Classification of Anticancer Drugs Based on Therapeutic Targets

  • Enrique Espinosa
  • César Gómez Raposo
Part of the Macromolecular Anticancer Therapeutics book series (CDD&D)


The arrival of a great number of new antineoplastic agents has made it necessary to reclassify all of them. Virtually any mechanism that can provide tumour cells with proliferative advantages over normal cells is being investigated in the search for active drugs. Growth factors and their receptors, intracellular metabolic pathways, pro-angiogenic molecules and many more have become potential targets.

We herein propose a classification of anticancer drugs based on the target. Drug may act at different levels: cancer cells, endothelium, extracellular matrix, the immune system and host cells. The tumour cell can be targeted at the DNA, RNA or protein level. Most classical chemotherapeutic agents interact with tumour DNA, whereas monoclonal antibodies and small targeted molecules are directed against proteins. The endothelium and extracellular matrix may also be affected by specific antibodies and small molecules.


Vascular Endothelial Growth Factor Renal Cell Carcinoma Medullary Thyroid Carcinoma Main Side Effect Cancer Immunotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



basic fibroblast growth factor


cyclin-dependent kinase 2


complementary DNA


carcinoembryonic antigen


cytotoxic T-lymphocyte-associated antigen-4


deoxyribonucleic acid


epidermal growth factor receptor


excision repair-defective complementation group 1


fibroblast growth factor receptor


granulocyte macrophage colony stimulating factor


human epidermal growth factor receptor


hypoxia inducible factor-1


high motility group 1


high motility group 2



IKK inhibitors

I-kappaB kinase inhibitors




leutinizing hormone releasing hormone


matrix metalloproteinases


messenger RNA


nuclear factor–kappaB


non-small cell lung cancer


platelet-derived endothelial growth factor


protein kinase C


ribonucleic acid


RNA interference


superoxide dismutase


signal transducers and activators of transcription


transforming growth factor


vascular endothelial growth factor


  1. 1.
    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2: 188–200PubMedGoogle Scholar
  2. 2.
    Aivado M, Schulte K, Henze L, et al. (2002) Bendamustine in the treatment of chronic lymphocytic leukemia: results and future perspectives. Semin Oncol 29: 19–22PubMedGoogle Scholar
  3. 3.
    Gandara DR, Lara PN, Jr., Goldberg Z, et al. (2002) Tirapazamine: prototype for a novel class of therapeutic agents targeting tumor hypoxia. Semin Oncol 29: 102–109PubMedGoogle Scholar
  4. 4.
    Rosell R, Cobo M, Isla D, et al. (2005) Applications of genomics in NSCLC. Lung Cancer 50 Suppl 2: S33–40Google Scholar
  5. 5.
    Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63: 158–168. DOI np990549f [pii]PubMedGoogle Scholar
  6. 6.
    Wethington SL, Wright JD, Herzog TJ (2008) Key role of topoisomerase I inhibitors in the treatment of recurrent and refractory epithelial ovarian carcinoma. Expert Rev Anticancer Ther 8: 819–831. DOI 10.1586/14737140.8.5.819, 10.1586/14737140.8.5.819 [pii]PubMedGoogle Scholar
  7. 7.
    Duncan R, Vicent MJ, Greco F, et al. (2005) Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr Relat Cancer 12 Suppl 1: S189–199. DOI 12/Supplement_1/S189 [pii], 10.1677/erc.1.01045Google Scholar
  8. 8.
    Chattopadhyay S, Moran RG, Goldman ID (2007) Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 6: 404–417. DOI 6/2/404 [pii], 10.1158/1535-7163.MCT-06-0343PubMedGoogle Scholar
  9. 9.
    Mehnert JM, Kelly WK (2007) Histone deacetylase inhibitors: biology and mechanism of action. Cancer J 13: 23–29. DOI 10.1097/PPO.0b013e31803c72ba, 00130404-200701000-00006 [pii]PubMedGoogle Scholar
  10. 10.
    Rasheed WK, Johnstone RW, Prince HM (2007) Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig Drugs 16: 659–678. DOI 10.1517/13543784.16.5.659PubMedGoogle Scholar
  11. 11.
    Libermann TA, Zerbini LF (2006) Targeting transcription factors for cancer gene therapy. Curr Gene Ther 6: 17–33PubMedGoogle Scholar
  12. 12.
    Redell MS, Tweardy DJ (2005) Targeting transcription factors for cancer therapy. Curr Pharm Des 11: 2873–2887PubMedGoogle Scholar
  13. 13.
    Van Waes C (2007) Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13: 1076–1082. DOI 13/4/1076 [pii], 10.1158/1078-0432.CCR-06-2221PubMedGoogle Scholar
  14. 14.
    Germain D, Frank DA (2007) Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 13: 5665–5669. DOI 13/19/5665 [pii], 10.1158/1078-0432.CCR-06-2491PubMedGoogle Scholar
  15. 15.
    Delaloge S, Yovine A, Taamma A, et al. (2001) Ecteinascidin-743: a marine-derived compound in advanced, pretreated sarcoma patients – preliminary evidence of activity. J Clin Oncol 19: 1248–1255PubMedGoogle Scholar
  16. 16.
    Jonasch E, Haluska FG (2001) Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6: 34–55PubMedGoogle Scholar
  17. 17.
    Gewirtz AM (2007) On future’s doorstep: RNA interference and the pharmacopeia of tomorrow. J Clin Invest 117: 3612–3614. DOI 10.1172/JCI34274PubMedGoogle Scholar
  18. 18.
    Davis TA, Grillo-Lopez AJ, White CA, et al. (2000) Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin’s lymphoma: safety and efficacy of re-treatment. J Clin Oncol 18: 3135–3143PubMedGoogle Scholar
  19. 19.
    Lundin J, Kimby E, Bjorkholm M, et al. (2002) Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100: 768–773PubMedGoogle Scholar
  20. 20.
    Vose JM, Wahl RL, Saleh M, et al. (2000) Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 18: 1316–1323PubMedGoogle Scholar
  21. 21.
    Larson RA, Boogaerts M, Estey E, et al. (2002) Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 16: 1627–1636PubMedGoogle Scholar
  22. 22.
    Roboz GJ, Knovich MA, Bayer RL, et al. (2002) Efficacy and safety of gemtuzumab ozogamicin in patients with poor-prognosis acute myeloid leukemia. Leuk Lymphoma 43: 1951–1955PubMedGoogle Scholar
  23. 23.
    Dinh P, de Azambuja E, Cardoso F, et al. (2008) Facts and controversies in the use of trastuzumab in the adjuvant setting. Nat Clin Pract Oncol 5: 645–665. DOI ncponc1219 [pii], 10.1038/ncponc1219PubMedGoogle Scholar
  24. 24.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672. DOI 353/16/1659 [pii], 10.1056/NEJMoa052306PubMedGoogle Scholar
  25. 25.
    Romond EH, Perez EA, Bryant J, et al. (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684. DOI 353/16/1673 [pii], 10.1056/NEJMoa052122PubMedGoogle Scholar
  26. 26.
    Mahtani RL, Macdonald JS (2008) Synergy between cetuximab and chemotherapy in tumors of the gastrointestinal tract. Oncologist 13: 39–50. DOI 13/1/39 [pii], 10.1634/theoncologist.2006-0049PubMedGoogle Scholar
  27. 27.
    Tabernero J, Van Cutsem E, Diaz-Rubio E, et al. (2007) Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 25: 5225–5232. DOI 25/33/5225 [pii], 10.1200/JCO.2007.13.2183PubMedGoogle Scholar
  28. 28.
    Maiello E, Giuliani F, Gebbia V, et al. (2007) Cetuximab: clinical results in colorectal cancer. Ann Oncol 18 Suppl 6: vi8–10. DOI 18/suppl_6/vi8 [pii], 10.1093/annonc/mdm216Google Scholar
  29. 29.
    Amado RG, Wolf M, Peeters M, et al. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26: 1626–1634. DOI JCO.2007.14.7116 [pii], 10.1200/JCO.2007.14.7116PubMedGoogle Scholar
  30. 30.
    Weiner LM, Belldegrun AS, Crawford J, et al. (2008) Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin Cancer Res 14: 502–508. DOI 14/2/502 [pii], 10.1158/1078-0432.CCR-07-1509PubMedGoogle Scholar
  31. 31.
    Shepherd FA, Rodrigues PJ, Ciuleanu T, et al. (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353: 123–132. DOI 353/2/123 [pii], 10.1056/NEJMoa050753PubMedGoogle Scholar
  32. 32.
    Geyer CE, Forster J, Lindquist D, et al. (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743. DOI 355/26/2733 [pii], 10.1056/NEJMoa064320PubMedGoogle Scholar
  33. 33.
    Burris HA, III, Hurwitz HI, Dees EC, et al. (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23: 5305–5313. DOI JCO.2005.16.584 [pii], 10.1200/JCO.2005.16.584PubMedGoogle Scholar
  34. 34.
    Janne PA, von Pawel J, Cohen RB, et al. (2007) Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small-cell lung cancer. J Clin Oncol 25: 3936–3944. DOI 25/25/3936 [pii], 10.1200/JCO.2007.11.1336PubMedGoogle Scholar
  35. 35.
    Hudes G, Carducci M, Tomczak P, et al. (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356: 2271–2281. DOI 356/22/2271 [pii], 10.1056/NEJMoa066838PubMedGoogle Scholar
  36. 36.
    Motzer RJ, Escudier B, Oudard S, et al. (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372: 449–456. DOI S0140-6736(08)61039-9 [pii], 10.1016/S0140-6736(08)61039-9PubMedGoogle Scholar
  37. 37.
    Brockstein B, Samuels B, Humerickhouse R, et al. (2001) Phase II studies of bryostatin-1 in patients with advanced sarcoma and advanced head and neck cancer. Invest New Drugs 19: 249–254PubMedGoogle Scholar
  38. 38.
    Richardson PG, Mitsiades C, Schlossman R, et al. (2008) Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther 8: 1053–1072. DOI 10.1586/14737140.8.7.1053PubMedGoogle Scholar
  39. 39.
    San Miguel JF, Schlag R, Khuageva NK, et al. (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359: 906–917. DOI 359/9/906 [pii], 10.1056/NEJMoa0801479PubMedGoogle Scholar
  40. 40.
    Powers MV, Workman P (2006) Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr Relat Cancer 13 Suppl 1: S125–135. DOI 13/Supplement_1/S125 [pii], 10.1677/erc.1.01324Google Scholar
  41. 41.
    McClue SJ, Blake D, Clarke R, et al. (2002) In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int J Cancer 102: 463–468PubMedGoogle Scholar
  42. 42.
    Schwartz GK, O‘Reilly E, Ilson D, et al. (2002) Phase I study of the cyclin-dependent kinase inhibitor flavopiridol in combination with paclitaxel in patients with advanced solid tumors. J Clin Oncol 20: 2157–2170PubMedGoogle Scholar
  43. 43.
    Senderowicz AM (2002) The cell cycle as a target for cancer therapy: basic and clinical findings with the small molecule inhibitors flavopiridol and UCN-01. Oncologist 7 Suppl 3: 12–19PubMedGoogle Scholar
  44. 44.
    Rose WC, Long BH, Fairchild CR, et al. (2001) Preclinical pharmacology of BMS-275183, an orally active taxane. Clin Cancer Res 7: 2016–2021PubMedGoogle Scholar
  45. 45.
    Thomas ES, Gomez HL, Li RK, et al. (2007) Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25: 5210–5217. DOI JCO.2007.12.6557 [pii], 10.1200/JCO.2007.12.6557PubMedGoogle Scholar
  46. 46.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364. DOI S0092-8674(00)80108-7 [pii]PubMedGoogle Scholar
  47. 47.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669–676. DOI 10.1038/nm0603-669, nm0603-669 [pii]PubMedGoogle Scholar
  48. 48.
    Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96: 1788–1795. DOI 6603813 [pii], 10.1038/sj.bjc.6603813PubMedGoogle Scholar
  49. 49.
    Hurwitz H, Fehrenbacher L, Novotny W, et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342. DOI 10.1056/NEJMoa032691, 350/23/2335 [pii]PubMedGoogle Scholar
  50. 50.
    Saltz LB, Clarke S, Diaz-Rubio E, et al. (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26: 2013–2019. DOI 26/12/2013 [pii], 10.1200/JCO.2007.14.9930PubMedGoogle Scholar
  51. 51.
    Sandler A, Gray R, Perry MC, et al. (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: 2542–2550. DOI 355/24/2542 [pii], 10.1056/NEJMoa061884PubMedGoogle Scholar
  52. 52.
    Melichar B, Koralewski P, Ravaud A, et al. (2008) First-line bevacizumab combined with reduced dose interferon-alpha2a is active in patients with metastatic renal cell carcinoma. Ann Oncol 19: 1470–1476. DOI mdn161 [pii], 10.1093/annonc/mdn161PubMedGoogle Scholar
  53. 53.
    Miller K, Wang M, Gralow J, et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357: 2666–2676. DOI 357/26/2666 [pii], 10.1056/NEJMoa072113PubMedGoogle Scholar
  54. 54.
    Anderson KC (2005) Lenalidomide and thalidomide: mechanisms of action – similarities and differences. Semin Hematol 42: S3–8. DOI S0037-1963(05)00203-9 [pii], 10.1053/j.seminhematol.2005.10.001Google Scholar
  55. 55.
    Rajkumar SV, Blood E, Vesole D, et al. (2006) Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol 24: 431–436. DOI JCO.2005.03.0221 [pii], 10.1200/JCO.2005.03.0221PubMedGoogle Scholar
  56. 56.
    Weber DM, Chen C, Niesvizky R, et al. (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357: 2133–2142. DOI 357/21/2133 [pii], 10.1056/NEJMoa070596PubMedGoogle Scholar
  57. 57.
    Mitsiades CS, Ocio EM, Pandiella A, et al. (2008) Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res 68: 5216–5225. DOI 68/13/5216 [pii], 10.1158/0008-5472.CAN-07-5725PubMedGoogle Scholar
  58. 58.
    Holash J, Davis S, Papadopoulos N, et al. (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99: 11393–11398. DOI 10.1073/pnas.172398299, 172398299 [pii]PubMedGoogle Scholar
  59. 59.
    Beerepoot LV, Witteveen EO, Groenewegen G, et al. (2003) Recombinant human angiostatin by twice-daily subcutaneous injection in advanced cancer: a pharmacokinetic and long-term safety study. Clin Cancer Res 9: 4025–4033PubMedGoogle Scholar
  60. 60.
    Herbst RS, Hess KR, Tran HT, et al. (2002) Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 20: 3792–3803PubMedGoogle Scholar
  61. 61.
    Demetri GD, van Oosterom AT, Garrett CR, et al. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368: 1329–1338. DOI S0140-6736(06)69446-4 [pii], 10.1016/S0140-6736(06)69446-4PubMedGoogle Scholar
  62. 62.
    Motzer RJ, Hutson TE, Tomczak P, et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115–124. DOI 356/2/115 [pii], 10.1056/NEJMoa065044PubMedGoogle Scholar
  63. 63.
    Escudier B, Eisen T, Stadler WM, et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–134. DOI 356/2/125 [pii], 10.1056/NEJMoa060655PubMedGoogle Scholar
  64. 64.
    Llovet JM, Ricci S, Mazzaferro V, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359: 378–390. DOI 359/4/378 [pii], 10.1056/NEJMoa0708857PubMedGoogle Scholar
  65. 65.
    Stupp R, Hegi ME, Gilbert MR, et al. (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25: 4127–4136. DOI 25/26/4127 [pii], 10.1200/JCO.2007.11.8554PubMedGoogle Scholar
  66. 66.
    Thomas AL, Trarbach T, Bartel C, et al. (2007) A phase IB, open-label dose-escalating study of the oral angiogenesis inhibitor PTK787/ZK 222584 (PTK/ZK), in combination with FOLFOX4 chemotherapy in patients with advanced colorectal cancer. Ann Oncol 18: 782–788. DOI mdl469 [pii], 10.1093/annonc/mdl469PubMedGoogle Scholar
  67. 67.
    Lurie SA, Arnold A, Gathier I, et al. (2006; 24:134 s, abs 3054) Final results of a phase I study of a daily oral AZD2171, an inhibitor of vascular endothelial growth factor receptors, in combination with carboplatin + paclitaxel in patients with advanced non-small cell lung cancer. Proc Am Soc Clin Oncol 134 s.Google Scholar
  68. 68.
    Nikolinakos P, Heymach JV (2008) The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thorac Oncol 3: S131–134. DOI 10.1097/JTO.0b013e318174e910, 01243894-200806001-00006 [pii]Google Scholar
  69. 69.
    Heymach JV, Johnson BE, Prager D, et al. (2007) Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non small-cell lung cancer. J Clin Oncol 25: 4270–4277. DOI 25/27/4270 [pii], 10.1200/JCO.2006.10.5122PubMedGoogle Scholar
  70. 70.
    Cohen EE, Rosen LS, Vokes EE, et al. (2008) Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 26: 4708–4713. DOI JCO.2007.15.9566 [pii], 10.1200/JCO.2007.15.9566PubMedGoogle Scholar
  71. 71.
    Sonpavde G, Hutson TE, Sternberg CN (2008) Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert Opin Investig Drugs 17: 253–261. DOI 10.1517/13543784.17.2.253PubMedGoogle Scholar
  72. 72.
    Sherman SI, Wirth LJ, Droz JP, et al. (2008) Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med 359: 31–42. DOI 359/1/31 [pii], 10.1056/NEJMoa075853PubMedGoogle Scholar
  73. 73.
    Chen YB, LaCasce AS (2008) Enzastaurin. Expert Opin Investig Drugs 17: 939–944. DOI 10.1517/13543784.17.6.939PubMedGoogle Scholar
  74. 74.
    Cooney MM, Ortiz J, Bukowski RM, et al. (2005) Novel vascular targeting/disrupting agents: combretastatin A4 phosphate and related compounds. Curr Oncol Rep 7: 90–95PubMedGoogle Scholar
  75. 75.
    Milowsky MI, Nanus DM, Kostakoglu L, et al. (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25: 540–547. DOI 25/5/540 [pii], 10.1200/JCO.2006.07.8097PubMedGoogle Scholar
  76. 76.
    Bissett D, O‘Byrne KJ, von Pawel J, et al. (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23: 842–849. DOI 23/4/842 [pii], 10.1200/JCO.2005.03.170PubMedGoogle Scholar
  77. 77.
    Stupp R, Goldbrunner R, Neyns B, et al. (2007; 25:75 s, abs 2000) Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients with newly diagnosed glioblastoma. Proc Am Soc Clin Oncol 75 s.Google Scholar
  78. 78.
    Pan Q, Kleer CG, van Golen KL, et al. (2002) Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 62: 4854–4859PubMedGoogle Scholar
  79. 79.
    Arlt MJ, Novak-Hofer I, Gast D, et al. (2006) Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. Cancer Res 66: 936–943. DOI 66/2/936 [pii], 10.1158/0008-5472.CAN-05-1818PubMedGoogle Scholar
  80. 80.
    Scott AM, Lee FT, Hopkins W, et al. (2001) Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol 19: 3976–3987PubMedGoogle Scholar
  81. 81.
    Berek JS (2004) Immunotherapy of ovarian cancer with antibodies: a focus on oregovomab. Expert Opin Biol Ther 4: 1159–1165. DOI EBT040714 [pii], 10.1517/14712598.4.7.1159PubMedGoogle Scholar
  82. 82.
    Hartmann F, Renner C, Jung W, et al. (2001) Anti-CD16/CD30 bispecific antibody treatment for Hodgkin’s disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 7: 1873–1881PubMedGoogle Scholar
  83. 83.
    Chatal JF, Campion L, Kraeber-Bodere F, et al. (2006) Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol 24: 1705–1711. DOI JCO.2005.04.4917 [pii], 10.1200/JCO.2005.04.4917PubMedGoogle Scholar
  84. 84.
    McCaffery M, Yao TJ, Williams L, et al. (1996) Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: enhanced immunogenicity when combined with adjuvant. Clin Cancer Res 2: 679–686PubMedGoogle Scholar
  85. 85.
    Kirkwood JM, Richards T, Zarour HM, et al. (2002) Immunomodulatory effects of high-dose and low-dose interferon alpha2b in patients with high-risk resected melanoma: the E2690 laboratory corollary of intergroup adjuvant trial E1690. Cancer 95: 1101–1112. DOI 10.1002/cncr.10775PubMedGoogle Scholar
  86. 86.
    Kirkwood JM, Ibrahim JG, Sosman JA, et al. (2001) High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol 19: 2370–2380PubMedGoogle Scholar
  87. 87.
    Nagler A, Ackerstein A, Or R, et al. (1997) Immunotherapy with recombinant human interleukin-2 and recombinant interferon-alpha in lymphoma patients postautologous marrow or stem cell transplantation. Blood 89: 3951–3959PubMedGoogle Scholar
  88. 88.
    Nakano H, Kishida T, Asada H, et al. (2006) Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma. J Gene Med 8: 90–99. DOI 10.1002/jgm.817PubMedGoogle Scholar
  89. 89.
    Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6: 595–601. DOI nri1901 [pii], 10.1038/nri1901PubMedGoogle Scholar
  90. 90.
    Spitler LE, Grossbard ML, Ernstoff MS, et al. (2000) Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol 18: 1614–1621PubMedGoogle Scholar
  91. 91.
    Ribas A, Butterfield LH, Glaspy JA, et al. (2003) Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 21: 2415–2432. DOI 10.1200/JCO.2003.06.041, JCO.2003.06.041 [pii]PubMedGoogle Scholar
  92. 92.
    Berd D, Sato T, Cohn H, et al. (2001) Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int J Cancer 94: 531–539. DOI 10.1002/ijc.1506 [pii]PubMedGoogle Scholar
  93. 93.
    Butts C, Murray N, Maksymiuk A, et al. (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23: 6674–6681. DOI 23/27/6674 [pii], 10.1200/JCO.2005.13.011PubMedGoogle Scholar
  94. 94.
    Krug LM, Ragupathi G, Hood C, et al. (2004) Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10: 6094–6100. DOI 10.1158/1078-0432.CCR-04-0482, 10/18/6094 [pii]PubMedGoogle Scholar
  95. 95.
    Peoples GE, Holmes JP, Hueman MT, et al. (2008) Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 14: 797–803. DOI 14/3/797 [pii], 10.1158/1078-0432.CCR-07-1448PubMedGoogle Scholar
  96. 96.
    Small EJ, Schellhammer PF, Higano CS, et al. (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24: 3089–3094. DOI 24/19/3089 [pii], 10.1200/JCO.2005.04.5252PubMedGoogle Scholar
  97. 97.
    Bystryn JC, Zeleniuch-Jacquotte A, Oratz R, et al. (2001) Double-blind trial of a polyvalent, shed-antigen, melanoma vaccine. Clin Cancer Res 7: 1882–1887PubMedGoogle Scholar
  98. 98.
    Sosman JA, Unger JM, Liu PY, et al. (2002) Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogenic tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 20: 2067–2075PubMedGoogle Scholar
  99. 99.
    Dudley ME, Wunderlich JR, Yang JC, et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23: 2346–2357. DOI 23/10/2346 [pii], 10.1200/JCO.2005.00.240PubMedGoogle Scholar
  100. 100.
    Lucas KG, Salzman D, Garcia A, et al. (2004) Adoptive immunotherapy with allogenic Epstein-Barr virus (EBV)-specific cytotoxic T-lymphocytes for recurrent, EBV-positive Hodgkin disease. Cancer 100: 1892–1901. DOI 10.1002/cncr.20188PubMedGoogle Scholar
  101. 101.
    Perez SA, Papamichail M (2008) Cancer immunotherapy: perspectives and prospects. Adv Exp Med Biol 622: 235–253PubMedGoogle Scholar
  102. 102.
    Meyer T, Stockfleth E (2008) Clinical investigations of Toll-like receptor agonists. Expert Opin Investig Drugs 17: 1051–1065. DOI 10.1517/13543784.17.7.1051PubMedGoogle Scholar
  103. 103.
    Minn AJ, Gupta GP, Siegel PM, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524. DOI nature03799 [pii], 10.1038/nature03799PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Servicio de Oncología MédicaHospital La Paz, P° de la CastellanaMadridSpain
  2. 2.Service of OncologyHospital Infanta Sofía, San Sebastián de los ReyesMadridSpain

Personalised recommendations