New Molecular Therapeutic Interventions: The Case of Breast Cancers

  • Véronique Marsaud
  • Jack-Michel Renoir
Part of the Macromolecular Anticancer Therapeutics book series (CDD&D)


Despite enormous progresses made in breast cancer therapy, this disease remains one of those leading to higher number of deaths in western countries. Like other cancers, breast cancers can be treated by classical chemotherapeutic drugs but these molecules, following their administration, largely distribute in the whole body and provoke severe unwanted side effects due to poor specificity. Breast cancers have been classified into two large categories: those which are hormone dependent and those which are hormone independent. Estradiol and estrogenic compounds are responsible for the hormone-dependent growth of breast cancers through activation of the estrogen receptor α (ERα)-transactivation pathway (receptors are macromolecules involved in chemical signaling between and within the cells). ERβ is another ER species which counteracts ERα and is supposed to act as a tumor suppressor. Both ERs’ functions are inhibited by antiestrogens: a number of new molecules targeting directly or indirectly one or both of the above forms of ERs are in various phases of clinical development (proteasome inhibitors, inhibitors suppressing the chaperone activity of the heat shock protein hsp90, or the activity of farnesyl transferases, or histone deacetylases) or inhibitors of the Pi3kinase/Akt pathway and humanized antibodies. Metastasis is the major concern in breast cancer therapy which involves a small population of stem cells present in tumors representing crucial target to be attained. Thus, the potential of various new molecular therapeutic interventions in targeting this estradiol receptor family for the treatment of breast cancer will be discussed in this chapter.


Breast Cancer Breast Cancer Estrogen Receptor Hyaluronic Acid Aromatase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Advanced breast cancer




Activating function


Aromatase inhibitor


Amplified in BC


Protein kinases B


Adenosine triphosphate


Breast cancer


Coactivator-associated arginine methyltransferase 1


CREB-binding protein


Cyclin-dependent kinase


Cyclin-dependent kinase inhibitor




Epidermal growth factor receptor


Estrogen receptor


Erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma-derived oncogene homolog


Farnesyl transferase inhibitor


Histone acetyl transferase


Hyaluronic acid


Histone deacetylase


Hsp70-interacting protein


Hsp70-hsp90 organizing protein


Insulin-like growth factor 1 receptor


Insulin growth factor receptor


Locally advanced BC


Mitogen-activated protein kinase


Metastatic breast cancer


Mouse double minute 2


Modulator of non-genomic action of estrogen receptor


Mononuclear phagocyte system


Mammalian target of rapamycin


Nuclear receptor corepressor




Protein-associated factor


PPARγ coactivator-1


Phosphatidylinositol-3 kinase


Protein kinase A


Protein kinase C


Progesterone receptor


RU 58668 or (11β-[4-[5-[4,4,5,5,5-pentafluoropentyl)sulfonyl]pentyloxy]phenyl]-estra-1,3,5(10)-triene-3,17β-diol


Selective estrogen receptor disruptor


Selective estrogen receptor modulator


Sex hormone-binding globulin or sex steroid-binding plasma protein


Silencing mediator for retinoid and thyroid hormone receptor


Sarcoma virus tyrosine kinase


Steroid receptor coactivator 1




Tumor growth factor


Tyrosine kinase inhibitor; SIRT, sirtuin


Vascular endothelial growth factor



Supported by The Ligue Nationale contre le Cancer – Indre and Hauts de Seine departments committees [to Jack-Michel Renoir]


  1. 1.
    Jensen EV (1962) On the mechanism of estrogen action. Perspect Biol Med 6:47–59Google Scholar
  2. 2.
    Tsai MJ, O‘Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486PubMedCrossRefGoogle Scholar
  3. 3.
    Koehler KF, Helguero LA, Haldosen LA, et al. (2005) Reflections on the discovery and significance of estrogen receptor beta. Endocr Rev 26:465–478PubMedCrossRefGoogle Scholar
  4. 4.
    Dahlman-Wright K, Cavailles V, Fuqua SA, et al. (2006) International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 58:773–781PubMedCrossRefGoogle Scholar
  5. 5.
    Early Breast Cancer Trialists' Collaborative Group (1998) Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 351:1451–1467CrossRefGoogle Scholar
  6. 6.
    McDonnell DP (1999) The molecular pharmacology of SERMs. Trends Endocrinol Metab 10:301–311PubMedCrossRefGoogle Scholar
  7. 7.
    Jordan VC (2003) Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 2. Clinical considerations and new agents. J Med Chem 46:1081–1111PubMedCrossRefGoogle Scholar
  8. 8.
    Jordan VC, O’Malley BW (2007) Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 25:5815–5824PubMedCrossRefGoogle Scholar
  9. 9.
    Renoir JM, Mercier-Bodard C, Baulieu EE (1980) Hormonal and immunological aspects of the phylogeny of sex steroid binding plasma protein. Proc Natl Acad Sci USA 77:4578–4582PubMedCrossRefGoogle Scholar
  10. 10.
    Heinonen SM, Hoikkala A, Wahala K, et al. (2003) Metabolism of the soy isoflavones daidzein, genistein and glycitein in human subjects. Identification of new metabolites having an intact isoflavonoid skeleton. J Steroid Biochem Mol Biol 87:285–299PubMedCrossRefGoogle Scholar
  11. 11.
    Linko AM, Juntunen KS, Mykkanen HM, et al. (2005) Whole-grain rye bread consumption by women correlates with plasma alkylresorcinols and increases their concentration compared with low-fiber wheat bread. J Nutr 135:580–583PubMedGoogle Scholar
  12. 12.
    Wolff MS, Toniolo PG, Lee EW, et al. (1993) Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 85:648–652PubMedCrossRefGoogle Scholar
  13. 13.
    Greco TL, Duello TM, Gorski J (1993) Estrogen receptors, estradiol, and diethylstilbestrol in early development: the mouse as a model for the study of estrogen receptors and estrogen sensitivity in embryonic development of male and female reproductive tracts. Endocr Rev 14:59–71PubMedGoogle Scholar
  14. 14.
    Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110:917–921PubMedCrossRefGoogle Scholar
  15. 15.
    Leygue E, Dotzlaw H, Watson PH, et al. (1998) Altered estrogen receptor alpha and beta messenger RNA expression during human breast tumorigenesis. Cancer Res 58:3197–3201PubMedGoogle Scholar
  16. 16.
    Jarvinen TA, Pelto-Huikko M, Holli K, et al. (2000) Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol 156:29–35PubMedGoogle Scholar
  17. 17.
    Gustafsson JA (1999) Estrogen receptor beta – a new dimension in estrogen mechanism of action. J Endocrinol 163:379–383PubMedCrossRefGoogle Scholar
  18. 18.
    Kuiper GG, Lemmen JG, Carlsson B, et al. (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263PubMedCrossRefGoogle Scholar
  19. 19.
    Sun J, Meyers MJ, Fink BE, et al. (1999) Novel ligands that function as selective estrogens or antiestrogens for estrogen receptor-alpha or estrogen receptor-beta. Endocrinology 140:800–804PubMedCrossRefGoogle Scholar
  20. 20.
    Kuiper GG, Gustafsson JA (1997) The novel estrogen receptor-beta subtype: potential role in the cell- and promoter-specific actions of estrogens and anti-estrogens. FEBS Lett 410:87–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuiper GG, Shughrue PJ, Merchenthaler I, et al. (1998) The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 19:253–286PubMedCrossRefGoogle Scholar
  22. 22.
    Wittmann BM, Sherk A, McDonnell DP (2007) Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. Cancer Res 67:9549–9560PubMedCrossRefGoogle Scholar
  23. 23.
    Pettersson K, Delaunay F, Gustafsson JA (2000) Estrogen receptor beta acts as a dominant regulator of estrogen signaling. Oncogene 19:4970–4978PubMedCrossRefGoogle Scholar
  24. 24.
    Lazennec G, Bresson D, Lucas A, et al. (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130PubMedCrossRefGoogle Scholar
  25. 25.
    Strom A, Hartman J, Foster JS, et al. (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci USA 101:1566–1571PubMedCrossRefGoogle Scholar
  26. 26.
    Paruthiyil S, Parmar H, Kerekatte V, et al. (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64:423–428PubMedCrossRefGoogle Scholar
  27. 27.
    Skliris GP, Leygue E, Curtis-Snell L, et al. (2006) Expression of oestrogen receptor-beta in oestrogen receptor-alpha negative human breast tumours. Br J Cancer 95:616–626PubMedCrossRefGoogle Scholar
  28. 28.
    Heldring N, Pawson T, McDonnell D, et al. (2007) Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 282: 10449–10455PubMedCrossRefGoogle Scholar
  29. 29.
    Li X, Amazit L, Long W, et al. (2007) Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell 26:831–842PubMedCrossRefGoogle Scholar
  30. 30.
    Kushner PJ, Agard DA, Greene GL, et al. (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74:311–317PubMedCrossRefGoogle Scholar
  31. 31.
    Renoir JM, Radanyi C, Faber LE, et al. (1990) The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a hsp90-bound 59-kilodalton protein. J Biol Chem 265:10740–10745PubMedGoogle Scholar
  32. 32.
    Renoir JM, Radanyi C, Jung-Testas I, et al. (1990) The nonactivated progesterone receptor is a nuclear heterooligomer. J Biol Chem 265:14402–14406PubMedGoogle Scholar
  33. 33.
    Renoir JM, Mercier-Bodard C, Hoffmann K, et al. (1995) Cyclosporin A potentiates the dexamethasone-induced mouse mammary tumor virus-chloramphenicol acetyltransferase activity in LMCAT cells: a possible role for different heat shock protein-binding immunophilins in glucocorticosteroid receptor-mediated gene expression. Proc Natl Acad Sci USA 92:4977–4981PubMedCrossRefGoogle Scholar
  34. 34.
    Pratt WB (1997) The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol 37:297–326PubMedCrossRefGoogle Scholar
  35. 35.
    Osborne CK, Zhao H, Fuqua SA (2000) Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol 18:3172–3186PubMedGoogle Scholar
  36. 36.
    Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6:39–52PubMedCrossRefGoogle Scholar
  37. 37.
    Heldring N, Pike A, Andersson S, et al. (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87:905–931PubMedCrossRefGoogle Scholar
  38. 38.
    Lonard DM, O‘Malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700PubMedCrossRefGoogle Scholar
  39. 39.
    Mangelsdorf DJ, Thummel C, Beato M, et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839PubMedCrossRefGoogle Scholar
  40. 40.
    Bastian LS, Nordeen SK (1991) Concerted stimulation of transcription by glucocorticoid receptors and basal transcription factors: limited transcriptional synergism suggests mediation by coactivators/adaptors. Mol Endocrinol 5:619–627PubMedCrossRefGoogle Scholar
  41. 41.
    Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276:36865–36868PubMedCrossRefGoogle Scholar
  42. 42.
    McKenna NJ, O‘Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474PubMedCrossRefGoogle Scholar
  43. 43.
    Ogryzko VV, Schiltz RL, Russanova V, et al. (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959PubMedCrossRefGoogle Scholar
  44. 44.
    Ogryzko VV, Kotani T, Zhang X, et al. (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44PubMedCrossRefGoogle Scholar
  45. 45.
    Yang XJ, Ogryzko VV, Nishikawa J, et al. (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324PubMedCrossRefGoogle Scholar
  46. 46.
    McKenna NJ, Lanz RB, O‘Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20:321–344PubMedCrossRefGoogle Scholar
  47. 47.
    Chen D, Huang SM, Stallcup MR (2000) Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275:40810–40816PubMedCrossRefGoogle Scholar
  48. 48.
    Reid G, Hubner MR, Metivier R, et al. (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11:695–707PubMedCrossRefGoogle Scholar
  49. 49.
    Metivier R, Penot G, Hubner MR, et al. (2003) Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763PubMedCrossRefGoogle Scholar
  50. 50.
    Robinson-Rechavi M, Escriva Garcia H, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116:585–586PubMedCrossRefGoogle Scholar
  51. 51.
    Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141PubMedGoogle Scholar
  52. 52.
    Klinge CM (2000) Estrogen receptor interaction with co-activators and co-repressors. Steroids 65:227–251PubMedCrossRefGoogle Scholar
  53. 53.
    Perissi V, Aggarwal A, Glass CK, et al. (2004) A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116:511–526PubMedCrossRefGoogle Scholar
  54. 54.
    Saville B, Wormke M, Wang F, et al. (2000) Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 275:5379–5387PubMedCrossRefGoogle Scholar
  55. 55.
    Safe S, Kim K (2004) Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77:1–36PubMedCrossRefGoogle Scholar
  56. 56.
    Tateishi Y, Sonoo R, Sekiya Y, et al. (2006) Turning off estrogen receptor beta-mediated transcription requires estrogen-dependent receptor proteolysis. Mol Cell Biol 26:7966–7976PubMedCrossRefGoogle Scholar
  57. 57.
    Nawaz Z, O’Malley BW (2004) Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 18:493–499PubMedCrossRefGoogle Scholar
  58. 58.
    Callige M, Richard-Foy H (2006) Ligand-induced estrogen receptor alpha degradation by the proteasome: new actors? Nucl Recept Signal 4:e004PubMedCrossRefGoogle Scholar
  59. 59.
    Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457PubMedCrossRefGoogle Scholar
  60. 60.
    Horlein AJ, Naar AM, Heinzel T, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404PubMedCrossRefGoogle Scholar
  61. 61.
    Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68:1–9PubMedCrossRefGoogle Scholar
  62. 62.
    Razandi M, Alton G, Pedram A, et al. (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 23:1633–1646PubMedCrossRefGoogle Scholar
  63. 63.
    Levin ER, Pietras RJ (2008) Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat 108:351–361PubMedCrossRefGoogle Scholar
  64. 64.
    Levin ER (2002) Cellular functions of plasma membrane estrogen receptors. Steroids 67:471–475PubMedCrossRefGoogle Scholar
  65. 65.
    Pelicci G, Dente L, De Giuseppe A, et al. (1996) A family of Shc related proteins with conserved PTB, CH1 and SH2 regions. Oncogene 13:633–641PubMedGoogle Scholar
  66. 66.
    Razandi M, Oh P, Pedram A, et al. (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16:100–115PubMedCrossRefGoogle Scholar
  67. 67.
    Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842PubMedCrossRefGoogle Scholar
  68. 68.
    Cheskis BJ, Greger JG, Nagpal S, et al. (2007) Signaling by estrogens. J Cell Physiol 213:610–617PubMedCrossRefGoogle Scholar
  69. 69.
    Song RX, Barnes CJ, Zhang Z, et al. (2004) The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci USA 101:2076–2081PubMedCrossRefGoogle Scholar
  70. 70.
    King WJ, Greene GL (1984) Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature 307:745–747PubMedCrossRefGoogle Scholar
  71. 71.
    Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccupied oestrogen receptors. Nature 307:747–749PubMedCrossRefGoogle Scholar
  72. 72.
    Guiochon-Mantel A, Milgrom E (1993) Cytoplasmic-nuclear trafficking of steroid hormone receptors. Trends Endocrinol Metab 4:322–328PubMedCrossRefGoogle Scholar
  73. 73.
    Yang SH, Liu R, Perez EJ, et al. (2004) Mitochondrial localization of estrogen receptor beta. Proc Natl Acad Sci USA 101:4130–4135PubMedCrossRefGoogle Scholar
  74. 74.
    Duong V, Boulle N, Daujat S, et al. (2007) Differential regulation of estrogen receptor alpha turnover and transactivation by Mdm2 and stress-inducing agents. Cancer Res 67:5513–5521PubMedCrossRefGoogle Scholar
  75. 75.
    Kalaitzidis D, Gilmore TD (2005) Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab 16:46–52PubMedCrossRefGoogle Scholar
  76. 76.
    Le Romancer M, Treilleux I, Leconte N, et al. (2008) Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol Cell 31:212–221PubMedCrossRefGoogle Scholar
  77. 77.
    El Khissiin A, Leclercq G (1999) Implication of proteasome in estrogen receptor degradation. FEBS Lett 448:160–166PubMedCrossRefGoogle Scholar
  78. 78.
    Alarid ET, Bakopoulos N, Solodin N (1999) Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down-regulation. Mol Endocrinol 13:1522–1534PubMedCrossRefGoogle Scholar
  79. 79.
    Nawaz Z, Lonard DM, Dennis AP, et al. (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96:1858–1862PubMedCrossRefGoogle Scholar
  80. 80.
    Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276:35684–35692PubMedCrossRefGoogle Scholar
  81. 81.
    Marsaud V, Gougelet A, Maillard S, et al. (2003) Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17:2013–2027PubMedCrossRefGoogle Scholar
  82. 82.
    Stenoien DL, Patel K, Mancini MG, et al. (2001) FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol 3:15–23PubMedCrossRefGoogle Scholar
  83. 83.
    Kim MY, Hsiao SJ, Kraus WL (2001) A role for coactivators and histone acetylation in estrogen receptor alpha-mediated transcription initiation. Embo J 20:6084–6094PubMedCrossRefGoogle Scholar
  84. 84.
    Kim MY, Woo EM, Chong YT, et al. (2006) Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol Endocrinol 20:1479–1493PubMedCrossRefGoogle Scholar
  85. 85.
    Wang C, Fu M, Angeletti RH, et al. (2001) Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383PubMedCrossRefGoogle Scholar
  86. 86.
    Fuqua SA, Wiltschke C, Zhang QX, et al. (2000) A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res 60:4026–4029PubMedGoogle Scholar
  87. 87.
    Subramanian K, Jia D, Kapoor-Vazirani P, et al. (2008) Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 30:336–347PubMedCrossRefGoogle Scholar
  88. 88.
    Clarke RB, Howell A, Potten CS, et al. (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991PubMedGoogle Scholar
  89. 89.
    Lubahn DB, Moyer JS, Golding TS, et al. (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162–11166PubMedCrossRefGoogle Scholar
  90. 90.
    Shyamala G, Singh RK, Ruh MF, et al. (1986) Relationships between mammary estrogen receptor and estrogenic sensitivity. II. Binding of cytoplasmic receptor to chromatin. Endocrinology 119:819–826PubMedCrossRefGoogle Scholar
  91. 91.
    Saji S, Jensen EV, Nilsson S, et al. (2000) Estrogen receptors alpha and beta in the rodent mammary gland. Proc Natl Acad Sci USA 97:337–342PubMedCrossRefGoogle Scholar
  92. 92.
    Foster JS, Fernando RI, Ishida N, et al. (2003) Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 278:41355–41366PubMedCrossRefGoogle Scholar
  93. 93.
    Korach KS, Emmen JM, Walker VR, et al. (2003) Update on animal models developed for analyses of estrogen receptor biological activity. J Steroid Biochem Mol Biol 86:387–391PubMedCrossRefGoogle Scholar
  94. 94.
    Simpson ER (2004) Aromatase: biologic relevance of tissue-specific expression. Semin Reprod Med 22:11–23PubMedCrossRefGoogle Scholar
  95. 95.
    Weihua Z, Saji S, Makinen S, et al. (2000) Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci USA 97:5936–5941PubMedCrossRefGoogle Scholar
  96. 96.
    Helguero LA, Faulds MH, Gustafsson JA, et al. (2005) Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24:6605–6616PubMedCrossRefGoogle Scholar
  97. 97.
    Fuqua SA (2001) The role of estrogen receptors in breast cancer metastasis. J Mammary Gland Biol Neoplasia 6:407–417PubMedCrossRefGoogle Scholar
  98. 98.
    Hall JM, McDonnell DP (1999) The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 140:5566–5578PubMedCrossRefGoogle Scholar
  99. 99.
    Liu MM, Albanese C, Anderson CM, et al. (2002) Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277:24353–24360PubMedCrossRefGoogle Scholar
  100. 100.
    Gougelet A, Mueller SO, Korach KS, et al. (2007) Oestrogen receptors pathways to oestrogen responsive elements: the transactivation function-1 acts as the keystone of oestrogen receptor (ER)beta-mediated transcriptional repression of ERalpha. J Steroid Biochem Mol Biol 104:110–122PubMedCrossRefGoogle Scholar
  101. 101.
    Holst F, Stahl PR, Ruiz C, et al. (2007) Estrogen receptor alpha (ESR1) gene amplification is frequent in breast cancer. Nat Genet 39:655–660PubMedCrossRefGoogle Scholar
  102. 102.
    Lazennec G, Katzenellenbogen BS (1999) Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone-dependent features to estrogen receptor-negative breast carcinoma cells. Mol Cell Endocrinol 149:93–105PubMedCrossRefGoogle Scholar
  103. 103.
    Hartman J, Lindberg K, Morani A, et al. (2006) Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 66:11207–11213PubMedCrossRefGoogle Scholar
  104. 104.
    Stettner M, Kaulfuss S, Burfeind P, et al. (2007) The relevance of estrogen receptor-beta expression to the antiproliferative effects observed with histone deacetylase inhibitors and phytoestrogens in prostate cancer treatment. Mol Cancer Ther 6:2626–2633PubMedCrossRefGoogle Scholar
  105. 105.
    Bouclier C, Moine L, Hillaireau H, et al. (2008) Physicochemical characteristics and preliminary in vivo biological evaluation of nanocapsules loaded with siRNA targeting estrogen receptor alpha. Biomacromolecules 9:2881–2890PubMedCrossRefGoogle Scholar
  106. 106.
    Roger P, Sahla ME, Makela S, et al. (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61:2537–2541PubMedGoogle Scholar
  107. 107.
    Lazennec G (2006) Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett 231:151–157PubMedCrossRefGoogle Scholar
  108. 108.
    Stabile LP, Davis AL, Gubish CT, et al. (2002) Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 62:2141–2150PubMedGoogle Scholar
  109. 109.
    Horvath LG, Henshall SM, Lee CS, et al. (2001) Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 61:5331–5335PubMedGoogle Scholar
  110. 110.
    Foley EF, Jazaeri AA, Shupnik MA, et al. (2000) Selective loss of estrogen receptor beta in malignant human colon. Cancer Res 60:245–248PubMedGoogle Scholar
  111. 111.
    Gruvberger-Saal SK, Bendahl PO, Saal LH, et al. (2007) Estrogen receptor beta expression is associated with tamoxifen response in ERalpha-negative breast carcinoma. Clin Cancer Res 13:1987–1994PubMedCrossRefGoogle Scholar
  112. 112.
    McDonnell DP, Connor CE, Wijayaratne A, et al. (2002) Definition of the molecular and cellular mechanisms underlying the tissue-selective agonist/antagonist activities of selective estrogen receptor modulators. Recent Prog Horm Res 57:295–316PubMedCrossRefGoogle Scholar
  113. 113.
    Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618PubMedCrossRefGoogle Scholar
  114. 114.
    Jordan VC, Gapstur S, Morrow M (2001) Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J Natl Cancer Inst 93:1449–1457PubMedCrossRefGoogle Scholar
  115. 115.
    Pearce ST, Jordan VC (2004) The biological role of estrogen receptors alpha and beta in cancer. Crit Rev Oncol Hematol 50:3–22PubMedCrossRefGoogle Scholar
  116. 116.
    Smith CL, Nawaz Z, O‘Malley BW (1997) Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol 11:657–666PubMedCrossRefGoogle Scholar
  117. 117.
    Webb P, Nguyen P, Shinsako J, et al. (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12:1605–1618PubMedCrossRefGoogle Scholar
  118. 118.
    Endoh H, Maruyama K, Masuhiro Y, et al. (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372PubMedGoogle Scholar
  119. 119.
    Lavinsky RM, Jepsen K, Heinzel T, et al. (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925PubMedCrossRefGoogle Scholar
  120. 120.
    Fisher B, Costantino JP, Wickerham DL, et al. (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388PubMedCrossRefGoogle Scholar
  121. 121.
    Love RR, Mazess RB, Barden HS, et al. (1992) Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N Engl J Med 326:852–856PubMedCrossRefGoogle Scholar
  122. 122.
    Fisher B, Costantino JP, Redmond CK, et al. (1994) Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86:527–537PubMedCrossRefGoogle Scholar
  123. 123.
    Assikis VJ, Jordan VC (1995) Gynecologic effects of tamoxifen and the association with endometrial carcinoma. Int J Gynaecol Obstet 49:241–257PubMedCrossRefGoogle Scholar
  124. 124.
    Osborne CK, Schiff R, Fuqua SA, et al. (2001) Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res 7:4338s–4342s; discussion 4411s–4412sPubMedGoogle Scholar
  125. 125.
    Howell A, Robertson JF, Abram P, et al. (2004) Comparison of fulvestrant versus tamoxifen for the treatment of advanced breast cancer in postmenopausal women previously untreated with endocrine therapy: a multinational, double-blind, randomized trial. J Clin Oncol 22:1605–1613PubMedCrossRefGoogle Scholar
  126. 126.
    Buzdar A, Hayes D, El-Khoudary A, et al. (2002) Phase III randomized trial of droloxifene and tamoxifen as first-line endocrine treatment of ER/PgR-positive advanced breast cancer. Breast Cancer Res Treat 73:161–175PubMedCrossRefGoogle Scholar
  127. 127.
    Dombernowsky P, Smith I, Falkson G, et al. (1998) Letrozole, a new oral aromatase inhibitor for advanced breast cancer: double-blind randomized trial showing a dose effect and improved efficacy and tolerability compared with megestrol acetate. J Clin Oncol 16:453–461PubMedGoogle Scholar
  128. 128.
    Cocconi G (1994) First generation aromatase inhibitors–aminoglutethimide and testololactone. Breast Cancer Res Treat 30:57–80PubMedCrossRefGoogle Scholar
  129. 129.
    Falkson G, Raats JI, Falkson HC (1992) Fadrozole hydrochloride, a new nontoxic aromatase inhibitor for the treatment of patients with metastatic breast cancer. J Steroid Biochem Mol Biol 43:161–165PubMedCrossRefGoogle Scholar
  130. 130.
    Goss PE, Powles TJ, Dowsett M, et al. (1986) Treatment of advanced postmenopausal breast cancer with an aromatase inhibitor, 4-hydroxyandrostenedione: phase II report. Cancer Res 46:4823–4826PubMedGoogle Scholar
  131. 131.
    Dowsett M, Jones A, Johnston SR, et al. (1995) In vivo measurement of aromatase inhibition by letrozole (CGS 20267) in postmenopausal patients with breast cancer. Clin Cancer Res 1:1511–1515PubMedGoogle Scholar
  132. 132.
    Geisler J, King N, Dowsett M, et al. (1996) Influence of anastrozole (Arimidex), a selective, non-steroidal aromatase inhibitor, on in vivo aromatisation and plasma oestrogen levels in postmenopausal women with breast cancer. Br J Cancer 74:1286–1291PubMedGoogle Scholar
  133. 133.
    Yue W, Brodie AM (1997) Mechanisms of the actions of aromatase inhibitors 4-hydroxyandrostenedione, fadrozole, and aminoglutethimide on aromatase in JEG-3 cell culture. J Steroid Biochem Mol Biol 63:317–328PubMedCrossRefGoogle Scholar
  134. 134.
    Nabholtz JM, Buzdar A, Pollak M, et al. (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 18:3758–3767PubMedGoogle Scholar
  135. 135.
    Bonneterre J, Thurlimann B, Robertson JF, et al. (2000) Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. J Clin Oncol 18:3748–3757PubMedGoogle Scholar
  136. 136.
    Mouridsen H, Gershanovich M, Sun Y, et al. (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19:2596–2606PubMedGoogle Scholar
  137. 137.
    Baum M, Budzar AU, Cuzick J, et al. (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359:2131–2139PubMedCrossRefGoogle Scholar
  138. 138.
    Azcoitia I, Sierra A, Veiga S, et al. (2001) Brain aromatase is neuroprotective. J Neurobiol 47:318–329PubMedCrossRefGoogle Scholar
  139. 139.
    Coombes RC, Gibson L, Hall E, et al. (2003) Aromatase inhibitors as adjuvant therapies in patients with breast cancer. J Steroid Biochem Mol Biol 86:309–311PubMedCrossRefGoogle Scholar
  140. 140.
    McDonnell DP, Norris JD (2002) Connections and regulation of the human estrogen receptor. Science 296:1642–1644PubMedCrossRefGoogle Scholar
  141. 141.
    Jordan VC (2004) Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 5:207–213PubMedCrossRefGoogle Scholar
  142. 142.
    Osborne CK, Bardou V, Hopp TA, et al. (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353–361PubMedCrossRefGoogle Scholar
  143. 143.
    Shou J, Massarweh S, Osborne CK, et al. (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935PubMedCrossRefGoogle Scholar
  144. 144.
    Osborne CK (1999) Aromatase inhibitors in relation to other forms of endocrine therapy for breast cancer. Endocr Relat Cancer 6:271–276PubMedCrossRefGoogle Scholar
  145. 145.
    Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112PubMedCrossRefGoogle Scholar
  146. 146.
    Johnston SR, Head J, Pancholi S, et al. (2003) Integration of signal transduction inhibitors with endocrine therapy: an approach to overcoming hormone resistance in breast cancer. Clin Cancer Res 9:524S–532SPubMedGoogle Scholar
  147. 147.
    Nicholson RI, Gee JM, Knowlden J, et al. (2003) The biology of antihormone failure in breast cancer. Breast Cancer Res Treat 80(Suppl 1):S29–S34; discussion S35PubMedCrossRefGoogle Scholar
  148. 148.
    Muller V, Witzel I, Luck HJ, et al. (2004) Prognostic and predictive impact of the HER-2/ neu extracellular domain (ECD) in the serum of patients treated with chemotherapy for metastatic breast cancer. Breast Cancer Res Treat 86:9–18PubMedCrossRefGoogle Scholar
  149. 149.
    Waterman H, Alroy I, Strano S, et al. (1999) The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. Embo J 18:3348–3358PubMedCrossRefGoogle Scholar
  150. 150.
    Anzick SL, Kononen J, Walker RL, et al. (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968PubMedCrossRefGoogle Scholar
  151. 151.
    Zhou BP, Hung MC (2003) Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin Oncol 30:38–48PubMedCrossRefGoogle Scholar
  152. 152.
    Campbell RA, Bhat-Nakshatri P, Patel NM, et al. (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824PubMedCrossRefGoogle Scholar
  153. 153.
    Glaros S, Atanaskova N, Zhao C, et al. (2006) Activation function-1 domain of estrogen receptor regulates the agonistic and antagonistic actions of tamoxifen. Mol Endocrinol 20:996–1008PubMedCrossRefGoogle Scholar
  154. 154.
    Reddy KB, Glaros S (2007) Inhibition of the MAP kinase activity suppresses estrogen-induced breast tumor growth both in vitro and in vivo. Int J Oncol 30:971–975PubMedGoogle Scholar
  155. 155.
    Sun M, Wang G, Paciga JE, et al. (2001) AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 159:431–437PubMedGoogle Scholar
  156. 156.
    Faridi J, Wang L, Endemann G, et al. (2003) Expression of constitutively active Akt-3 in MCF-7 breast cancer cells reverses the estrogen and tamoxifen responsivity of these cells in vivo. Clin Cancer Res 9:2933–2939PubMedGoogle Scholar
  157. 157.
    Nabha SM, Glaros S, Hong M, et al. (2005) Upregulation of PKC-delta contributes to antiestrogen resistance in mammary tumor cells. Oncogene 24:3166–3176PubMedCrossRefGoogle Scholar
  158. 158.
    Michalides R, Griekspoor A, Balkenende A, et al. (2004) Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 5:597–605PubMedCrossRefGoogle Scholar
  159. 159.
    Li Y, Wang H, Wang Z, et al. (2006) Inducible resistance of tumor cells to tumor necrosis factor-related apoptosis-inducing ligand receptor 2-mediated apoptosis by generation of a blockade at the death domain function. Cancer Res 66:8520–8528PubMedCrossRefGoogle Scholar
  160. 160.
    Nahta R, Esteva FJ (2003) Bcl-2 antisense oligonucleotides: a potential novel strategy for the treatment of breast cancer. Semin Oncol 30:143–149PubMedCrossRefGoogle Scholar
  161. 161.
    Marshall J, Chen H, Yang D, et al. (2004) A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 15:1274–1283PubMedCrossRefGoogle Scholar
  162. 162.
    Kandouz M, Lombet A, Perrot JY, et al. (1999) Proapoptotic effects of antiestrogens, progestins and androgen in breast cancer cells. J Steroid Biochem Mol Biol 69:463–471PubMedCrossRefGoogle Scholar
  163. 163.
    Witters LM, Myers A, Lipton A (2004) Combining flavopiridol with various signal transduction inhibitors. Oncol Rep 11:693–698PubMedGoogle Scholar
  164. 164.
    Wittmann S, Bali P, Donapaty S, et al. (2003) Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res 63:93–99PubMedGoogle Scholar
  165. 165.
    Ryan BM, Konecny GE, Kahlert S, et al. (2006) Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol 17:597–604PubMedCrossRefGoogle Scholar
  166. 166.
    Reed JC (2003) Apoptosis-targeted therapies for cancer. Cancer Cell 3:17–22PubMedCrossRefGoogle Scholar
  167. 167.
    Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194PubMedCrossRefGoogle Scholar
  168. 168.
    Wall NR, O‘Connor DS, Plescia J, et al. (2003) Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 63:230–235PubMedGoogle Scholar
  169. 169.
    Nakshatri H, Bhat-Nakshatri P, Martin DA, et al. (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17:3629–3639PubMedGoogle Scholar
  170. 170.
    Hernandez-Vargas H, Rodriguez-Pinilla SM, Julian-Tendero M, et al. (2007) Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat 102:157–172PubMedCrossRefGoogle Scholar
  171. 171.
    Yang CH, Gonzalez-Angulo AM, Reuben JM, et al. (2006) Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 17:813–817PubMedCrossRefGoogle Scholar
  172. 172.
    Engel RH, Brown JA, Von Roenn JH, et al. (2007) A phase II study of single agent bortezomib in patients with metastatic breast cancer: a single institution experience. Cancer Invest 25:733–737PubMedCrossRefGoogle Scholar
  173. 173.
    Cardoso F, Durbecq V, Laes JF, et al. (2006) Bortezomib (PS-341, Velcade) increases the efficacy of trastuzumab (Herceptin) in HER-2-positive breast cancer cells in a synergistic manner. Mol Cancer Ther 5:3042–3051PubMedCrossRefGoogle Scholar
  174. 174.
    Domingo-Domenech J, Pippa R, Tapia M, et al. (2008) Inactivation of NF-kappaB by proteasome inhibition contributes to increased apoptosis induced by histone deacetylase inhibitors in human breast cancer cells. Breast Cancer Res Treat 112:53–62PubMedCrossRefGoogle Scholar
  175. 175.
    Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133Google Scholar
  176. 176.
    Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–61PubMedCrossRefGoogle Scholar
  177. 177.
    Chiosis G (2006) Targeting chaperones in transformed systems – a focus on Hsp90 and cancer. Expert Opin Ther Targets 10:37–50PubMedCrossRefGoogle Scholar
  178. 178.
    Immormino RM, Kang Y, Chiosis G, et al. (2006) Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem 49:4953–4960PubMedCrossRefGoogle Scholar
  179. 179.
    Workman P, Burrows F, Neckers L, et al. (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci 1113:202–216PubMedCrossRefGoogle Scholar
  180. 180.
    Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38–43PubMedCrossRefGoogle Scholar
  181. 181.
    Bishop SC, Burlison JA, Blagg BS (2007) Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Targets 7:369–388PubMedCrossRefGoogle Scholar
  182. 182.
    Le Bras G, Radanyi C, Peyrat JF, et al. (2007) New novobiocin analogues as antiproliferative agents in breast cancer cells and potential inhibitors of heat shock protein 90. J Med Chem 50:6189–6200PubMedCrossRefGoogle Scholar
  183. 183.
    Tennis M, Krishnan S, Bonner M, et al. (2006) p53 Mutation analysis in breast tumors by a DNA microarray method. Cancer Epidemiol Biomarkers Prev 15:80–85PubMedCrossRefGoogle Scholar
  184. 184.
    Troester MA, Herschkowitz JI, Oh DS, et al. (2006) Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6:276PubMedCrossRefGoogle Scholar
  185. 185.
    Bull SB, Ozcelik H, Pinnaduwage D, et al. (2004) The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol 22:86–96PubMedCrossRefGoogle Scholar
  186. 186.
    Liu W, Konduri SD, Bansal S, et al. (2006) Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function. J Biol Chem 281:9837–9840PubMedCrossRefGoogle Scholar
  187. 187.
    Sayeed A, Konduri SD, Liu W, et al. (2007) Estrogen receptor alpha inhibits p53-mediated transcriptional repression: implications for the regulation of apoptosis. Cancer Res 67:7746–7755PubMedCrossRefGoogle Scholar
  188. 188.
    Cristofanilli M, Krishnamurthy S, Guerra L, et al. (2006) A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer: safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer 107:935–944PubMedCrossRefGoogle Scholar
  189. 189.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedCrossRefGoogle Scholar
  190. 190.
    Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262PubMedCrossRefGoogle Scholar
  191. 191.
    She QB, Chandarlapaty S, Ye Q, et al. (2008) Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE 3:e3065PubMedCrossRefGoogle Scholar
  192. 192.
    Xing H, Wang S, Weng D, et al. (2007) Knock-down of P-glycoprotein reverses taxol resistance in ovarian cancer multicellular spheroids. Oncol Rep 17:117–122PubMedGoogle Scholar
  193. 193.
    Sabnis G, Goloubeva O, Jelovac D, et al. (2007) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway improves response of long-term estrogen-deprived breast cancer xenografts to antiestrogens. Clin Cancer Res 13:2751–2757PubMedCrossRefGoogle Scholar
  194. 194.
    Sabnis GJ, Macedo L, Goloubeva O, et al. (2008) Toremifene-atamestane; alone or in combination: predictions from the preclinical intratumoral aromatase model. J Steroid Biochem Mol Biol 108:1–7PubMedCrossRefGoogle Scholar
  195. 195.
    Saal LH, Johansson P, Holm K, et al. (2007) Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104:7564–7569PubMedCrossRefGoogle Scholar
  196. 196.
    Doisneau-Sixou SF, Cestac P, Faye JC, et al. (2003) Additive effects of tamoxifen and the farnesyl transferase inhibitor FTI-277 on inhibition of MCF-7 breast cancer cell-cycle progression. Int J Cancer 106:789–798PubMedCrossRefGoogle Scholar
  197. 197.
    Cestac P, Sarrabayrouse G, Medale-Giamarchi C, et al. (2005) Prenylation inhibitors stimulate both estrogen receptor alpha transcriptional activity through AF-1 and AF-2 and estrogen receptor beta transcriptional activity. Breast Cancer Res 7:R60–70PubMedCrossRefGoogle Scholar
  198. 198.
    Kelland LR (2003) Farnesyl transferase inhibitors in the treatment of breast cancer. Expert Opin Investig Drugs 12:413–421PubMedCrossRefGoogle Scholar
  199. 199.
    Mendelsohn ME, Karas RH (1999) The protective effects of estrogen on the cardiovascular system. N Engl J Med 340:1801–1811PubMedCrossRefGoogle Scholar
  200. 200.
    Hisamoto K, Bender JR (2005) Vascular cell signaling by membrane estrogen receptors. Steroids 70:382–387PubMedCrossRefGoogle Scholar
  201. 201.
    Moriarty K, Kim KH, Bender JR (2006) Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147:5557–5563PubMedCrossRefGoogle Scholar
  202. 202.
    Miller VM, Mulvagh SL (2007) Sex steroids and endothelial function: translating basic science to clinical practice. Trends Pharmacol Sci 28:263–270PubMedCrossRefGoogle Scholar
  203. 203.
    Gibson LL, Hahner L, Osborne-Lawrence S, et al. (2005) Molecular basis of estrogen-induced cyclooxygenase type 1 upregulation in endothelial cells. Circ Res 96:518–525PubMedCrossRefGoogle Scholar
  204. 204.
    Miller VM, Duckles SP (2008) Vascular actions of estrogens: functional implications. Pharmacol Rev 60:210–241PubMedCrossRefGoogle Scholar
  205. 205.
    Banerjee SK, Campbell DR, Weston AP, et al. (1997) Biphasic estrogen response on bovine adrenal medulla capillary endothelial cell adhesion, proliferation and tube formation. Mol Cell Biochem 177:97–105PubMedCrossRefGoogle Scholar
  206. 206.
    Luo Y, Zhou H, Krueger J, et al. (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141PubMedCrossRefGoogle Scholar
  207. 207.
    Kim KJ, Li B, Winer J, et al. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844PubMedCrossRefGoogle Scholar
  208. 208.
    Burstein HJ, Harris LN, Marcom PK, et al. (2003) Trastuzumab and vinorelbine as first-line therapy for HER2-overexpressing metastatic breast cancer: multicenter phase II trial with clinical outcomes, analysis of serum tumor markers as predictive factors, and cardiac surveillance algorithm. J Clin Oncol 21:2889–2895PubMedCrossRefGoogle Scholar
  209. 209.
    Ramaswamy B, Elias AD, Kelbick NT, et al. (2006) Phase II trial of bevacizumab in combination with weekly docetaxel in metastatic breast cancer patients. Clin Cancer Res 12:3124–3129PubMedCrossRefGoogle Scholar
  210. 210.
    Miller KD, Chap LI, Holmes FA, et al. (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799PubMedCrossRefGoogle Scholar
  211. 211.
    Yang W, Klos KS, Zhou X, et al. (2003) ErbB2 overexpression in human breast carcinoma is correlated with p21Cip1 up-regulation and tyrosine-15 hyperphosphorylation of p34Cdc2: poor responsiveness to chemotherapy with cyclophoshamide methotrexate, and 5-fluorouracil is associated with Erb2 overexpression and with p21Cip1 overexpression. Cancer 98:1123–1130PubMedCrossRefGoogle Scholar
  212. 212.
    Russo SM, Ove R (2003) Molecular targets as therapeutic strategies in the management of breast cancer. Expert Opin Ther Targets 7:543–557PubMedCrossRefGoogle Scholar
  213. 213.
    Modi S, D’Andrea G, Norton L, et al. (2006) A phase I study of cetuximab/paclitaxel in patients with advanced-stage breast cancer. Clin Breast Cancer 7:270–277PubMedCrossRefGoogle Scholar
  214. 214.
    Feldner JC, Brandt BH (2002) Cancer cell motility – on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108PubMedCrossRefGoogle Scholar
  215. 215.
    Guix M, Granja Nde M, Meszoely I, et al. (2008) Short preoperative treatment with erlotinib inhibits tumor cell proliferation in hormone receptor-positive breast cancers. J Clin Oncol 26:897–906PubMedCrossRefGoogle Scholar
  216. 216.
    Slamon DJ, Leyland-Jones B, Shak S, et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792PubMedCrossRefGoogle Scholar
  217. 217.
    Romond EH, Perez EA, Bryant J, et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684PubMedCrossRefGoogle Scholar
  218. 218.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672PubMedCrossRefGoogle Scholar
  219. 219.
    Joensuu H, Kellokumpu-Lehtinen PL, Bono P, et al. (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820PubMedCrossRefGoogle Scholar
  220. 220.
    Schaefer NG, Pestalozzi BC, Knuth A, et al. (2006) Potential use of humanized antibodies in the treatment of breast cancer. Expert Rev Anticancer Ther 6:1065–1074PubMedCrossRefGoogle Scholar
  221. 221.
    Arpino G, Gutierrez C, Weiss H, et al. (2007) Treatment of human epidermal growth factor receptor 2-overexpressing breast cancer xenografts with multiagent HER-targeted therapy. J Natl Cancer Inst 99:694–705PubMedCrossRefGoogle Scholar
  222. 222.
    Reya T, Morrison SJ, Clarke MF, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  223. 223.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988PubMedCrossRefGoogle Scholar
  224. 224.
    Ponti D, Costa A, Zaffaroni N, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511PubMedCrossRefGoogle Scholar
  225. 225.
    Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270PubMedCrossRefGoogle Scholar
  226. 226.
    Locke M, Heywood M, Fawell S, et al. (2005) Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines. Cancer Res 65:8944–8950PubMedCrossRefGoogle Scholar
  227. 227.
    Hirschmann-Jax C, Foster AE, Wulf GG, et al. (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  228. 228.
    Harrell JC, Dye WW, Allred DC, et al. (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66:9308–9315PubMedCrossRefGoogle Scholar
  229. 229.
    Horwitz KB, Dye WW, Harrell JC, et al. (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105:5774–5779PubMedCrossRefGoogle Scholar
  230. 230.
    Honeth G, Bendahl PO, Ringner M, et al. (2008) The CD44+/CD24 phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53PubMedCrossRefGoogle Scholar
  231. 231.
    Perou CM, Sorlie T, Eisen MB, et al. (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  232. 232.
    Asselin-Labat ML, Shackleton M, Stingl J, et al. (2006) Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst 98:1011–1014PubMedCrossRefGoogle Scholar
  233. 233.
    Sleeman KE, Kendrick H, Robertson D, et al. (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26PubMedCrossRefGoogle Scholar
  234. 234.
    Sleeman KW (2007) Men’s health. Med J Aust 186:661–662; discussion 662PubMedGoogle Scholar
  235. 235.
    Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539PubMedCrossRefGoogle Scholar
  236. 236.
    Little MP, Boice JD, Jr. (1999) Comparison of breast cancer incidence in the Massachusetts tuberculosis fluoroscopy cohort and in the Japanese atomic bomb survivors. Radiat Res 151:218–224PubMedCrossRefGoogle Scholar
  237. 237.
    Little MP, Weiss HA, Boice JD, Jr., et al. (1999) Risks of leukemia in Japanese atomic bomb survivors, in women treated for cervical cancer, and in patients treated for ankylosing spondylitis. Radiat Res 152:280–292PubMedCrossRefGoogle Scholar
  238. 238.
    Li X, Lewis MT, Huang J, et al. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679PubMedCrossRefGoogle Scholar
  239. 239.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284PubMedCrossRefGoogle Scholar
  240. 240.
    Draffin JE, McFarlane S, Hill A, et al. (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711PubMedCrossRefGoogle Scholar
  241. 241.
    Dontu G (2008) Breast cancer stem cell markers – the rocky road to clinical applications. Breast Cancer Res 10:110PubMedCrossRefGoogle Scholar
  242. 242.
    Tijink BM, Buter J, de Bree R, et al. (2006) A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res 12:6064–6072PubMedCrossRefGoogle Scholar
  243. 243.
    Bourguignon LY, Singleton PA, Zhu H, et al. (2003) Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem 278:29420–29434PubMedCrossRefGoogle Scholar
  244. 244.
    Bourguignon LY (2008) Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol 18:251–259PubMedCrossRefGoogle Scholar
  245. 245.
    Bourguignon LY, Peyrollier K, Xia W, et al. (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651PubMedCrossRefGoogle Scholar
  246. 246.
    Song G, Liao X, Zhou L, et al. (2004) HI44a, an anti-CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells. Leuk Res 28:1089–1096PubMedCrossRefGoogle Scholar
  247. 247.
    Platt VM, Szoka FC, Jr. (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5:474–486PubMedCrossRefGoogle Scholar
  248. 248.
    Jin L, Hope KJ, Zhai Q, et al. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174PubMedCrossRefGoogle Scholar
  249. 249.
    Ameller T, Marsaud V, Legrand P, et al. (2003) In vitro and in vivo biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure antiestrogen RU 58668. Int J Cancer 106:446–454PubMedCrossRefGoogle Scholar
  250. 250.
    Maillard S, Gauduchon J, Marsaud V, et al. (2006) Improved antitumoral properties of pure antiestrogen RU 58668-loaded liposomes in multiple myeloma. J Steroid Biochem Mol Biol 100:67–78PubMedCrossRefGoogle Scholar
  251. 251.
    Nguyen A, Marsaud V, Bouclier C, et al. (2008) Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int J Pharm 347:128–135PubMedCrossRefGoogle Scholar
  252. 252.
    Skliris GP, Leygue E, Watson PH, et al. (2008) Estrogen receptor alpha negative breast cancer patients: estrogen receptor beta as a therapeutic target. J Steroid Biochem Mol Biol 109:1–10PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Véronique Marsaud
    • 1
  • Jack-Michel Renoir
    • 1
  1. 1.CNRS, UMR 8612, Physico-Chimie, Pharmacotechnie, BiopharmaciePharmacologie Cellulaire et Moléculaire des AnticancéreuxChâtenay-MalabryFrance

Personalised recommendations