. In 2nd International Workshop, on Agents and Peer-to-peer computing. Lecture Notes in Computer Science, Vol. 2872, Springer, 59–70 (2003)Google Scholar
  46. 46.
    Pal, S.K., and Ghosh, A.: Soft computing data mining. In: Information Sciences, Vol. 163, No. 1–3, pp. 1–3 (2004)Google Scholar
  47. 47.
    Pal, S.K., Mitra, P.: Pattern Recognition Algorithms for Data Mining, Chapman & Hall/CRC (2004)Google Scholar
  48. 48.
    Park, J., Oh, K.: Multi-Agent Systems for Intelligent Clustering. Proc. of World Academy of Science, Engineering and Technology, Vol. 11, February 2006, 97–102 (2006)Google Scholar
  49. 49.
    Piraveenan, M., Prokopenko, M., Wang, P. and Zeman, A.: Decentralized multi-agent clustering in scale-free sensor networks. Studies in Computational Intelligence, 115, 485–515 (2008)CrossRefGoogle Scholar
  50. 50.
    Ravindra Babu, T., Narasimha Murty, M.: Comparison of Genetic Algorithms Based Prototype Selection Schemes. Pattern Recognition, 34(2), 523–525 (2001)CrossRefGoogle Scholar
  51. 51.
    Ravindra Babu, T., Narasimha Murty, M., Agrawal, V.K.: Hybrid Learning Scheme for Data Mining Applications, Proceedings of the Fourth International Conference on Hybrid Intelligent Systems, IEEE Computer Society, Los Alamitos, California, 266–271 (2004)Google Scholar
  52. 52.
    Ravindra Babu, T., Narasimha Murty, M., Agrawal, V.K.: Adaptive boosting with leader based learners for classification of large handwritten data. Proceedings of the Fourth International Conference on Hybrid Intelligent Systems, IEEE Computer Society, Los Alamitos, California, 266–271 (2004)Google Scholar
  53. 53.
    Rosaci, D.: An ontology-based two-level clustering for supporting e-commerce agents activities. In Proceedings of E-Commerce and Web Technologies, Sixth International Conference (EC-Web 2005). Lecture Notes in Computer Science, Vol. 3590. Springer, 31–40 (2005)Google Scholar
  54. 54.
    Schapire, R.E.: Theoretical views of Boosting and Applications. Proceedings of Algorithmic Learning Theory. (1999)Google Scholar
  55. 55.
    Sen, S., Saha, S., Airiau, S., Candale, T., Banerjee, D., Chakraborty, D., Mukherjee, P., and Gursel, A.: Robust Agent Communities. In Autonomous Intelligent Systems: Agents and Data Mining, V. Gorodetsky, C. Zhang, V.A. Skormin, and L. Cao (Editors), pages 28–45, Lecture Notes in Artificial Intelligence, volume 4476, Springer. (2007)Google Scholar
  56. 56.
    Sian, S.: Extending learning to multiple agents: Issues and a model for multi-agent machine learning. In Y. Kodratoff (ed), Machine Learning - EWSL-91, pp 440–456. Springer-Verlag. (1991)Google Scholar
  57. 57.
    Spath, H.: Cluster Analysis - Algorithms for Data Reduction and Classification of Objects, West Sussex, UK, Ellis Horwood Limited. (1980)Google Scholar
  58. 58.
    Tozicka, J., Rovatsos, M., Pechoucek, M.: A Framework for Agent-Based Distributed Machine Learning and Data Mining. AAMAS’07, pp. 678–685 (2007), May 14–18. (2007)Google Scholar
  59. 59.
    Viaenne, S., Darrig, R.A., Dedene, G.: A case study of applying boosting Naive Bayes to claim fraud diagnosis. IEEE Transactions on Knowledge and Data Engineering. Vol. 16, No. 5, 612–620 (2004)CrossRefGoogle Scholar
  60. 60.
    Viswanath, P., Narasimha Murty, M. Shalabh Bhatnagar: Overlap Pattern Synthesis with an efficient nearest neighbor classifier. Pattern Recognition. Vol. 38, No. 8, 1187–1195 (2005)CrossRefMATHGoogle Scholar
  61. 61.
    Weiss, G. (ed). Multiagent Systems - A modern approach to Distributed Artificial Intelligence. The MIT Press (2000)Google Scholar
  62. 62.
    Wooldridge, M., Jennings, N.R.: Towards a theory of cooperative problem solving. In proc. of the Workshop of Distributed Software Agents and Applications, Denmark, 40–53 (1994)Google Scholar
  63. 63.
    Yoshida, K., Pedrycz: Recent developments in hybrid intelligent systems, In: Int. Journal on Hybrid Intelligent Systems, Vol 2, No. 4, pp 235–236 (2005) Vol 34, 523–525 (2001)Google Scholar
  64. 64.
    Zhao, Y., Zhang H., Figueiredo, F., Cao, L., Zhang C.: Mining for combined association rules for multiple datasets. Proc. of 2007 International workshop on domain driven data mining. 18–23 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • T. Ravindra Babu
    • 1
  • M. Narasimha Murty
    • 2
  • S. V. Subrahmanya
    • 3
  1. 1.E-Comm Research LabInfosys Technologies LimitedBangaloreIndia
  2. 2.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia
  3. 3.E-Comm Research LabInfosys Technologies LimitedBangaloreIndia

Personalised recommendations