PEG–Anticancer Drugs

  • Francesca Cateni
  • Marina Zacchigna
Part of the Macromolecular Anticancer Therapeutics book series (CDD&D)


The concept of polymer–anticancer conjugates was first proposed in 1975 by Ringsdorf, and the biological rationale for their design and current understanding of the mechanism of action is well known. During the past 10 years, there has been a renaissance in the field of PEG-conjugated anticancer agents. Benefits which can be achieved through application of PEGylation, i.e. the attachment of poly(ethylene glycol) to proteins and drugs, are greater solubility, longer duration of exposure, selective delivery of entrapped drug to the site of action, superior therapeutic index and the potential to overcome resistance associated with the regular anticancer agent.

In this chapter, the recent developments in the preparation and biological activity of leading anticancer agents covalently linked to linear and branched poly(ethylene glycol) of various molecular weights are reported.


Antitumour Activity Folate Receptor Polymer Conjugate Hydrazone Bond Amino Adipic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



cytosine arabinoside



BXF T 24

human bladder carcinoma




N-cyclohexyl-N -(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate






cytochrome P450


bis(4-hydroxy)butyl maleate




Drug delivery system




dihydrofolate reductase


dynamic light scattering




N-(3-dimethylaminopropyl)-N -ethylcarbodiimide




enhanced permeability and retention


environmental scanning electron microscopy




folate receptor


folate receptor-mediated endocytosis


P-glycoprotein blocker


green fluorescence protein






human serum albumin


human nasopharyngeal carcinoma


luteinizing hormone-releasing hormone



LXFL 529

human lung cancer


human mammalian carcinoma


micellar drug delivery system


multidrug resistant

MEXF 514

human melanoma carcinoma


monomethoxy poly(ethylene glycol)








nuclear localization


magnetic nanoparticle


poly(ethylene glycol)







RXF 944

human renal carcinoma




stannous octoate


single-wall carbon nanohorns


transmission electron microscopy


topoisomerase I




vinyl sulfone


  1. 1.
    Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250CrossRefPubMedGoogle Scholar
  2. 2.
    Maeda H, Seymour LW, Miyamoto Y (1992) Conjugates of anticancer agents and polymers: advantages of macromolecular therapeutics in vivo. Bioconjugate Chem 3:351–362CrossRefGoogle Scholar
  3. 3.
    Atkins JH, Gershell LJ (2002) Selective anticancer drugs. Nature Rev Cancer 1:645–646CrossRefGoogle Scholar
  4. 4.
    Huang PS, Oliff A (2001) Drug-targeting strategies in cancer therapy. Curr Opin Genet Dev 11:104–110CrossRefPubMedGoogle Scholar
  5. 5.
    Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4:337–341CrossRefPubMedGoogle Scholar
  6. 6.
    Zalipsky S, Gilon C, Zilkha A (1983) Attachment of drugs to polyethylene glycols. Eur Polym J 19:1177–1183CrossRefGoogle Scholar
  7. 7.
    Greenwald RB, Pendri A, Bolikal D (1995) Highly water soluble taxol derivatives: 7-polyethylene glycol carbamates and carbonates. J Org Chem 60:331–336CrossRefGoogle Scholar
  8. 8.
    Pendri A, Gilbert CW, Soundararajan S, Bolikal D, Shorr RGL, Greenwald RB (1996) PEG modified anticancer drugs: synthesis and biological activity. J Bioact Compat Polym 11:122–134Google Scholar
  9. 9.
    Minko T, Paranjpe PV, Qiu B, Lalloo A, Won R, Stein S, Sinko PJ (2002) Enhancing the anticancer efficacy of camptothecin using biotinylated poly(ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 50:143–150CrossRefPubMedGoogle Scholar
  10. 10.
    Zacchigna M, Di Luca G, Cateni F, Maurich V, Ballico M, Bonora GM, Drioli S (2007) New MultiPEG-conjugated theophylline derivatives: synthesis and pharmacological evaluations. Eur J Pharm Sci 30:343–350CrossRefPubMedGoogle Scholar
  11. 11.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. Part VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar N (1981) Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem 256:10435–10441PubMedGoogle Scholar
  13. 13.
    Hudis CA (1999) The current state of adjuvant therapy for human cancer: focus on paclitaxel. Semin Oncol 26:1–5PubMedGoogle Scholar
  14. 14.
    Hainsworth JD, Greco FA (1999) The current role and future prospects of paclitaxel in the treatment of small cell lung cancer. Semin Oncol 26:60–66PubMedGoogle Scholar
  15. 15.
    Markman M (2000) Weekly paclitaxel in the management of ovarian cancer. Semin Oncol 27:37–40PubMedGoogle Scholar
  16. 16.
    Brown D T (2003) The genus taxus. In: Itokawa H, Lee KH Taxus. Taylor and Francis, LondonGoogle Scholar
  17. 17.
    McGuire WP, Rowinsky EK (1995) Paclitaxel. In: Cancer treatment. Marcel Dekker, BethesdaGoogle Scholar
  18. 18.
    Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X, Shi Q, Jing X (2007) A novel polymer-paclitaxel conjugated based on amphiphilic triblock copolymer. J Controlled Release 117:210–216CrossRefGoogle Scholar
  19. 19.
    Ganesh T (2007) Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem 15:3597–3623CrossRefPubMedGoogle Scholar
  20. 20.
    Dosio F, Arpicco S, Brusa P, Stella B, Cattel L (2001) Poly(ethylene glycol)-human serum albumin-paclitaxel conjugates: preparation, characterization and pharmacokinetics. J Control Release 76:107–117CrossRefPubMedGoogle Scholar
  21. 21.
    Rodrigues PCA, Scheuermann K, Stockmar C, Maier G, Fiebig HH, Unger C, Mülhaupt R, Kratz F (2003) Synthesis and in vitro efficacy of acid-sensitive poly(ethylene glycol) paclitaxel conjugates. Bioorg Med Chem Lett 13:355–360CrossRefPubMedGoogle Scholar
  22. 22.
    Choi JS, Jo BW (2004) Enhanced paclitaxel bioavailability after oral administration of pegylated paclitaxel prodrug for oral delivery in rats. Int J Pharm 280:221–227CrossRefPubMedGoogle Scholar
  23. 23.
    Choi JS, Shin SC (2005) Enhanced paclitaxel bioavailability after oral co-administration of paclitaxel prodrug with naringin to rats. Int J Pharm 292:149–156CrossRefPubMedGoogle Scholar
  24. 24.
    Jo BW (2000) Korean Patent 2000:0019873Google Scholar
  25. 25.
    Zhang X, Li Y, Chen X, Wang X, Xu X, Liang Q, Hu J, Jing X (2005) Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials 26:2121–2128CrossRefPubMedGoogle Scholar
  26. 26.
    Luo L, Tam J, Maysinger D, Eisenberg A (2002) Cellular internalization of poly(ethylene oxide)-β-poly(ɛ-caprolactone) diblock copolymer micelles. Bioconjugate Chem 13:1259–1265CrossRefGoogle Scholar
  27. 27.
    Kumar R, Chen MH, Parmar VS, Samuelson LA, Kumar J, Nicolosi R, Yoganathan S, Watterson AC (2004) Supramolecular assemblies based on copolymers of PEG600 and functionalized aromatic diesters for drug delivery applications. J Am Chem Soc 126:10640–10644CrossRefPubMedGoogle Scholar
  28. 28.
    Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefPubMedGoogle Scholar
  29. 29.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 6:6387–6392Google Scholar
  30. 30.
    Bae Y, Fukushima S, Harad A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem 115:4788–4791CrossRefGoogle Scholar
  31. 31.
    Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X, Shi Q, Jing X (2007) A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer. J Control Release 117:210–216CrossRefPubMedGoogle Scholar
  32. 32.
    Garcia-Carbonero R, Supko JG (2002) Current perspective in the clinical experience, pharmacology, and continued development of camptothecins. Clin Cancer Res 8(3):641–661PubMedGoogle Scholar
  33. 33.
    Food and Drug Administration (2000) FDA approves irinotecan as first-line therapy for colorectal cancer. Oncology (Huntingt) 14:652–654Google Scholar
  34. 34.
    Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko PJ (2002) Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells over expressing efflux transporters Pgp, cMOAT and MRP1. Drug Metab Dispos 30(7):763–770CrossRefPubMedGoogle Scholar
  35. 35.
    Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802CrossRefPubMedGoogle Scholar
  36. 36.
    Rivory LP, Robert J (1995) Molecular, cellular, and clinical aspects of the pharmacology of 20 (S) camptothecin and its derivatives. Pharmacol Ther 68:269–296CrossRefPubMedGoogle Scholar
  37. 37.
    Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37(1):40–46.CrossRefPubMedGoogle Scholar
  38. 38.
    Gupta E, Vyas V, Ahmed F, Sinko PJ, Cook T, Rubin E (2000) Pharmacokinetics of orally administered camptothecins. Ann NY Acad Sci 922:195–204CrossRefPubMedGoogle Scholar
  39. 39.
    Greenwald RB, Pendri A, Conover C, Gilbert C, Yang R, Xia J (1996) Drug delivery systems 0.2. Camptothecin 20-O-poly(ethylene glycol) ester transport forms. J Med Chem 39:1938–1940CrossRefPubMedGoogle Scholar
  40. 40.
    Harada M, Sakakibara H, Yano T, Suzuki T, Okuno S (2000) Determinants for the drug release from T-0128, camptothecin analogue-carboxymethyl dextran conjugate. J Control Release 69:399–412CrossRefPubMedGoogle Scholar
  41. 41.
    Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, de Vries P (2001) Water- soluble poly-(l-glutamic acid)-gly camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release 74:243–247CrossRefPubMedGoogle Scholar
  42. 42.
    Caiolfa VR, Zamai M, Fiorino A, Frigerio E, Pellizzoni C, d'Argy R, Ghiglieri A, Castelli MG, Farao M, Pesenti E, Gigli M, Angelucci F, Suarato A (2000) Polymer-bound camptothecin: initial biodistribution and antitumor activity studies. J Control Release 65:105–119CrossRefPubMedGoogle Scholar
  43. 43.
    Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T (2003) Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release 91:61–73CrossRefPubMedGoogle Scholar
  44. 44.
    Gross A, McDonnell JM, Korsmeyer S (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911CrossRefPubMedGoogle Scholar
  45. 45.
    Lowe SW, Lin AW (2000) Apoptosis in cancer. Carcinogenesis 21:485–495CrossRefPubMedGoogle Scholar
  46. 46.
    Volker P, Grundker C, Schmidt O, Schulz KD, Emons G (2002) Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers: frequency, autoregulation, and correlation with direct antiproliferative activity of luteinizing hormone-releasing hormone analogues. Am J Obstet Gynecol 186:171–179CrossRefPubMedGoogle Scholar
  47. 47.
    Hatefi A, Amsden B (2002) Camptothecin delivery methods. Pharm Res 19(19):1389–1399CrossRefPubMedGoogle Scholar
  48. 48.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763CrossRefPubMedGoogle Scholar
  49. 49.
    Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54:675–693CrossRefPubMedGoogle Scholar
  50. 50.
    Paranjpe PV, Chen Y, Kholodovych V, Welsh W, Stein S, Sinko PJ (2004) Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation. J Control Release 100:275–292CrossRefPubMedGoogle Scholar
  51. 51.
    Greenwald RB, Pendri A, Conover CD, Lee C, Choe YH, Gilbert C, Martinez A, Xia J, Wu DC, Hsue M (1998) Camptothecin-20-PEG ester transport forms: the effect of spacer groups on antitumor activity. Bioorg Med Chem 6:551–562CrossRefPubMedGoogle Scholar
  52. 52.
    Fleming AB, Haverstick K, Saltzman WM (2004) In vitro cytotoxicity and in vivo distribution after direct delivery of PEG-Camptothecin conjugates to the rat brain. Bioconjugate Chem 15:1364–1375CrossRefGoogle Scholar
  53. 53.
    Haverstick K, Fleming A, Saltzman WM (2007) Conjugation to increase treatment volume during local therapy: a case study with PEGylated camptothecin. Bioconjugate Chem 18:2115–2121CrossRefGoogle Scholar
  54. 54.
    Conover CD, Pendri A, Lee C, Gilbert CW, Shum KL, Greenwald RB (1997) Camptothecin delivery systems: the antitumor activity of a camptothecin 20-O-poly(ethylene glycol) ester transport form. Anticancer Res 17:3361–3368PubMedGoogle Scholar
  55. 55.
    Garcia-Carbonero R, Supko JG (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661PubMedGoogle Scholar
  56. 56.
    Guiotto A, Canevari M, Orsolini P, Lavanchy O, Deuschel C, Kaneda N, Kurita A, Matsuzaki T, Yaegashi T, Sawada S, Veronese FM (2004) Efficient and chemoselective N-acylation of 10-amino-7-ethyl camptothecin with poly(ethylene glycol). Bioorg Med Chem Lett 14:1803–1805CrossRefPubMedGoogle Scholar
  57. 57.
    Yu D, Peng P, Dharap SS, Wang Y, Mehlig M, Chandna P, Zhao H, Filpula D, Yang K, Borowski V, Borchard G, Zhang Z, Minko T (2005) Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 110:90–102CrossRefPubMedGoogle Scholar
  58. 58.
    Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33:245–259CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang JA, Xuan T, Parmar M, Ma L, Ugwu S, Ali S, Ahmad I (2004) Development and characterization of a novel liposome-based formulation of SN-38. Int J Pharm 270:93–107CrossRefPubMedGoogle Scholar
  60. 60.
    Zhao H, Rubio B, Sapra P, Wu D, Reddy P, Sai P, Martinez A, Gao Y, Lozanguiez Y, Longley C, Greenberger LM, Horak ID (2008) Novel Prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjugate Chem 19:849–859CrossRefGoogle Scholar
  61. 61.
    Speth PA, Van Hoesel QG, Haanen C (1988) Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 15:15–31CrossRefPubMedGoogle Scholar
  62. 62.
    Bronich TK, Nehls A, Eisenberg A, Kabanov VA, Kabanov AV (1999) Novel drug delivery systems based on the complexes of block ionomers and surfactants of opposite charge. Colloids Surf B Biointerf 16:243–251CrossRefGoogle Scholar
  63. 63.
    Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74:295–302CrossRefPubMedGoogle Scholar
  64. 64.
    Yoo HS, Lee EA, Park TG (2002) Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 82:17–27CrossRefPubMedGoogle Scholar
  65. 65.
    Yoo HS, Oh JE, Lee KH, Park TG (1999) Biodegradable nanoparticles containing doxorubicin-PLGA conjugates for sustained release. Pharm Res 16:1114–1118CrossRefPubMedGoogle Scholar
  66. 66.
    Yoo HS, Park TG (2001) Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 70:63–70CrossRefPubMedGoogle Scholar
  67. 67.
    Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100:247–256CrossRefPubMedGoogle Scholar
  68. 68.
    Kwon GS, Kataoka K (1995) Block-copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev 16:295–309CrossRefGoogle Scholar
  69. 69.
    Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116CrossRefGoogle Scholar
  70. 70.
    Hrubỳ M, Koňāk C, Ulbrich K (2005) Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 103:137–148CrossRefPubMedGoogle Scholar
  71. 71.
    Veronese FM, Schiavon O, Pasut G, Mendichi R, Andersson L, Tsirk A, Ford J, Wu G, Kneller S, Davies J, Duncan R (2005) PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjugate Chem 16:775–784CrossRefGoogle Scholar
  72. 72.
    Andersson L, Davies J, Duncan R, Ferruti P, Ford J, Kneller S, Mendichi R, Pasut G, Schiavon O, Summerford C, Tirk A, Veronese FM, Vincenzi V, Wu G (2005) Poly(ethylene glycol)-poly(ester-carbonate) block copolymers carrying PEG-peptidyl-doxorubicin pendant side chains: synthesis and evaluation as anticancer conjugates. Biomacromolecules 6:914–926CrossRefPubMedGoogle Scholar
  73. 73.
    Brocchini S, Duncan R (1999) Polymer drug conjugates: drug release from pendent linkers. In: Mathiowitz E Encyclopedia of controlled release. Wiley, New YorkGoogle Scholar
  74. 74.
    Vasey P, Twelves C, Kaye S, Wilson P, Morrison R, Duncan R, Thomson A, Hilditch T, Murray T, Burtles S, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 (HPMA copolymer doxorubicin): first member of a new class of chemotherapeutic agents: drug-polymer conjugates. Clin Cancer Res 5:83–94PubMedGoogle Scholar
  75. 75.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651CrossRefPubMedGoogle Scholar
  76. 76.
    Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 3:407–414CrossRefPubMedGoogle Scholar
  77. 77.
    Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S (2005) Carbon nanohorns as anticancer drug carriers. Mol Pharm 2:475–480CrossRefPubMedGoogle Scholar
  78. 78.
    Rodrigues PCA, Roth T, Fiebig HH, Unger C, Mülhaupt R, Kratz F (2006) Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity. Bioorg Med Chem 14:4110–4117CrossRefPubMedGoogle Scholar
  79. 79.
    Ryberg M, Nielsen D, Skovsgaard T, Hansen J, Jensen BV, Dombernowsky P (1998) Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol 16:3502–3508PubMedGoogle Scholar
  80. 80.
    Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM (2005) PEG-epirubicin conjugates with high drug loading. J Bioact Compat Polym 20:213–230CrossRefGoogle Scholar
  81. 81.
    Walford G, Loscalzo J (2003) Nitric oxide in vascular biology. J Thromb Haemost 1:2112–2118CrossRefPubMedGoogle Scholar
  82. 82.
    Santucci L, Mencarelli A, Renga B, Pasut G, Veronese F, Zacheo A, Germani A, Fiorucci S (2006) Nitric oxide modulates proapoptotic and antiapoptotic properties of chemotherapy agents: the case of NO-pegylated epirubicin. FASEB J. Doi: 10.1096/fj.05-4452fjeGoogle Scholar
  83. 83.
    Hadfield AF, Sartorelli AC (1984) The pharmacology of prodrugs of 5-flourouracil and 1-β-D-arabinofuranosylcytosine. Adv Pharmacol Chemother 20:21–67CrossRefPubMedGoogle Scholar
  84. 84.
    Wip FP, Li W (1994) Prodrugs of ara-C. Drugs Fut 19:49–54Google Scholar
  85. 85.
    Ignoffo RJ (1999) Novel oral fluoropyrimidines in the treatment of metastatic colorectal cancer. Am J Health-Syst Pharm 56:2417–2428PubMedGoogle Scholar
  86. 86.
    Choe YH, Conover CD, Wu D, Royzen M, Greenwald RB (2002) Anticancer drug delivery systems: N4-acyl poly(ethylene glycol) prodrugs of ara-C I. Efficacy in solid tumors. J Control Release 79:41–53CrossRefPubMedGoogle Scholar
  87. 87.
    Schiavon O, Pasut G, Moro S, Orsolini P, Guiotto A, Veronese FM (2004) PEG-Ara-C conjugates for controlled release. Eur J Med Chem 39:123–133CrossRefPubMedGoogle Scholar
  88. 88.
    Plunkett W, Huang P, Xu YZ, Heinermann V, Grunewald R, Gandhi V (1995) Gemcitabine: metabolism, mechanism of action, and self-potentiation. Semin Oncol 22:3–10PubMedGoogle Scholar
  89. 89.
    Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O (2008) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 127:239–248CrossRefPubMedGoogle Scholar
  90. 90.
    Lokich J (2001) What is the “best” platinum: cisplatin, carboplatin or oxaliplatin? Cancer Invest 19:756–760CrossRefPubMedGoogle Scholar
  91. 91.
    Brabec V (2002) DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog Nucleic Acid Res Mol Biol 71:1–68CrossRefPubMedGoogle Scholar
  92. 92.
    Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662CrossRefPubMedGoogle Scholar
  93. 93.
    Ohya Y, Nagatomi K, Ouchi T (2001) Synthesis and cytotoxic activity of macromolecular prodrug of cisplatin using poly(ethylene glycol) with galactose residues or antennary galactose units. Macromol Biosci 1:355–363CrossRefGoogle Scholar
  94. 94.
    Ren Y, Zhang H, Huang J (2005) Synthesis and cytotoxic activity of platinum complex immobilized by branched polyethylene glycol. Bioorg Med Chem Lett 15:4479–4483CrossRefPubMedGoogle Scholar
  95. 95.
    Aronov O, Horowitz AT, Gabizon A, Gibson D (2003) Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjugate Chem 14:563–574CrossRefGoogle Scholar
  96. 96.
    Aronov O, Horowitz AT, Gabizon A, Fuertes MA, Perez JM, Gibson D (2004) Nuclear localization signal-targeted poly(ethylene glycol) conjugates as potential carriers and nuclear localizing agents for carboplatin analogues. Bioconjugate Chem 15:814–823CrossRefGoogle Scholar
  97. 97.
    Bertino JR (1993) Ode to methotrexate. J Clin Oncol 11:5–14PubMedGoogle Scholar
  98. 98.
    Hitchings GH, Smith SL (1980) Dihydrofolate reductases as targets for inhibitors. Adv Enzyme Regul 18:349–371CrossRefPubMedGoogle Scholar
  99. 99.
    Riebessel K, Biedermann E, Löser R, Breiter N, Hanselmann R, Mülhaupt R, Unger C, Kratz F (2002) Polyethylene glycol conjugates of methotrexate varying in their molecular weight from MW 750 to MW 40000: synthesis, characterization, and structure-activity relationships in vitro and in vivo. Bioconjugate Chem 13:773–785CrossRefGoogle Scholar
  100. 100.
    Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2(6):785–792CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Francesca Cateni
    • 1
  • Marina Zacchigna
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of TriesteTriesteItaly

Personalised recommendations