Advertisement

Monoclonal Antibody Therapy for Hematologic Malignancies

  • Kenneth A. Foon
  • Michael Boyiadzis
  • Samuel A. Jacobs
Chapter
Part of the Macromolecular Anticancer Therapeutics book series (CDD&D)

Abstract

Monoclonal antibodies are a new class of agents that target tumor-associated antigens. Advances in hybridoma technologies in the early 1980s allowed the creation of monoclonal antibodies with high specificity in addition to the development of monoclonal antibodies that can be linked to anticancer drugs, radioisotopes, or toxins. Several cancer-specific monoclonal antibodies have received approval by the United States Food and Drug Administration (FDA) and many more are currently under clinical investigation. This review summarizes the monoclonal antibodies either approved by the FDA or in development for the treatment of hematologic malignancies. Rituximab, which targets the CD20 antigen, has revolutionized the treatment of B-cell lymphoma. The standard of care for front-line treatment of follicular center cell lymphoma and diffuse large B-cell lymphomas, which are the predominate two lymphomas in the Western world, is rituximab combined with chemotherapy. Second-generation anti-CD20 monoclonal antibodies are currently being studied in phase II and III trials. Radioimmunotherapy with anti-CD20 antibodies has also been approved by the FDA for the second-line treatment of follicular lymphoma. Additional antibodies and immunoconjugates targeting a variety of B-cell-associated antigens are also in the clinic for hematologic malignancies including antibodies targeting CD22, CD23, CD80, CD40, CD30, CD4, CD37, CD74, CTLA-4, VEGF, and the insulin-like growth factor 1 receptor. We believe that many of these monoclonal antibodies and immunoconjugates will become standard of care for a variety of hematologic malignancies.

Keywords

Vascular Endothelial Growth Factor Follicular Lymphoma Mantle Cell Lymphoma Complete Response Rate Gemtuzumab Ozogamicin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ABC

Activated B-cell-like

ADCC

Antibody-dependent cytoxicity

CDC

Complement-dependent cytoxicity

CR

Complete response

CTLA-4

Cytoxic T lymphocyte antigen-4

DLBCL

Diffuse large B-cell lymphoma

ECOG

Eastern Cooperative Oncology Group

US FDA

United States Food and Drug Administration

FL

Follicular lymphoma

FLIPI

Follicular Lymphoma International Prognostic Index

GCB

Germinal Center B-cell

131I

131iodine

MTD

Maximum tolerated dose

NHL

Non-Hodgkin lymphoma

NK

Natural killer

PR

Partial response

RIT

Radioimmunotherapy

SWOG

Southwest Oncology Group

VEGF

Vascular endothelial growth factor

90Y

90yttrium

References

  1. 1.
    Cartron G, Watier H, Golay J, Solal-Celigny P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 2004;104:2635–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Golay JT, Clark EA, Beverley PC. The CD20 (Bp35) antigen is involved in activation of B cells from the G0 to the G1 phase of the cell cycle. J Immunol 1985;135:3795–801.PubMedGoogle Scholar
  3. 3.
    IDEC Pharmaceuticals. Yttrium-[90] ibritumomab tiuxetan (Zevalin™; IDEC-Y2B8) radioimmunotherapy regimen. Investigational Brochure Edition 6. 2001.Google Scholar
  4. 4.
    Reff ME, Carner K, Chambers KS et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994;83:435–45.PubMedGoogle Scholar
  5. 5.
    Golay J, Lazzari M, Facchinetti V et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cel chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001;98:3383–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Golay J, Zaffaroni L, Vaccari T et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 2000;95:3900–8.PubMedGoogle Scholar
  7. 7.
    Treon SP, Mitsiades C, Mitsiades N et al. Tumor cell expression of CD59 is associated with resistance to CD20 serotherapy in patients with B-cell malignancies. J Immunother 2001;24(3):263–71.CrossRefGoogle Scholar
  8. 8.
    Cartron G, Dacheaux L, Salles G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FeYRIIIa gene. Blood 2002;99:754–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003;21:3940–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Weng WK, Levy R. Rituximab-induced antibody-dependent cellular cytotoxicity (ADCC) in follicular non-Hodgkin’s lymphoma. Blood 2002;100 (Abstract).Google Scholar
  11. 11.
    Kaufmann H, Rafiq K, Wohrer S et al. Antitumor activity of rituximab plus thalidomide in patients with relapsed/refractory mantle cell lymphoma. Blood 2004;104(8):2269–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Bonavida B. Rituximab-induced inhibition of antiapoptotic cell survival pathways: implications in chemo immunoresistance, rituximab unresponsiveness, prognostic and novel therapeutic interventions. Oncogene 2007;26(25):3629–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Byrd JC, Kitada S, Flinn IW et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 2002;99(3):1038–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Chan HT, Hughes D, French RR et al. CD20-induced lymphoma cell death is independent of both caspases and its redistribution into tritonX-100 insoluale membrane rafts. Cancer Res 2003;63(17):5480–9.PubMedGoogle Scholar
  15. 15.
    van der Kolk LE, Evers LM, Omene CL et al. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia 2002;16(9):1735–44.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaminski MS, Estes J, Zasadny KR et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000;96:1259–66.PubMedGoogle Scholar
  17. 17.
    Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR. Preclinical evaluation of 90Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin’s lymphoma. Int J Oncol 1999;15:1017–25.PubMedGoogle Scholar
  18. 18.
    Johnston PB, Bondly C, Micallef I. Ibritumomab tiuxetan for non-Hodgkin’s lymphoma. Expert Rev Anticancer Ther 2006;6(6):861–9.PubMedCrossRefGoogle Scholar
  19. 19.
    White CA. Radioimmunotherapy in non-Hodgkin’s lymphoma: focus on 90Y-ibritumomab tiuxetan (Zevalin®). J Exp Ther Oncol 2004;4:305–16.PubMedGoogle Scholar
  20. 20.
    Jacobs SA, Harrison AM, Swerdlow SH et al. Cellular localization pattern of yttrium 90 (90Y) ibritumomab tiuxetan (Zevalin®) in a patient with low-grade non-Hodgkin’s lymphoma (NHL). Blood 2004;104(11) (Abstract).Google Scholar
  21. 21.
    Lossos IS, Levy R. Higher-grade transformation of follicle center lymphoma is associated with somatic mutation of the 5' noncoding regulatory region of the BCL-6 gene. Blood 2000;96(2):635–9.PubMedGoogle Scholar
  22. 22.
    Korsmeyer SJ. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 1992;80(4):879–86.PubMedGoogle Scholar
  23. 23.
    Solal-Céligny P, Roy P, Colombat P et al. Follicular lymphoma international prognostic index. Blood 2004 September 1;104(5):1258–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Küppers R. Prognosis in follicular lymphoma–It’s in the microenvironment. N Engl J Med 2004;351(21):2152–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Dave SS, Wright G, Tan B et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004;351(21):2159–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Fisher RI, LeBlanc M, Press OW, Maloney DG, Unger JM, Miller TP. New treatment options have changed the survival of patients with follicular lymphoma. J Clin Onco 2005;23(33):8447–52.CrossRefGoogle Scholar
  27. 27.
    Maloney DG, Grillo-Lopez AJ, Bodkin DJ et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J Clin Oncol 1997;15(10):3266–74.PubMedGoogle Scholar
  28. 28.
    McLaughlin P, Grillo-Lopez AJ, Link BK et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998;16(8):2825–33.PubMedGoogle Scholar
  29. 29.
    Piro LD, White CA, Grillo-Lopez AJ et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1999;10(6):655–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Ghielmini M, Schmitz SFH, Cogliatti SB et al. Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly × 4 schedule. Blood 2004;103(12):4416–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Colombat P, Salles G, Brousse N et al. Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood 2001;97(1):101–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Witzig TE, Vukov AM, Habermann TM et al. Rituximab therapy for patients with newly diagnosed, advanced-stage, follicular grade I non-Hodgkin’s lymphoma: a phase II trial in the North Central Cancer Treatment Group. J Clin Oncol 2005;23(6):1103–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Hainsworth JD,Litchy S, Burris HA III et al. Rituximab as first-line and maintenance therapy for patients with indolent non-hodgkin’s lymphoma. J Clin Oncol 2002;20(20):4261–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Hainsworth JD, Burris HA III, Morissey LH et al. Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non-Hodgkin lymphoma. Blood 2000;95(10):3052–6.PubMedGoogle Scholar
  35. 35.
    Gordan LN, Grow WB, Pusateri A, Douglas V, Mendenhall NP, Lynch JW. Phase II trial of individualized rituximab dosing for patients with CD20-positive lymphoproliferative disorders. J Clin Oncol 2005;23(6):1096–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaminski MS, Estes J, Tuck M, Ross CW, Wahl RL. I131-tositumomab monotherapy as frontline treatment for follicular lymphoma: updated results after a median follow-up of 8 years. J Clin Oncol 2007;25(18S) (Abstract).Google Scholar
  37. 37.
    Kaminski MS, Tuck M, Estes J et al. 131I-Tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 2005;352:441–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Czuczman M, Grillo-Lopez AJ, McLaughlin P, White CA. Clearing of cells bearing the bcl-2 [t(14; 18)] translocation from blood and marrow of patients treated with rituximab alone or in combination with CHOP chemotherapy. Ann Oncol 2001;12:109–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-Lopez AJ. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol 2004;22(23):4711–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Czuczman MS, Koryzna A, Mohr A et al. Rituximab in combination with fludarabine chemotherapy in low-grade or follicular lymphoma. J Clin Oncol 2005;23(4):694–704.PubMedCrossRefGoogle Scholar
  41. 41.
    Forstpointner R, Dreyling M, Repp R et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2004;104(10):3064–71.PubMedCrossRefGoogle Scholar
  42. 42.
    Forstpointner R, Unterhalt M, Dreyling M et al. Maintenance therapy with rituximab leads to a significant prolongation of response duration after salvage therapy with a combination of rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) in patients with recurring and refractory follicular and mantle call lymphomas: results of a prospective randomized study of the German Low Grade Lymphoma Study Group (GLSG). Blood 2006;108(13):4003–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Hochster H, Weller E, Gascoyne R et al. Maintenance rituximab after cyclophosphamide, vincristine, and prednisone prolongs-free survival in advanced indolent lymphoma: results after randomized phase III ECOG 1496 study. J Clin Oncol 2009; 27:1607–14.CrossRefGoogle Scholar
  44. 44.
    Hochster HS, Weller E, Gascoyne RD et al. Maintenance rituximab after CVP results in Superior Clinical Outcome in Advanced Follicular Lymphoma (FL): results of the E1496 phase III trial from the Eastern Cooperative Oncology Group and the Cancer and Leukemia Group B. Blood 2005;106(11), 106a.Google Scholar
  45. 45.
    Marcus R, Imrie K, Belch A et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood 2005;105(4):1417–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Hiddemann W, Kneba M, Dreyling M et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 2005;106(12):3725–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Press OW, Unger JM, Braziel RM et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: 5-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol 2006 September 1;24(25):4143–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Leonard JP, Coleman M, Kostakoblu L et al. Abbreviated chemotherapy with fludarabine followed by tositumomab and iodine I 131 tositumomab for untreated follicular lymphoma. J Clin Oncol 2005 August 20;23(24):5696–704.PubMedCrossRefGoogle Scholar
  49. 49.
    Link B, Kaminski MS, Coleman M, Leonard JP. Phase II study of CVP followed by tositumomab and iodine I 131 tositumomab (Bexxar therapeutic regimen) in patients with untreated follicular non-Hodgkin’s lymphoma (NHL). J Clin Oncol 2004;22(14S) (Abstract).Google Scholar
  50. 50.
    Shipley DL, Spigel DR, Carrell DL, Dannaher C, Greco FA, Hainsworth JD. Phase II trial of rituximab and short duration chemotherapy followed by 90Y-ibritumomab tiuxetan as first-line treatment for patients with follicular lymphoma: a Minnie Pearl Cancer Research Network phase II trial. J Clin Oncol 2004 July 15;22(14S) (Abstract).Google Scholar
  51. 51.
    Zinzani PL, Pulsoni A, Balocco M, et al. A Phase II trial of FM (oral fludarabine and mitoxantrone) chemotherapy followed by yttrium 90 (90Y) ibritumomab tiuxetan (Zevalin®) for previously untreated follicular lymphoma (FL) patients. Blood 2006;108(11)(Abstract).Google Scholar
  52. 52.
    Jacobs SA, Swerdlow SH, Kant J et al. Phase II trial of short course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma Clin Cancer Res 2008;14:7008–94.Google Scholar
  53. 53.
    Juweid ME, Stroobants S, Hoekstra OS et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 2007;25(5):571–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheson BD, Pfistner B, Juweid ME et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007;25(5):579–86.PubMedCrossRefGoogle Scholar
  55. 55.
    van Oers MHJ, Klasa R, Marcus RE et al. Rituximab maintenance improves clinical outcome of relapsed-resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood 2006;108(10):3295–301.PubMedCrossRefGoogle Scholar
  56. 56.
    Harris NL, Jaffe ES, Diebold J et al. The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November, 1997. Mod Pathol 2000;13(2):193–207.PubMedCrossRefGoogle Scholar
  57. 57.
    World Health Organization. Classification of tumours, pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon, France: IARC Press; 2001.Google Scholar
  58. 58.
    Mollejo M, Menarguez J, Lloret E et al. Splenic marginal zone lymphoma: a distinctive type of low-grade B-cell lymphoma. A clinicopathological study of 13 cases. Am J Surg Pathol 1995;19(10):1146–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Conconi A, Martinelli G, Thieblemont C et al. Clinical activity of rituximab in extranodal marginal zone B-cell lymphoma of MALT type. Blood 2003;102(8):2741–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Kalpadakis C, Pangalis GA, Dimopoulou MN et al. Rituximab monotherapy is highly effective in splenic marginal zone lymphoma. Hematol Oncol 2007;COI: 10.1002/hon.820.Google Scholar
  61. 61.
    Lehy MF, Seymour JF, Hicks RJ, Turner JH. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin’s lymphoma. J Clin Oncol 2006 September 20;24(27):4418–25.CrossRefGoogle Scholar
  62. 62.
    Swerdlow SH, Habeshaw JA, Murray LJ, Dhaliwal HS, Lister TA. Centrocytic lymphoma: a distinct clinicopathologic and immunologic entity. A multiparameter study of 18 cases at diagnosis and relapse. Am J Path 1983;113(2):181–97.PubMedGoogle Scholar
  63. 63.
    Lardelli P, Bookman MA, Sundeen J, Longo DL, Jaffe ES. Lymphocytic lymphoma of intermediate differentiation. Morphologic and immunophenotypic spectrum and clinical correlations. Am J Surg Pathol 1990;14(8):752–63.PubMedCrossRefGoogle Scholar
  64. 64.
    Hiddemann W, Unterhalt M, Herrmann R et al. Mantle-cell lymphomas have more widespread disease and a slower response to chemotherapy compared with follicle-center lymphomas: results of a prospective comparative analysis of the German Low-Grade Lymphoma Study Group. J Clin Oncol 1998;16(5):1922–30.PubMedGoogle Scholar
  65. 65.
    Velders GA, Kluin-Nelemans JC, DeBoer CJ et al. Mantle-cell lymphoma: a population-based clinical study. J Clin Onco 1996;14(4):1269–74.Google Scholar
  66. 66.
    Aratoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 1997;89(6):2067–78.Google Scholar
  67. 67.
    Majlis A, Pugh WC, Rodriguez MA, Benedict WF, Cabanillas F. Mantle cell lymphoma: correlation of clinical outcome and biologic features with three histologic variants. J Clin Onco 1997;15(4):1664–71.Google Scholar
  68. 68.
    Ghielmini M, Hsu Schmitz SF. The effect of rituximab on patients with follicular and mantle-cell lymphoma. Ann Oncol 2000;11:S123–6.CrossRefGoogle Scholar
  69. 69.
    Foran JM, Rohatiner A, Cunningham D et al. European phase II study of rituximab (chimeric anti-CD20 monoclonal antibody) for patients with newly diagnosed mantle-cell lymphoma and previously treated mantle-cell lymphoma, immunocytoma, and small B-cell lymphocytic lymphoma. J Clin Onco 2000;18(2):317–24.Google Scholar
  70. 70.
    Howard OM, Gribben JG, Neuberg DS et al. Rituximab and CHOP induction therapy for newly diagnosed mantle-cell lymphoma: molecular complete responses are not predictive of progression-free survival. J Clin Oncol 2002;10(5):1288–94.CrossRefGoogle Scholar
  71. 71.
    Kaufmann H, Rafiq K, Woehrer S et al. Brief report: antitumor activity of rituximab plus thalidomide in patients with relapsed/refractory mantle cell lymphoma. Blood 2004;104:2269–71.PubMedCrossRefGoogle Scholar
  72. 72.
    Khouri IF, Romaguera JE, Katarjian H et al. Hyper-CVAD and high-dose methotrexate/cytarabine followed by stem-cell transplantation: an active regimen for aggressive mantle-cell lymphoma. J Clin Onco 1998;16(12):3803–9.Google Scholar
  73. 73.
    Romaguera JE, Fayad L, Rodriguez MA et al. Rituximab plus bypercvad (R-HCVAD) alternating with rituximab plus high-dose methotrexate-cytarabine (R-M/A) in untreated mantle cell lymphoma (MCL): prolonged follow-up confirms high rates of failure-free survival (FFS) and overall survival (OS). Blood 2004;104: (Abstract 128).Google Scholar
  74. 74.
    Galimberti S, Palumbo GA, Caracciolo F et al. The efficacy of rituximab plus hyper-CVAD regimen in mantle cell lymphoma is independent of FCgammaRIIIa and FCgammaRIIa polymorphisms. J Chemother 2007;19(3):315–21.PubMedGoogle Scholar
  75. 75.
    Oki Y, Pro B, Delpassand E et al. A Phase II study of yttrium 90 (90Y) ibritumomab tiuxetan (Zevalin®) for treatment of patients with relapsed and refractory mantle cell lymphoma (MCL). Blood 2004 November 16;104(11): (Abstract 2632).Google Scholar
  76. 76.
    Armitage J, Weisenburger D. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. J Clin Oncol 1998;16:2780.PubMedGoogle Scholar
  77. 77.
    Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346:1937–47.PubMedCrossRefGoogle Scholar
  78. 78.
    Hans CP, Weisenburger DD, Greiner TC et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004;103(1):275–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Coiffier B, Haioun C, Ketterer N et al. Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 1998;92(6):1927–32.PubMedGoogle Scholar
  80. 80.
    Coiffier B, Lepage E, Briere J et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346(4):235–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Feugier P, Hoof AV, Sebban C et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d-Etude des Lymphomes de I‘Adulte. J Clin Concol 2005;23(18):4117–26.CrossRefGoogle Scholar
  82. 82.
    Mounier N, Briere J, Gisselbrecht C et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2–associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma. Blood 2003;101(11):4279–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Habermann TM, Weller EA, Morrison VA et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 2006;24(19):3121–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Pfreundschuh M, Trumper L, Osterborg A et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006;7(5):379–91.PubMedCrossRefGoogle Scholar
  85. 85.
    Wilson WH, Frankel SR, Drbohlav N et al. Phase II study of dose-adjusted EPOCH-rituximab in untreated high risk large B-cell lymphomas. Proc Am Soc Clin Oncol 2001;20 (Abstract).Google Scholar
  86. 86.
    Kewalramani T, Zelenetz A. Rituximab significantly increases the complete response rate in patients with relapsed or primary refractory DLBCL receiving ICE as second-line therapy (SLT). Blood 2001;98:346a.Google Scholar
  87. 87.
    Harting R, Venugopal P, Gregory SA, O‘Brien T, Bogdanova E. Efficacy and safety of rituximab combined with ESHAP chemotherapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Clin Lymphoma Myeloma 2007;7(6): 406–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Gordon LI, Witzig TE, Emmanouilides CE et al. 90Y ibritumomab (Zevalin) in aggressive non-Hodgkin’s lymphoma: analysis of response and toxicity. Proc Am Soc Clin Oncol 2002;21 (Abstract).Google Scholar
  89. 89.
    Morschhauser F, Illidge T, Huglo D et al. Efficacy and safety of yttrium-90 ibritumomab tiuxetan in patients with relapsed or refractory diffuse large B-cell lymphoma not appropriate for autologous stem-cell transplantation. Blood 2007;110(1):54–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Byrd JC, Murghy T, Howard RS et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol 2001;19(8):2153–64.PubMedGoogle Scholar
  91. 91.
    O‘Brien S, Kantarjian H, Beran M et al. Results of fludarabine and prednisone therapy in 264 patients with chronic lymphocytic leukemia with multivariate analysis-derived prognostic model for response to treatment. Blood 1993;82(6):1695–700.PubMedGoogle Scholar
  92. 92.
    Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (Rituximab, IDEC-C2B8). Blood 1999;94:2217–24.PubMedGoogle Scholar
  93. 93.
    O‘Brien SM, Kantarjian H, Thomas DA et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Onco 2001;19(8):2165–70.Google Scholar
  94. 94.
    Keating MJ, O‘Brien S, Kantarjian H et al. Long-term follow-up of patients with chronic lymphocytic leukemia treated with fludarabine as a single agent. Blood 1993;81(11): 2878–84.PubMedGoogle Scholar
  95. 95.
    Rai KR, Peterson BL, Appelbaum FR et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med 2000;343(24):1750–7.PubMedCrossRefGoogle Scholar
  96. 96.
    DiGaetano N, Xiao Y, Erba E et al. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol 2001;114(4):800–9.CrossRefGoogle Scholar
  97. 97.
    Wierda W, O‘Brien S, Wen S et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 2005;23(18):4070–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Wierda WG, O‘Brien S, Faderl S et al. Combined cyclophosphamide, fludarabine, alemtuzumab, and rituximab (CFAR), an active regimen for heavily treated patients with CLL. Blood 2006;108 (Abstract).Google Scholar
  99. 99.
    Keating MJ, O‘Brien S, Albitar M et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005;23(18):4079–88.PubMedCrossRefGoogle Scholar
  100. 100.
    Tam CS, O‘Brien S, Wierda W, Lerner H, Kantarjian H, Keating MJ. Seventy percent of complete responders remain in continuous remission: 5-year follow-up of 300 patients treated with fludarabine, cyclophosphamide, and rituximab (FCR) as initial therapy of CLL. J Clin Oncol 2007;25(18S) (Abstract).Google Scholar
  101. 101.
    Byrd JC, Peterson BL, Morrison VA et al. Randomized phase 2 study of fludarabine with concurrent versus sequential treatment with rituximab in symptomatic, untreated patients with B-cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B. Blood 2003;101(1):6–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Foon KA, Boyiadzis M, Land S, et al. Chemoimmunotherapy with low dose fludarabine and cyclophosphamide and high dose rituximab (FCR-Lite) in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol 2009;27:498–503.Google Scholar
  103. 103.
    Kay NE, Geyer SM, Call TG et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood 2007;109(2): 405–11.PubMedCrossRefGoogle Scholar
  104. 104.
    Cheson BD, Bennett JM, Grever M et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 2007;87(12):4990–7.Google Scholar
  105. 105.
    Rawstron AC, Kennedy B, Evans PA et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001;98(1):29–35.PubMedCrossRefGoogle Scholar
  106. 106.
    Moreno C, Villamor N, Colomer D et al. Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood 2006;107(11):4563–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Nabhan C, Coutre S, Hillmen P. Minimal residual disease in chronic lymphocytic leukaemia: is it ready for primetime? Br J Haematol 2007;136(3):379–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Witzig TE, Gordon LI, Cabaniallas F, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B cell non-Hodgkin’s lymphoma. J Clin Oncol 2002;20:2453–63.PubMedCrossRefGoogle Scholar
  109. 109.
    Witzig TE, Flinn IW, Gordon LI et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 2002;20:3262–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Kaminski MS, Estes J, Zasadny KR, et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 2000;96:1259–66.PubMedGoogle Scholar
  111. 111.
    Kaminski MS, Zelenetz AD, Press UW, et al. Pivotal study of iodine I131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B cell non-Hodgkin’s lymphomas. J Clin Oncol 2001;19: 3918–28.PubMedGoogle Scholar
  112. 112.
    Kaminski MJ, Tuck M, Ester J, et al. 131I-tositumomab therapy as initial treatment for follicular lymphomas. N Engl J Med 2005;352:441–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Keating MJ, Flinn J, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002;99:3554–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1 h) as first-line treatment for patients with B cell chronic lymphocytic leukemia (B-CLL). Blood 2002;100:768–73.PubMedCrossRefGoogle Scholar
  115. 115.
    Hillman P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol 2007;25:5616–23.CrossRefGoogle Scholar
  116. 116.
    Keating MJ, Cazin B, Courte S, et al. Campath-1H treatment of T cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 2002;20:205–13.PubMedCrossRefGoogle Scholar
  117. 117.
    Lundin J, Hagber H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fungoides/Sezary syndrome. Blood 2003;101:4267–72.PubMedCrossRefGoogle Scholar
  118. 118.
    Fenton C, Perry CM: Gemtuzumab ozogamicin: a review of its use in acute myeloid leukemia. Drugs 2005;65:2405–27.PubMedCrossRefGoogle Scholar
  119. 119.
    Pagano L, Fianchi L, Caira M, et al. The role of gemtuzumab ozogamicin in the treatment of acute myeloid leukemia patients. Oncogene 2007;26:3679–90.PubMedCrossRefGoogle Scholar
  120. 120.
    McKoy JM, Angellota C, Giles, FJ, et al. Gemtuzumab ozogamicin-associated sinsusoidal obstructive syndrome (sos): an overview from the research on adverse drug events and reports (radar) project. Leuk Res 2007; 31:599–604.PubMedCrossRefGoogle Scholar
  121. 121.
    Wadleigh M, Richardson PG, DeAngelo DJ, et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003;102:1578–82.PubMedCrossRefGoogle Scholar
  122. 122.
    Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004;104:1793–800.PubMedCrossRefGoogle Scholar
  123. 123.
    Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006;177:362–71.PubMedGoogle Scholar
  124. 124.
    Dechant M, Teeling JL, Beyer T, et al. Noval fully human CD20 antibodies with different mechanisms of action. Blood 2003;102:103a (Abstract 349).Google Scholar
  125. 125.
    Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood 2008;111:5486.PubMedCrossRefGoogle Scholar
  126. 126.
    Coiffier B, Lepretre S, Pedersen LM, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study. Blood 2008;111:1094–100.PubMedCrossRefGoogle Scholar
  127. 127.
    Weng WK, and Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 2003;21(21):3940–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Dörken B, Moldenhauer G, Pezzutto A, Schwartz R, Feller A, Kiesel S et al. HD39 (B3), a B lineage-restricted antigen whose cell surface expression is limited to resting and activated human B lymphocytes. J Immunol 1986;136:4470–9.PubMedGoogle Scholar
  129. 129.
    Leonard JP and Goldenberg DM. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene 2007;26:3704–13.PubMedCrossRefGoogle Scholar
  130. 130.
    Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR et al. Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol 2003;21:3051–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase I/II clinical trial results. Clin Cancer Res 2005;10:5327–34.CrossRefGoogle Scholar
  132. 132.
    Stein R, Qu Z, Chen S, Rosario A, Horak ID, Hansen HJ et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin’s lymphoma. Clin Cancer Res 2004;10:2868–78.PubMedCrossRefGoogle Scholar
  133. 133.
    Strauss SJ, Morschhauser F, Rech J, Repp R, Solal-Celigny P, Zinzani PL et al. Multicenter phase-II trial of immunotherapy with humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol 2006;24:3880–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Siegel JA, Goldenberg DM, Sharkey RM. Tumor and organ dosimetry for I-131 LL2 (EPB2) monoclonal antibody in patients with B-cell lymphomas. Antibod Immunconjugates Radiopharm 1991;4:649–54.Google Scholar
  135. 135.
    Murthy S, Sharkey RM, Goldenberg DM, Lee RE, Pinsky CM, Hansen HJ et al. Lymphoma imaging with a new technetium-99m labeled antibody, LL2. Eur J Nucl Med 1992;19: 394–401.PubMedCrossRefGoogle Scholar
  136. 136.
    Becker WS, Behr TM, Cumme F, Rossler W, Wendler J, Kern PM et al. 67 Ga citrate versus 99mTc-labeled LL2-Fab' (anti-CD22) fragments in the staging of B-cell non-Hodgkin’s lymphoma. Cancer Res 1995;55:5771–3s.PubMedGoogle Scholar
  137. 137.
    Lamonica D, Czuczman M, Nabi H, Klippenstein D, Grossman Z. Radioimmuno-scintigraphy (RIS) with bectumomab (Tc99m labeled IMMU-LL2, Lymphoscan) in the assessment of recurrent non-Hodgkin’s lymphoma (NHL). Cancer Biother Radiopharm 2002;17:689–97.PubMedCrossRefGoogle Scholar
  138. 138.
    Vose JM, Colcher D, Gobar L, Bierman PJ, Augustine S, Tempero M et al. Phase I/II trial of multiple dose 131I-MAb LL2 (CD22) in patients with recurrent non-Hodgkin’s lymphoma. Leuk Lymphoma 2000;38:91–101.PubMedGoogle Scholar
  139. 139.
    Behr TM, Wörmann B, Gramatzki M, Riggert J, Gratz S, Behe M et al. Low-versus high-dose radioimmunotherapy with humanized anti-CD22 or chimeric anti-CD20 antibodies in a broad spectrum of B-cell associated malignancies. Clin Cancer Res 1999;5:3304–14s.PubMedGoogle Scholar
  140. 140.
    Chatal J-F, Harousseau J-L, Griesinger F. (2005). Fractionated radioimmunotherapy in NHL with DOTA-conjugated, humanized anti-CD22 epratuzumab at high cumulative 90Y doses [Abstract 447]. Proc Soc Nucl Med, 52nd Annual Meeting, 155P.Google Scholar
  141. 141.
    Postema EJ, Raemaekers JMM, Oyen WJG, Boerman OC, Mandigers CMPW, Goldenberg DM, vanDongen GAMS, Corstens FHM. Final results of a phase I radioimmunotherapy trial using 186Re-epratuzumab for the treatment of patients with non-Hodgkin’s lymphoma. Clin Cancer Res 2003;9:3995–4002s.PubMedGoogle Scholar
  142. 142.
    Lee M, Dunne T, Chang C, et al. Calicheamicins, a novel family of antibiotics. 4: structural elucidations of calicheamicins. J AM Chem Soc 1992;114:985–7.CrossRefGoogle Scholar
  143. 143.
    Zein N, Sinha A, McGahren W. Ellestad G. Calicheamicin γI: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988;240:1198–201.PubMedCrossRefGoogle Scholar
  144. 144.
    Moyron-Quiroz JE, Partida-Sanchez S., Donis-Hernandez R, Sandoval-Montes C, Santos-Argumedo L. Expression and function of CD22, a B-cell restricted molecule. Scand J Immunol 2002;55:343–351.PubMedCrossRefGoogle Scholar
  145. 145.
    Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol 1997;15:481–504.PubMedCrossRefGoogle Scholar
  146. 146.
    Hanna R, Ong GL, Mattes MJ. Processing of antibodies bound to B-cell lymphomas and other hematological malignancies. Cancer Res 1996;56:3062–8.PubMedGoogle Scholar
  147. 147.
    Shan D, Press OW. Constitutive endocytosis and degradation of CD22 by human B cells. J Immunol 1995;154:4466–75.PubMedGoogle Scholar
  148. 148.
    DiJoseph JF, Armellino DC, Boghaert ER, et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004;103(5):1807–14.PubMedCrossRefGoogle Scholar
  149. 149.
    Advani A, Gine E, Patel H, et al. Preliminary report of a phase 1 study of CMC-544, an antibody-targeted chemotherapy agent, in patients with B-cell non-Hodgkin’s lymphoma (NHL). Blood 2005;106:(Abstract 230).Google Scholar
  150. 150.
    Kreitman RJ, Squires DR, Pastan I, et al. Phase 1 trial of recombinant immunotoxin RFB4 (dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol 2005;23:6719–29.PubMedCrossRefGoogle Scholar
  151. 151.
    Pathan N, Chu P, Scales L, et al. IDEC-152 (anti-CD23) induced apoptosis in CLL cells is mediated by caspase activation and downmodulation of anti-apoptotic proteins. Blood 2002;100:803a, #3170.Google Scholar
  152. 152.
    Pathan N, Zou A, Wynne D, et al. Lumiliximab (IDEC-152) an anti-CD23 antibody, induces apoptosis in vitro and in vivo in CLL cells. Blood 2003;102:438a–1596.Google Scholar
  153. 153.
    Pathan NI, Chu P, Hariharan K, et al. Mediation of apoptosis by and antitumor activity of lumiliximab in chronic lymphocytic leukemia cells and CD23 + lymphoma cell lines. Blood 2008;111:1594–602.PubMedCrossRefGoogle Scholar
  154. 154.
    Byrd JC, O’Brien S, Harris S, et al. Phase 1 study of lumiliximab with detailed pharmacokinetics and pharmacodynamic measurements in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2007;13(15):4448–55.PubMedCrossRefGoogle Scholar
  155. 155.
    Byrd JC, Castro J, Molina A, et al. Comparison of results from a phase 1/2 study of lumiliximab (anti-CD23) in combination with FCR for patients with relapsed CLL with published FCR results. Blood ASH Annual Meeting 2006;108:Abstract 32.Google Scholar
  156. 156.
    Teeling JL, French RR, Gragg MS, van den Brakel J, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004;104:1793–800.PubMedCrossRefGoogle Scholar
  157. 157.
    Coyle AJ, Gutierrez-Ramos JC. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T-cell function. Nat Immunol 2001;2:203–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Chambers CA, Allison JP: Costimulatory regulation of T cell function. Curr Opin Cell Biol 1999;11:203–210.PubMedCrossRefGoogle Scholar
  159. 159.
    Suvas S, Singh V, Sahdev S, et al. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem 2002;277:7766–75.PubMedCrossRefGoogle Scholar
  160. 160.
    Plumas J, Chaperot L, Jacob M-C, et al. Malignant B lymphocytes from non-Hodgkin’s lymphoma induced allogeneic proliferative and cytotoxic T cell responses in primary mixed lymphocyte cultures: an important role of costimulatory molecules CD80 (B7-1) and CD86 (B7-2) in stimulation by tumor cells. Eur J Immunol 1995;25:3332–341.PubMedCrossRefGoogle Scholar
  161. 161.
    Vyth-Dreese FA, Boot H, Dellemign TA, et al. Localization in situ of costimulatory molecules and cytokines in B-cell non-Hodgkin’s lymphoma. Immunology 1998;94:580–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Dorfman DM, Schultze JL, Shahsafaei A, et al. In vivo expression of B7-1 and B7-2 by follicular lymphoma cells can prevent induction of T-cell energy but is insufficient to induce significant T-cell proliferation. Blood 1997;90:4297–306.PubMedGoogle Scholar
  163. 163.
    Gottlieb AB, Kang S, Totoritis MC, et al. Evaluation of safety and clinical activity of multiple doses of the anti-CD80 monoclonal antibody, galiximab, in patients with moderate to severe plaque psoriasis. Clin Immunol 2004;111:28–37.PubMedCrossRefGoogle Scholar
  164. 164.
    Czuczman MS, Thall A, Leigh BR, et al. Phase I/II study of galiximab, an anti-CD80 antibody for relapsed or refractory follicular lymphoma. J Clin Oncol 2005;23:4390–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998;16:111–35.PubMedCrossRefGoogle Scholar
  166. 166.
    Aruffo A, Farrington M, Hollenbaugh D, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 1993;72:291–300.PubMedCrossRefGoogle Scholar
  167. 167.
    Costello RT, Gastaut JA, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol Today 1999;20:488–93.PubMedCrossRefGoogle Scholar
  168. 168.
    Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925–35.PubMedCrossRefGoogle Scholar
  169. 169.
    Funakoshi S, Longo DL, Beckwith M, et al. Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 1994;83:2787–94.PubMedGoogle Scholar
  170. 170.
    Szocinski JL, Khaled AR, Hixon J, et al. Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of bax. Blood 2002;100:217–23.PubMedCrossRefGoogle Scholar
  171. 171.
    Wang D, Freeman GJ, Levine H, et al. Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br J Haematol 1997;97:409–17.PubMedCrossRefGoogle Scholar
  172. 172.
    Law CL, Gordon KA, Collier J, Klussman K, et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005;65:8331–8.PubMedCrossRefGoogle Scholar
  173. 173.
    Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 2000;55:15–35.PubMedGoogle Scholar
  174. 174.
    Gitay-Goren H, Sokert S, Vlodasky I, Neufeld G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 1992;267:6093–8.PubMedGoogle Scholar
  175. 175.
    Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 1997;386:488–93.PubMedCrossRefGoogle Scholar
  176. 176.
    Ziegler BL, Valtieri M, Porada A, et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 1999;285:1553–8.PubMedCrossRefGoogle Scholar
  177. 177.
    Dias S, Hattori K, Zhu Z, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest 2000;106:511–21.PubMedCrossRefGoogle Scholar
  178. 178.
    Gerber H-P, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Bellamy WR, Richter L, Sirjani D, et al. Vascular endothelial cell growth factor is an autocrine promoter of abnormal immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood 2001;97:1427–34.PubMedCrossRefGoogle Scholar
  180. 180.
    Dias S, Shmelkov SV, Lam G, Rafii S. VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 2002;99:2532–40.PubMedCrossRefGoogle Scholar
  181. 181.
    Padro T, Bieker R, Ruiz S, et al. Overexpression of vascular endothelial growth factor (VEGF) and its cellular receptor KDR(VEGFR-2) in the bone marrow of patients with acute myeloid leukemia. Leukemia 2002;16:1302–10.PubMedCrossRefGoogle Scholar
  182. 182.
    Fiedler W, Graeven U, Ergun S, et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood 1997;89:1870–5.PubMedGoogle Scholar
  183. 183.
    Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000;95:309–15.PubMedGoogle Scholar
  184. 184.
    Gabrilove JL, White K, Rahman Z, Wilson EL. Stem cell factor and basic fibroblast growth factor are synergistic in augmenting committed myeloid progenitor cell growth. Blood 1994;83:907–10.PubMedGoogle Scholar
  185. 185.
    Bikfalvi A, Han ZC. Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia 1994;8:523–9.PubMedGoogle Scholar
  186. 186.
    Dias S, Choy M, Alitalo K, Rafi S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemia cell proliferation, survival and resistance to chemotherapy. Blood 2002;99:2179–84.PubMedCrossRefGoogle Scholar
  187. 187.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II randomized trial comparing bevacizumab plus fluorouracil(FU)/leukovorin(LV) with FU/LV alone in patients with metastatic colon cancer. J Clin Oncol 2003;21:60–5.PubMedCrossRefGoogle Scholar
  188. 188.
    Karp JE, Gojo I, Pili R, Gocke CD, et al. Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-β-D-arabinofuranosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 2004;10: 3577–85.PubMedCrossRefGoogle Scholar
  189. 189.
    Gaulberto A, Alsina M, Lacy MQ, et al. Inhibition of the insulin like growth factor1 receptor by a specific monoclonal antibody in multiple myeloma. J Clin Oncol 2005;23:203a, (Abstract 3048).Google Scholar
  190. 190.
    Bataile R. Robillard N, Avet-Loiseau H, et al. CD221 (IGF-IR) is aberrantly expressed in multiple myeloma, in relation to disease severity. Haematologica 2005;90:706–7.Google Scholar
  191. 191.
    Chng WJ, Gualberto A, Fonseca R. IGF-IR is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia 2006;20:174–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Standal T, Borset M, Lenhoff S, et al. Serum insulin-like growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor. Blood 2002;100:3925–39.PubMedCrossRefGoogle Scholar
  193. 193.
    Freund GG, Kulas DT, Way BA, et al. Functional insulin and insulin-like growth factor-1 receptors are preferentially expressed in multiple myeloma cells lines as compared to B-lymphoblastoid cell lines. Cancer Res 1994;54:3179–85.PubMedGoogle Scholar
  194. 194.
    Georgii-Hemming P, Wiklund HJ, Ljuggren O, et al. Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 1996;88:2250–8.PubMedGoogle Scholar
  195. 195.
    Freund GG, Kulas DT, Mooney RA. Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple yeloma cell line. RPMI 8226. J Immunol 1993;151;1811–20.PubMedGoogle Scholar
  196. 196.
    Jelinek DF, Witzig TE, Arendt BK. A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol 1997;159:487–96.PubMedGoogle Scholar
  197. 197.
    Xu F, Gardner A, Tu Y, et al. Multiple myeloma cells are protected against dexamnethasone-induced apoptosis by insulin-like growth factors. Br J Haematol 1997;97:429–40.PubMedCrossRefGoogle Scholar
  198. 198.
    Ferlin M, Noraz N, Hertogh C, et al. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol 2000;111:626–34.PubMedCrossRefGoogle Scholar
  199. 199.
    Vanderkerken K, Asosingh K, Braet F, et al. Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood 1999;93:235–41.PubMedGoogle Scholar
  200. 200.
    Araki K, Sangai T, Miyamoto S, et al. Inhibition ligand-specific antibody suppresses the growth of human multiple myeloma in the human adult bone explanted in NOD/SCID mouse. Int J Cancer 2006;118:2602–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Wu, KD, Zhou L, Burtrum D, et al. Antibody targeting of the insulin-like growth factor I receptor enhances the anti-tumor response of multiple myeloma to chemotherapy through inhibition of tumor proliferation and angiogenesis. Cancer Immunol Immunother 2007;56:343–57.PubMedCrossRefGoogle Scholar
  202. 202.
    Menu E, Jernberg-Wiklund H, Stromberg T, et al. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 2006;107:655–60.PubMedCrossRefGoogle Scholar
  203. 203.
    Lacy MQ, Alsina M, Gaulberto A, et al. Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 receptor monoclonal antibody CP-751, 871 in patients with multiple myeloma. J Clin Oncol 2008;26:3196–202.PubMedCrossRefGoogle Scholar
  204. 204.
    Rider DA, Havenith CE, de Ridder R, et al. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res 2007;67(20):9945–53.PubMedCrossRefGoogle Scholar
  205. 205.
    Skov L, Kragballe K, Zachariae C, et al. HuMax-CD4: a fully human monoclonal anti-CD4 antibody for the treatment of psoriasis vulgaris. Arch Dermatol 2003;139:1433–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Orbitz E, et al. HuMax-CD4, a fully human monoclonal antibody: early results of an ongoing phase II trial in cutaneous T cell lymphoma (CTCL). Blood (ASH Annual Meeting Abstracts). 2003;102(11).Google Scholar
  207. 207.
    d’Amore F, Relander T, Hagberg H, et al. HuMax-CD4 (Zanolimumab), a fully human monoclonal antibody: early results of an ongoing clinical trial in CD4+ peripheral T-cell lymphoma of non-cutaneous type. Blood (ASH Meeting Abstracts). 2005;106:3354.Google Scholar
  208. 208.
    Freeman SD, Kelm S, Barber EK, et al. Characterization of CD33 as a new member of the sialoadhesion family of cellular interaction molecules. Blood 1995;85:2005–12.PubMedGoogle Scholar
  209. 209.
    Cornish AL, Freeman S, Forbes G, et al. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 1988;92:2133–2.Google Scholar
  210. 210.
    Vitale C, Romagnani C, Puccetti A, et al. Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc Natl Acad Sci USA 2001;98:5764–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Jilani I, Estey E, Huh Y, et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol 2002;118:560–6.PubMedCrossRefGoogle Scholar
  212. 212.
    Caron PC, Co MS, Bull MK, et al. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 1992;52:6761–7.PubMedGoogle Scholar
  213. 213.
    Vitale C, Romagnani C, Falco M, et al. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci USA 96:5091–6.Google Scholar
  214. 214.
    Caron PC, Jurcic JC, Scott AM, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenecity. Blood 1994;83:1760–8.PubMedGoogle Scholar
  215. 215.
    Feldman E, Kalaycio M, Weiner G, et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 2003;17:314–8.PubMedCrossRefGoogle Scholar
  216. 216.
    Feldman EJ, Brandwein J, Scheinberg D, et al. Phase III randomized multicenter study of a humanized anti-CD33 monoclonal antibody, lintuzumab, in combination with chemotherapy, versus chemotherapy alone in patients with refractory or first-relapsed acute myeloid leukemia. J Clin Oncol 2005;23:4110–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Stirewalt DI, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003;3:650–65.PubMedCrossRefGoogle Scholar
  218. 218.
    Li Y, Li H, Wang MN, et al. Suppression of leukemia expressing wild-type or ITD-mutant FLT3 receptor by a fully human anti-FLT3 neutralizing antibody. Blood 2004;104: 1137–44.PubMedCrossRefGoogle Scholar
  219. 219.
    Piloto O, Levis M, Huso D, et al. Inhibitory anti-FLT3 antibodies are capable of mediating antibody-dependent cell-mediated cytotoxicity and reducing engraftment of acute myelogenous leukemia blasts in nonobese diabetic/severe combined immunodeficient mice. Cancer Res 2005;65:1514–22.PubMedCrossRefGoogle Scholar
  220. 220.
    Gruss HJ, Herrmann F. CD30 ligand, a member of the TNF ligand superfamily, with growth and activation control CD30+ lymphoid and lymphoma cells. Leuk Lymphoma 1996; 20397–409.Google Scholar
  221. 221.
    Chiarle R, Podda A, Ihghirami G, et al. CD30 in normal and neoplastic cells. Clin Immunol 1999;90:157–64.PubMedCrossRefGoogle Scholar
  222. 222.
    Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol 1998;10:457–70.PubMedCrossRefGoogle Scholar
  223. 223.
    Pizzolo G, Romagnani S. CD30 molecule (Ki-1 Ag): more than just a marker of CD30+ lymphoma. Haematologica 1995;14:135–43.Google Scholar
  224. 224.
    Wahl AF, Klussman K, Thompson JD, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkins disease. Cancer Res 2002;62:3736–42.PubMedGoogle Scholar
  225. 225.
    Tian ZG, Longo DL, Funakoshi S, et al. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res 1995;55:5335–41.PubMedGoogle Scholar
  226. 226.
    Bartlett NL, Younes A, Barton, J, et al. A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30 + hematologic malignancies. Blood 2008;111:1848–54.PubMedCrossRefGoogle Scholar
  227. 227.
    Oi VT, Morrison SL. Chimeric antibodies. Biotechniques 1986;4:214.Google Scholar
  228. 228.
    Knox, SJ, Levy R, Reichert T, et al. Observations on the effect of chimeric anti-CD4 monoclonal antibody in patients with mycosis fungoides. Blood 1991;77:20–30.PubMedGoogle Scholar
  229. 229.
    Ledbetter, JA. In: McMichael A (ed.), Leukocyte Typing III. Oxford, Oxford University Press, 1987;339–40.Google Scholar
  230. 230.
    Matza D, Wolstein O, Dikstein R, Shachar I. Invariant chain induces B cell maturation by activating a TAF(II)105-NF-kappaB-dependent transcription program. J Biol Chem 2001;276:27203–6.PubMedCrossRefGoogle Scholar
  231. 231.
    Ong GL, Goldenberg DM, Hansen HJ, Mattes MJ. Cell surface expression and metabolism of major histocompatibility complex class II invariant chain (CD74) by diverse cell lines. Immunology 1999;98:296–302.PubMedCrossRefGoogle Scholar
  232. 232.
    Hansen HJ, Ong GL, Diril H, et al. Internalization and catabolism of radiolabelled antibodies to the MHC class-II invariant chain by B-cell lymphomas. Biochem J 1996;320:293–300.PubMedGoogle Scholar
  233. 233.
    Roche PA, Teletski CL, Stang E, et al. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA 1993;90:8581–5.PubMedCrossRefGoogle Scholar
  234. 234.
    Stein R, Qu Z, Cardillo TM, et al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood 2004;104:3705–11.PubMedCrossRefGoogle Scholar
  235. 235.
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515–48.PubMedCrossRefGoogle Scholar
  236. 236.
    Korman A, Yellin M, Keler T. Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr Opin Investig Drugs 2005;6:582–91.PubMedGoogle Scholar
  237. 237.
    Peggs KS, Quezada SA, Korman AJ, et al. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 2006;18:206–13.PubMedCrossRefGoogle Scholar
  238. 238.
    Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25+CD24+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen. J Exp Med 2000;192:303–10.PubMedCrossRefGoogle Scholar
  239. 239.
    Read S, Malmstrom V, Powrie F. Cytoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD24+ regulatory cells that control intestinal inflammation. J Exp Med 2000;192:295–302.PubMedCrossRefGoogle Scholar
  240. 240.
    Linsley PS, Greene JL, Brady W, et al. Human B7-1 (CD80) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994;1:792–801.CrossRefGoogle Scholar
  241. 241.
    Collins AV, Brodie DW, Gilbert RJ, et al. The interaction properties of costimulatory molecules revisited. Immunity 2002;17:201–10.PubMedCrossRefGoogle Scholar
  242. 242.
    Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23–5.PubMedCrossRefGoogle Scholar
  243. 243.
    Egen JG, Kuhns MS, Allison JP:. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002;3:611–8.PubMedCrossRefGoogle Scholar
  244. 244.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996;271:1734–6.PubMedCrossRefGoogle Scholar
  245. 245.
    Kwon ED, Hurwitz AA, Foster BA, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 1997;94:8099–103.PubMedCrossRefGoogle Scholar
  246. 246.
    Kwon ED, Foster BA, Hurwitz AA, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 1999;96:15074–9.PubMedCrossRefGoogle Scholar
  247. 247.
    Keler T, Halk E, Vitale L. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003;171:6251–9.PubMedGoogle Scholar
  248. 248.
    Canniff PC, Donovan CB, Burkwit JJ, et al. CP-675,206 anti-CTLA4 antibody clinical candidate enhances IL-2 production in cancer patient T cells in vitro regardless of tumor type or stage of disease. Am Assoc Cancer Res 2004;45:Abstract 709.Google Scholar
  249. 249.
    Hanson DC, Canniff PC, Primiano MJ, et al. Preclinical in vitro characterization on anti-CTLA4 therapeutic antibody CP-675,206. Am Assoc Cancer Res 2004;45:Abstract 3802.Google Scholar
  250. 250.
    Camacho LH, Ribas A, Glaspy JA, et al. Phase I clinical trial of anti-CTLA4 human monoclonal antibody CP-675,206 in patients (pts) with advanced solid malignancies. Am Soc Clin Oncol 2004;23:Abstract 2505.Google Scholar
  251. 251.
    Hodi FS, Mihm MC, Soiffer Rj, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003;100:4712–7.PubMedCrossRefGoogle Scholar
  252. 252.
    Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003;100:8372–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Bashey A, Medina B, Corringham S, et al. Phase I study if ipilimumab (neutralizing monoclonal anti-CTLA4 antibody) to treat relapse of malignancy after allogeneic hematopoietic stem cell transplantation: evidence of tumor regression without induction of GVHD. Blood 2006;108:125a (Abstract 410).Google Scholar
  254. 254.
    Anseil SM, Geyer SM, Hurvitz S, et al. Phase I/II study of ipilimumab (MDX-010), an anti-CTLA-4 monoclonal antibody in patients with follicular non-hodgkin lymphoma. Blood 2006;108:772a (Abstract 272a).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kenneth A. Foon
    • 1
  • Michael Boyiadzis
    • 2
    • 3
  • Samuel A. Jacobs
    • 2
    • 3
  1. 1.Department of Hematological MalignanciesNevada Cancer InstituteLas VegasUSA
  2. 2.Division of Hematology-OncologyUniversity of Pittsburgh School of MedicinePittsburghUSA
  3. 3.Department of MedicineUniversity of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations