Anticancer Oligonucleotides

  • Anne Laure Ramon
  • Claude Malvy
Part of the Macromolecular Anticancer Therapeutics book series (CDD&D)


The concept of therapeutic oligonucleotides, short molecules of nucleic acids, in the cancer field mostly originates in the identification of genes critical for the development of cancers and from the capacity of automatized chemical synthesis of great quantities of oligonucleotides. These genes include not only oncogenes but also other genes implicated, for instance, in cell metabolism or apoptosis. The rationale is to inhibit these cancer-related genes with specificity and without major toxicity as frequently happens with cancer chemotherapy. Oligonucleotides have been used since 1978 in order to inhibit genes related to cancers at the mRNA level from the cellular cultures in the laboratory to preclinical trials in animals. This has been performed first with antisense oligonucleotides and since 2001 with small interfering RNAs (siRNAs). Their mechanism of action is initially based on the formation of a short Watson–Crick double helix between the mRNA strand and the complementary oligonucleotide. Processes then differ between antisense oligonucleotides and siRNAs but most of the times aim at a specific mRNA degradation or less frequently to a ribosome arrest. Clinical trials with mixed results have been performed for several years with antisense oligonucleotides and are just beginning with siRNA. The main strategy for using oligonucleotides in clinical trials has been chemical modifications which improve their resistance to degradation. But delivery by nanovectors has also been used.


Small Cell Lung Cancer Antisense Oligonucleotide Merkel Cell Carcinoma Gemtuzumab Ozogamicin Hammerhead Ribozyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Area under the curve


continuous intravenous infusion


Human cerebral microvascular endothelial cells


intraperitonal infusion


intravenous infusion


Insulin growth factor receptor


Nuclear factor kappa B




Peripheral blood mononuclear cells


Protein kinase C-alpha


RNA-induced silencing complex


ARN interference

RNase H

Ribonuclease H


subcutaneous infusion


Small cell lung cancer


small interfering RNA



The authors thank the Association Leyla for providing Anne Laure Ramon’s PhD fellowship.


  1. 1.
    Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33(5–6):533–540PubMedCrossRefGoogle Scholar
  2. 2.
    Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7(1):E61–77CrossRefGoogle Scholar
  3. 3.
    Schlagbauer-Wadl H, Klosner G, Heere-Ress E, et al. (2000) Bcl-2 antisense oligonucleotides (G3139) inhibit Merkel cell carcinoma growth in SCID mice. J Invest Dermatol 114(4):725–730PubMedCrossRefGoogle Scholar
  4. 4.
    Chi KC, Wallis AE, Lee CH, et al. (2000) Effects of Bcl-2 modulation with G3139 antisense oligonucleotide on human breast cancer cells are independent of inherent Bcl-2 protein expression. Breast Cancer Res Treat 63(3):199–212PubMedCrossRefGoogle Scholar
  5. 5.
    Hu Y, Bebb G, Tan S, et al. (2004) Antitumor efficacy of oblimersen Bcl-2 antisense oligonucleotide alone and in combination with vinorelbine in xenograft models of human non-small cell lung cancer. Clin Cancer Res 10(22):7662–7670PubMedCrossRefGoogle Scholar
  6. 6.
    Duggan BJ, Cotter FE, Kelly JD, et al. (2001) Antisense Bcl-2 oligonucleotide uptake in human transitional cell carcinoma. Eur Urol 40(6):685–695PubMedCrossRefGoogle Scholar
  7. 7.
    Mu Z, Hachem P, Pollack A (2005) Antisense Bcl-2 sensitizes prostate cancer cells to radiation. Prostate 65(4):331–340PubMedCrossRefGoogle Scholar
  8. 8.
    Anai S, Goodison S, Shiverick K, et al. (2007) Knock-down of Bcl-2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts. Mol Cancer Ther 6(1):101–111PubMedCrossRefGoogle Scholar
  9. 9.
    Schaaf A, Sagi S, Langbein S, et al. (2004) Cytotoxicity of cisplatin in bladder cancer is significantly enhanced by application of bcl-2 antisense oligonucleotides. Urol Oncol 22(3):188–192PubMedGoogle Scholar
  10. 10.
    Kitada S, Miyashita T, Tanaka S, et al. (1993) Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev 3(2):157–169PubMedGoogle Scholar
  11. 11.
    Ziegler A, Luedke GH, Fabbro D, et al. (1997) Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J Natl Cancer Inst 89(14):1027–1036PubMedCrossRefGoogle Scholar
  12. 12.
    Yamanaka K, Rocchi P, Miyake H, et al. (2005) A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells. Mol Cancer Ther 4(11):1689–1698PubMedCrossRefGoogle Scholar
  13. 13.
    Kausch I, Jiang H, Thode B, et al. (2005) Inhibition of bcl-2 enhances the efficacy of chemotherapy in renal cell carcinoma. Eur Urol 47(5):703–709PubMedCrossRefGoogle Scholar
  14. 14.
    Zangemeister-Wittke U, Leech SH, Olie RA, et al. (2000) A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 6(6):2547–2555PubMedGoogle Scholar
  15. 15.
    Gautschi O, Tschopp S, Olie RA, et al. (2001) Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 93(6):463–471PubMedCrossRefGoogle Scholar
  16. 16.
    Simoes-Wust AP, Schurpf T, Hall J, et al. (2002) Bcl-2/bcl-xL bispecific antisense treatment sensitizes breast carcinoma cells to doxorubicin, paclitaxel and cyclophosphamide. Breast Cancer Res Treat 76(2):157–166PubMedCrossRefGoogle Scholar
  17. 17.
    Reed JC, Stein C, Subasinghe C, et al. (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50(20):6565–6570PubMedGoogle Scholar
  18. 18.
    Leicht DT, Balan V, Kaplun A, et al. (2007) Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta 1773(8):1196–1212PubMedCrossRefGoogle Scholar
  19. 19.
    Monia BP, Johnston JF, Geiger T, et al. (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2(6):668–675PubMedCrossRefGoogle Scholar
  20. 20.
    Monia BP (1999) Anti-tumor activity of C-raf antisense – correction. Nat Med 5(2):127PubMedCrossRefGoogle Scholar
  21. 21.
    Lau QC, Brusselbach S, Muller R (1998) Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 16(14):1899–1902PubMedCrossRefGoogle Scholar
  22. 22.
    McPhillips F, Mullen P, Monia BP, et al. (2001) Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 85(11):1753–1758PubMedCrossRefGoogle Scholar
  23. 23.
    Lau QC, Achenbach TV, Borchers O, et al. (2002) In vivo pro-apoptotic and antitumor efficacy of a c-Raf antisense phosphorothioate oligonucleotide: relationship to tumor size. Antisense Nucleic Acid Drug Dev 12(1):11–20PubMedCrossRefGoogle Scholar
  24. 24.
    Geiger T, Muller M, Monia BP, et al. (1997) Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice. Clin Cancer Res 3(7):1179–1185PubMedGoogle Scholar
  25. 25.
    Mullen P, McPhillips F, MacLeod K, et al. (2004) Antisense oligonucleotide targeting of Raf-1: importance of raf-1 mRNA expression levels and raf-1-dependent signaling in determining growth response in ovarian cancer. Clin Cancer Res 10(6):2100–2108PubMedCrossRefGoogle Scholar
  26. 26.
    Monia BP (1997) First- and second-generation antisense oligonucleotide inhibitors targeted against human c-raf kinase. Ciba Found Symp 209:107–119; discussion 119–123PubMedGoogle Scholar
  27. 27.
    Datta D, Flaxenburg JA, Laxmanan S, et al. (2006) Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the development of human breast cancer. Cancer Res 66(19):9509–9518PubMedCrossRefGoogle Scholar
  28. 28.
    Khosravi-Far R, White MA, Westwick JK, et al. (1996) Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 16(7):3923–3933PubMedGoogle Scholar
  29. 29.
    Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348(6297):125–132PubMedCrossRefGoogle Scholar
  30. 30.
    Davie JR, Samuel SK, Spencer VA, et al. (1999) Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol 77(4):265–275PubMedCrossRefGoogle Scholar
  31. 31.
    Zwartkruis FJ Bos JL (1999) Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res 253(1):157–165PubMedCrossRefGoogle Scholar
  32. 32.
    Cowsert LM (1997) In vitro and in vivo activity of antisense inhibitors of ras: potential for clinical development. Anticancer Drug Des 12(5):359–371PubMedGoogle Scholar
  33. 33.
    Shen YM, Yang XC, Yang C, et al. (2008) Enhanced therapeutic effects for human pancreatic cancer by application K-ras and IGF-IR antisense oligodeoxynucleotides. World J Gastroenterol 14(33):5176–5185PubMedCrossRefGoogle Scholar
  34. 34.
    Liao Y, Tang ZY, Liu KD, et al. (1997) Apoptosis of human BEL-7402 hepatocellular carcinoma cells released by antisense H-ras DNA – in vitro and in vivo studies. J Cancer Res Clin Oncol 123(1):25–33PubMedCrossRefGoogle Scholar
  35. 35.
    Vignot S, Soria JC, Spano JP, et al. (2008) Protein kinases C: a new cytoplasmic target. Bull Cancer 95(7):683–689PubMedGoogle Scholar
  36. 36.
    Dean NM, McKay R (1994) Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 91(24):11762–11766PubMedCrossRefGoogle Scholar
  37. 37.
    Dean NM, McKay R, Condon TP, et al. (1994) Inhibition of protein kinase C-alpha expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters. J Biol Chem 269(23):16416–16424PubMedGoogle Scholar
  38. 38.
    McGraw K, McKay R, Miraglia L, et al. (1997) Antisense oligonucleotide inhibitors of isozymes of protein kinase C: in vitro and in vivo activity, and clinical development as anti-cancer therapeutics. Anticancer Drug Des 12(5):315–326PubMedGoogle Scholar
  39. 39.
    Yazaki T, Ahmad S, Chahlavi A, et al. (1996) Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C-alpha phosphorothioate oligodeoxynucleotide. Mol Pharmacol 50(2):236–242PubMedGoogle Scholar
  40. 40.
    Shen L, Glazer RI (1998) Induction of apoptosis in glioblastoma cells by inhibition of protein kinase C and its association with the rapid accumulation of p53 and induction of the insulin-like growth factor-1-binding protein-3. Biochem Pharmacol 55(10):1711–1719PubMedCrossRefGoogle Scholar
  41. 41.
    Lin SB, Wu LC, Huang SL, et al. (2000) In vitro and in vivo suppression of growth of rat liver epithelial tumor cells by antisense oligonucleotide against protein kinase C-alpha. J Hepatol 33(4):601–608PubMedCrossRefGoogle Scholar
  42. 42.
    Elbashir SM, Martinez J, Patkaniowska A, et al. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20(23): 6877–6888PubMedCrossRefGoogle Scholar
  43. 43.
    Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184PubMedCrossRefGoogle Scholar
  44. 44.
    Akar U, Chaves-Reyez A, Barria M, et al. (2008) Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4(5):669–679PubMedGoogle Scholar
  45. 45.
    Hao JH, Gu QL, Liu BY, et al. (2007) Inhibition of the proliferation of human gastric cancer cells SGC-7901 in vitro and in vivo using Bcl-2 siRNA. Chin Med J (Engl) 120(23): 2105–2111Google Scholar
  46. 46.
    Ocker M, Neureiter D, Lueders M, et al. (2005) Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut 54(9):1298–1308PubMedCrossRefGoogle Scholar
  47. 47.
    Kunze D, Wuttig D, Fuessel S, et al. (2008) Multitarget siRNA inhibition of antiapoptotic genes (XIAP, BCL2, BCL-X(L)) in bladder cancer cells. Anticancer Res 28(4B):2259–2263PubMedGoogle Scholar
  48. 48.
    Leng Q, Mixson AJ (2005) Small interfering RNA targeting Raf-1 inhibits tumor growth in vitro and in vivo. Cancer Gene Ther 12(8):682–690PubMedCrossRefGoogle Scholar
  49. 49.
    Culmsee C, Gasser E, Hansen S, et al. (2006) Effects of Raf-1 siRNA on human cerebral microvascular endothelial cells: a potential therapeutic strategy for inhibition of tumor angiogenesis. Brain Res 1125(1):147–154PubMedCrossRefGoogle Scholar
  50. 50.
    Bhindi R, Fahmy RG, Lowe HC, et al. (2007) Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol 171(4):1079–1088PubMedCrossRefGoogle Scholar
  51. 51.
    Quayle SN, Mawji NR, Wang J, et al. (2007) Androgen receptor decoy molecules block the growth of prostate cancer. Proc Natl Acad Sci USA 104(4):1331–1336PubMedCrossRefGoogle Scholar
  52. 52.
    Azuma H, Tomita N, Sakamoto T, et al. (2008) Marked regression of liver metastasis by combined therapy of ultrasound-mediated NF kappaB-decoy transfer and transportal injection of paclitaxel, in mouse. Int J Cancer 122(7):1645–1656PubMedCrossRefGoogle Scholar
  53. 53.
    Laguillier C, Hbibi AT, Baran-Marszak F, et al. (2007) Cell death in NF-kappaB-dependent tumour cell lines as a result of NF-kappaB trapping by linker-modified hairpin decoy oligonucleotide. FEBS Lett 581(6):1143–1150PubMedCrossRefGoogle Scholar
  54. 54.
    Gill JS, Zhu X, Moore MJ, et al. (2002) Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials 23(13):2773–2781PubMedCrossRefGoogle Scholar
  55. 55.
    Stull RA, Szoka FC, Jr. (1995) Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res 12(4):465–483PubMedCrossRefGoogle Scholar
  56. 56.
    Soundararajan S, Chen W, Spicer EK, et al. (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68(7): 2358–2365PubMedCrossRefGoogle Scholar
  57. 57.
    Luzi E, Papucci L, Schiavone N, et al. (2003) Downregulation of bcl-2 expression in lymphoma cells by bcl-2 ARE-targeted modified, synthetic ribozyme. Cancer Gene Ther 10(3):201–208PubMedCrossRefGoogle Scholar
  58. 58.
    Dorai T, Olsson CA, Katz AE, et al. (1997) Development of a hammerhead ribozyme against bcl-2. I. Preliminary evaluation of a potential gene therapeutic agent for hormone-refractory human prostate cancer. Prostate 32(4):246–258PubMedCrossRefGoogle Scholar
  59. 59.
    Dorai T, Goluboff ET, Olsson CA, et al. (1997) Development of a hammerhead ribozyme against BCL-2. II. Ribozyme treatment sensitizes hormone-resistant prostate cancer cells to apoptotic agents. Anticancer Res 17(5A):3307–3312PubMedGoogle Scholar
  60. 60.
    Giannini CD, Roth WK, Piiper A, et al. (1999) Enzymatic and antisense effects of a specific anti-Ki-ras ribozyme in vitro and in cell culture. Nucleic Acids Res 27(13): 2737–2744PubMedCrossRefGoogle Scholar
  61. 61.
    Scherr M, Grez M, Ganser A, et al. (1997) Specific hammerhead ribozyme-mediated cleavage of mutant N-ras mRNA in vitro and ex vivo. Oligoribonucleotides as therapeutic agents. J Biol Chem 272(22):14304–14313PubMedCrossRefGoogle Scholar
  62. 62.
    Leirdal M, Sioud M (1999) Ribozyme inhibition of the protein kinase C alpha triggers apoptosis in glioma cells. Br J Cancer 80(10):1558–1564PubMedCrossRefGoogle Scholar
  63. 63.
    Sioud M, Sorensen DR (1998) A nuclease-resistant protein kinase C alpha ribozyme blocks glioma cell growth. Nat Biotechnol 16(6):556–561PubMedCrossRefGoogle Scholar
  64. 64.
    Krieg AM (2000) Immune effects and mechanisms of action of CpG motifs. Vaccine 19(6):618–622PubMedCrossRefGoogle Scholar
  65. 65.
    Carpentier AF (2005) Cancer immunotherapy with CpG-ODN. Med Sci (Paris) 21(1):73–77Google Scholar
  66. 66.
    Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184PubMedCrossRefGoogle Scholar
  67. 67.
    Sledz CA, Holko M, de Veer MJ, et al. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5(9):834–839PubMedCrossRefGoogle Scholar
  68. 68.
    Jackson AL, Burchard J, Leake D, et al. (2006) Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA 12(7):1197–1205CrossRefGoogle Scholar
  69. 69.
    Fisher AA, Ye D, Sergueev DS, et al. (2002) Evaluating the specificity of antisense oligonucleotide conjugates. A DNA array analysis. J Biol Chem 277(25):22980–22984PubMedCrossRefGoogle Scholar
  70. 70.
    Webb A, Cunningham D, Cotter F, et al. (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349(9059):1137–1141PubMedCrossRefGoogle Scholar
  71. 71.
    Waters JS, Webb A, Cunningham D, et al. (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 18(9):1812–1823PubMedGoogle Scholar
  72. 72.
    Marcucci G, Byrd JC, Dai G, et al. (2003) Phase 1 and pharmacodynamic studies of G3139, a Bcl-2 antisense oligonucleotide, in combination with chemotherapy in refractory or relapsed acute leukemia. Blood 101(2):425–432PubMedCrossRefGoogle Scholar
  73. 73.
    Marcucci G, Stock W, Dai G, et al. (2005) Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 23(15):3404–3411PubMedCrossRefGoogle Scholar
  74. 74.
    Moore J, Seiter K, Kolitz J, et al. (2006) A Phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res 30(7):777–783PubMedCrossRefGoogle Scholar
  75. 75.
    O‘Brien SM, Cunningham CC, Golenkov AK, et al. (2005) Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23(30):7697–7702PubMedCrossRefGoogle Scholar
  76. 76.
    O‘Brien S, Moore JO, Boyd TE, et al. (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25(9):1114–1120PubMedCrossRefGoogle Scholar
  77. 77.
    Chi KN, Gleave ME, Klasa R, et al. (2001) A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 7(12):3920–3927PubMedGoogle Scholar
  78. 78.
    Tolcher AW, Kuhn J, Schwartz G, et al. (2004) A Phase I pharmacokinetic and biological correlative study of oblimersen sodium (genasense, g3139), an antisense oligonucleotide to the bcl-2 mRNA, and of docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 10(15):5048–5057PubMedCrossRefGoogle Scholar
  79. 79.
    Tolcher AW (2001) Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin Oncol 28(4 Suppl 15):67–70PubMedCrossRefGoogle Scholar
  80. 80.
    Tolcher AW, Chi K, Kuhn J, et al. (2005) A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 11(10):3854–3861PubMedCrossRefGoogle Scholar
  81. 81.
    Morris MJ, Tong WP, Cordon-Cardo C, et al. (2002) Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 8(3):679–683PubMedGoogle Scholar
  82. 82.
    Liu G, Kolesar J, McNeel DG, et al. (2008) A phase I pharmacokinetic and pharmacodynamic correlative study of the antisense Bcl-2 oligonucleotide g3139, in combination with carboplatin and paclitaxel, in patients with advanced solid tumors. Clin Cancer Res 14(9):2732–2739PubMedCrossRefGoogle Scholar
  83. 83.
    Rheingold SR, Hogarty MD, Blaney SM, et al. (2007) Phase I Trial of G3139, a bcl-2 antisense oligonucleotide, combined with doxorubicin and cyclophosphamide in children with relapsed solid tumors: a Children’s Oncology Group Study. J Clin Oncol 25(12):1512–1518PubMedCrossRefGoogle Scholar
  84. 84.
    Marshall J, Chen H, Yang D, et al. (2004) A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 15(8):1274–1283PubMedCrossRefGoogle Scholar
  85. 85.
    Margolin K, Synold TW, Lara P, et al. (2007) Oblimersen and alpha-interferon in metastatic renal cancer: a phase II study of the California Cancer Consortium. J Cancer Res Clin Oncol 133(10):705–711PubMedCrossRefGoogle Scholar
  86. 86.
    Mita MM, Ochoa L, Rowinsky EK, et al. (2006) A phase I, pharmacokinetic and biologic correlative study of oblimersen sodium (Genasense, G3139) and irinotecan in patients with metastatic colorectal cancer. Ann Oncol 17(2):313–321PubMedCrossRefGoogle Scholar
  87. 87.
    Rudin CM, Otterson GA, Mauer AM, et al. (2002) A pilot trial of G3139, a bcl-2 antisense oligonucleotide, and paclitaxel in patients with chemorefractory small-cell lung cancer. Ann Oncol 13(4):539–545PubMedCrossRefGoogle Scholar
  88. 88.
    Rudin CM, Kozloff M, Hoffman PC, et al. (2004) Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22(6):1110–1117PubMedCrossRefGoogle Scholar
  89. 89.
    Rudin CM, Salgia R, Wang X, et al. (2008) Randomized phase II Study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 26(6):870–876PubMedCrossRefGoogle Scholar
  90. 90.
    Jansen B, Wacheck V, Heere-Ress E, et al. (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356(9243):1728–1733PubMedCrossRefGoogle Scholar
  91. 91.
    Bedikian AY, Millward M, Pehamberger H, et al. (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24(29):4738–4745PubMedCrossRefGoogle Scholar
  92. 92.
    Stevenson JP, Yao KS, Gallagher M, et al. (1999) Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J Clin Oncol 17(7):2227–2236PubMedGoogle Scholar
  93. 93.
    O‘Dwyer PJ, Stevenson JP, Gallagher M, et al. (1999) c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS 5132 (CGP 69846A). Clin Cancer Res 5(12):3977–3982PubMedGoogle Scholar
  94. 94.
    Cunningham CC, Holmlund JT, Schiller JH, et al. (2000) A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 6(5):1626–1631PubMedGoogle Scholar
  95. 95.
    Rudin CM, Holmlund J, Fleming GF, et al. (2001) Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 7(5):1214–1220PubMedGoogle Scholar
  96. 96.
    Cripps MC, Figueredo AT, Oza AM, et al. (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada Clinical Trials Group Study. Clin Cancer Res 8(7):2188–2192PubMedGoogle Scholar
  97. 97.
    Tolcher AW, Reyno L, Venner PM, et al. (2002) A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 8(8):2530–2535PubMedGoogle Scholar
  98. 98.
    Coudert B, Anthoney A, Fiedler W, et al. (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur J Cancer 37(17):2194–2198PubMedCrossRefGoogle Scholar
  99. 99.
    Oza AM, Elit L, Swenerton K, et al. (2003) Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol Oncol 89(1):129–133PubMedCrossRefGoogle Scholar
  100. 100.
    Rudin CM, Marshall JL, Huang CH, et al. (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin Cancer Res 10(21):7244–7251PubMedCrossRefGoogle Scholar
  101. 101.
    Dritschilo A, Huang CH, Rudin CM, et al. (2006) Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 12(4):1251–1259PubMedCrossRefGoogle Scholar
  102. 102.
    Cunningham CC, Holmlund JT, Geary RS, et al. (2001) A Phase I trial of H-ras antisense oligonucleotide ISIS 2503 administered as a continuous intravenous infusion in patients with advanced carcinoma. Cancer 92(5):1265–1271PubMedCrossRefGoogle Scholar
  103. 103.
    Adjei AA, Dy GK, Erlichman C, et al. (2003) A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin Cancer Res 9(1):115–123PubMedGoogle Scholar
  104. 104.
    Alberts SR, Schroeder M, Erlichman C, et al. (2004) Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. J Clin Oncol 22(24):4944–4950PubMedCrossRefGoogle Scholar
  105. 105.
    Villalona-Calero MA, Ritch P, Figueroa JA, et al. (2004) A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 10(18 Pt 1):6086–6093PubMedCrossRefGoogle Scholar
  106. 106.
    Yuen A, Halsey J, Fisher G, et al. (2001) Phase I/II trial of ISIS 3521, an antisense inhibitor of PKC-alpha, with carboplatin and paclitaxel in non-small cell lung cancer. Proc Am Soc Clin Oncol 20:309aGoogle Scholar
  107. 107.
    Lynch T, Raju R, Lind M, et al. (2003) Randomized phase III trial of chemotherapy and antisense oligonucleotide LY900003 (ISIS 3521) in patients with advanced NSCLC: Initial report. Proc Am Soc Clin Oncol 22:623Google Scholar
  108. 108.
    Yuen AR, Halsey J, Fisher GA, et al. (1999) Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5(11):3357–3363PubMedGoogle Scholar
  109. 109.
    Advani R, Peethambaram P, Lum BL, et al. (2004) A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 100(2):321–326PubMedCrossRefGoogle Scholar
  110. 110.
    Grossman SA, Alavi JB, Supko JG, et al. (2005) Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-alpha delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro Oncol 7(1):32–40PubMedCrossRefGoogle Scholar
  111. 111.
    Advani R, Lum BL, Fisher GA, et al. (2005) A phase I trial of aprinocarsen (ISIS 3521/LY900003), an antisense inhibitor of protein kinase C-alpha administered as a 24-hour weekly infusion schedule in patients with advanced cancer. Invest New Drugs 23(5):467–477PubMedCrossRefGoogle Scholar
  112. 112.
    Mani S, Rudin CM, Kunkel K, et al. (2002) Phase I clinical and pharmacokinetic study of protein kinase C-alpha antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin Cancer Res 8(4):1042–1048PubMedGoogle Scholar
  113. 113.
    Nemunaitis J, Holmlund JT, Kraynak M, et al. (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 17(11):3586–3595PubMedGoogle Scholar
  114. 114.
    Rao S, Watkins D, Cunningham D, et al. (2004) Phase II study of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C alpha, in patients with previously treated low-grade non-Hodgkin’s lymphoma. Ann Oncol 15(9):1413–1418PubMedCrossRefGoogle Scholar
  115. 115.
    Ritch P, Rudin CM, Bitran JD, et al. (2006) Phase II study of PKC-alpha antisense oligonucleotide aprinocarsen in combination with gemcitabine and carboplatin in patients with advanced non-small cell lung cancer. Lung Cancer 52(2):173–180PubMedCrossRefGoogle Scholar
  116. 116.
    Vansteenkiste J, Canon JL, Riska H, et al. (2005) Randomized phase II evaluation of aprinocarsen in combination with gemcitabine and cisplatin for patients with advanced/metastatic non-small cell lung cancer. Invest New Drugs 23(3):263–269PubMedCrossRefGoogle Scholar
  117. 117.
    Paz-Ares L, Douillard JY, Koralewski P, et al. (2006) Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 24(9):1428–1434PubMedCrossRefGoogle Scholar
  118. 118.
    Weng DE, Masci PA, Radka SF, et al. (2005) A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 4(6):948–955PubMedCrossRefGoogle Scholar
  119. 119.
    Body JJ, Greipp P, Coleman RE, et al. (2003) A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 97(3 Suppl):887–892PubMedCrossRefGoogle Scholar
  120. 120.
    Veis DJ, Sorenson CM, Shutter JR, et al. (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75(2):229–240PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anne Laure Ramon
    • 1
    • 2
  • Claude Malvy
    • 1
  1. 1.CNRS UMR 8121Vectorologie et Transfert de gènesVillejuifFrance
  2. 2.CNRS UMR 8612Physicochimie, Pharmacotechnie et BiopharmacieChâtenay-MalabryFrance

Personalised recommendations