Skip to main content

Cognitive Systems Platforms using Open Source

  • Chapter
  • First Online:
Performance Evaluation and Benchmarking of Intelligent Systems

Abstract

This chapter reports to the development of the tools and methodologies that are in development within the EU, with an emphasis on the Open Source approaches with a view to performance analysis and comparison, and to provide an overview of cooperative research and especially on the use of Open platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a full list of past and current EU funded projects in Cognitive Systems and Robotics research, see http://cordis.europa.eu/fp7/ict/programme/challenge2_en.html

  2. 2.
  3. 3.

    MicroMouse contest. http://www.micromouseinfo.com

  4. 4.

    AAAI Robot Competition and exhibition. http://palantir.cs.colby.edu/aaai07

  5. 5.

    DARPA Grand Challenge. http://www.darpa.mil/grandchallenge

  6. 6.

    European Land-Robot Trial ELROB. http://www.elrob.org/

  7. 7.

    Cyberbotics Ltd. http://www.cyberbotics.com

  8. 8.

    Rat’s Life contest. http://www.ratslife.org

  9. 9.

    http://www.cyberbotics.com/ratslife/movies

  10. 10.

    http://www.cmake.org

  11. 11.

    Open Dynamics Engine http://opende.sourceforge.net/.

  12. 12.

    SDL – Simple DirectMedia Layer http://www.libsdl.org

  13. 13.

    http://www.robotcub.org/

  14. 14.

    http://www.replicatores.eu

  15. 15.

    http://www.symbrion.eu

  16. 16.

    http://www.cognitivesystems.eu

  17. 17.

    http://ICEA European Project (IST 027819) ICEA stands for Integrating Cognition, Emotion and Autonomy and is focused on brain-inspired cognitive architectures, robotics and embodied cognition, bringing together cognitive scientists, neuroscientists, psychologists, computational modelers, roboticists and control engineers. It aims at developing a cognitive systems architecture integrating cognitive, emotional and bioregulatory (self-maintenance) processes, based on the architecture and physiology of the mammalian brain. http://www.iceaproject.eu

  18. 18.

    robotcub.org and italkproject.org

  19. 19.

    http://cordis.europa.eu/ist/cognition/index.html

References

  1. J. Baltes, 2000, A benchmark suite for mobile robots, IROS 2000 conference proceeding, 2:1101–1106, ISBN: 0-7803-6348-5.

    Google Scholar 

  2. A. Serri, 2004, A Lego robot for experimental benchmarking of robust exploration algorithms, Circuits and Systems, iii – 3:163–166, ISBN: 0-7803-8346-X.

    Google Scholar 

  3. M. Eaton, J.J. Collins, and L. Sheehan, 2001, Toward a benchmarking framework for research into bio-inspired hardware-software artefacts, Artificial Life and Robotics, Springer Japan, 5(1):40–45, ISSN: 1433-5298.

    Google Scholar 

  4. R. Dillmann, 2004, Benchmarks for Robotics Research, EURON, April.

    Google Scholar 

  5. J.S. Albus, 2002, Metrics and performance measures for intelligent unmanned ground vehicles. In Proceeding of the performance Metrics for Intelligent System Workshop, NIST, USA.

    Google Scholar 

  6. A.P. del Pôbil, 2006, Why do we need benchmarks in robotics research?, International Conference on Intelligent Robot and Systems, Beijing, China.

    Google Scholar 

  7. F. Bonsignorio, J. Hallam, and A.P. del Pôbil, 2007, Good experimental methodologies in robotics: State of the art and perspectives, Workshop on Performance Evaluation and Benchmarking for Intelligent Robots and Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA.

    Google Scholar 

  8. H. Kitano, M. Asada, Y. Kuniyoshi et al., 1995, RoboCup: the robot world cup initiative, IJCAI-95 workshop on entertainment and AI/ALife.

    Google Scholar 

  9. A. Jacoff, B. Weiss, and E. Messina, 2003, Evolution of a Performance Metric for Urban Search and Rescue Robots, Proceedings of the 2003 Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, September 16–18.

    Google Scholar 

  10. J.J. Collins, M. Eaton, M. Mansfield, D. Haskett, and S. O’Sullivan, 2004, Developing a benchmarking framework for map building paradigms, Proceedings of the 9th International Symposium on Artificial Life and Robotics, January, Oita, Japan, pp.614–617.

    Google Scholar 

  11. O. Michel, 2004, Webots: Professional Mobile Robot Simulation, Journal of Advanced Robotics Systems, 1(1):39–42.

    Google Scholar 

  12. V. Braitenberg, 1984, Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  13. L. Fadiga, L. Craighero, and E. Olivier, 2005, Human motor cortex excitability during the perception of others’ action, Current Biology, 14:331–333.

    Google Scholar 

  14. L. Fadiga, L. Craighero, G. Buccino, and G. Rizzolatti, 2002, Speech listening specifically modulates the excitability of tongue muscles: a TMS study, European Journal of Neuroscience, 15:399–402.

    Article  Google Scholar 

  15. G. Rizzolatti and L. Fadiga, 1998, Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5), in Sensory Guidance of Movement, Novartis Foundation Symposium, G. R. Bock and J. A. Goode, Eds. Chichester: John Wiley and Sons, New York, NY, pp. 81–103.

    Google Scholar 

  16. D. Vernon, G. Metta, and G. Sandini, 2007, A Survey of Cognition and Cognitive Architectures: Implications for the Autonomous Development of Mental Capabilities in Computational Systems, IEEE Transactions on Evolutionary Computation, special issue on AMD, vol. 11.

    Google Scholar 

  17. C. von Hofsten, 2003, On the development of perception and action. In J. Valsiner and K. J. Connolly, (Eds.) Handbook of Developmental Psychology. Sage, London, pp. 114–140.

    Google Scholar 

  18. P. Fitzpatrick, G. Metta, and L. Natale, 2008, Towards Long-Lived Robot Genes, Journal of Robotics and Autonomous Systems, Special Issue on Humanoid Technologies, 56(1):29–45.

    Google Scholar 

  19. S. D. Huston, J. C. E. Johnson, and U. Syyid, 2003, The ACE Programmer’s Guide, Addison-Wesley, Boston, MA.

    Google Scholar 

  20. V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, 1996, Action recognition in the premotor cortex. Brain, 119:593–609.

    Article  Google Scholar 

  21. G. Rizzolatti and R. Camarda, 1987, Neural circuits for spatial attention and unilateral neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect. North Holland, Amsterdam, pp. 289–313.

    Google Scholar 

  22. L. Craighero, M. Nascimben, and L.Fadiga, 2004, Eye Position Affects Orienting of Visuospatial Attention. Current Biology, 14: 331–333.

    Google Scholar 

  23. S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta, and A. Ijspeert, 2008, A modular bio-inspired architecture for movement generation for the infant-like robot iCub. In Proceedings of 2nd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Scottsdale, AZ.

    Google Scholar 

  24. L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, 2008, Learning object affordances: From sensory motor maps to imitation, IEEE Transactions on Robotics, 24(1):15–26.

    Google Scholar 

  25. G. Metta and P. Fitzpatrick, 2003, Early integration of vision and manipulation. Adaptive Behavior, 11(2):109–128.

    Article  Google Scholar 

  26. T. Ziemke, 2003, On the role of robot simulations in embodied cognitive science, AISB Journal, 1(4):389–399.

    Google Scholar 

  27. N. Nava,V. Tikhanoff, G. Metta, and G Sandini, 2008, Kinematic and Dynamic Simulations for The Design of RoboCub Upper-Body Structure ESDA.

    Google Scholar 

  28. A. Cangelosi, T. Belpaeme, G. Sandini, G. Metta, L. Fadiga, G. Sagerer, K. Rohlfing, B. Wrede, S. Nolfi, D. Parisi, C. Nehaniv, K. Dautenhahn, J. Saunders, K. Fischer, J. Tani, and D. Roy, 2008, The ITALK project: Integration and transfer of action and language knowledge. In: Proceedings of Third ACM/IEEE International Conference on Human Robot Interaction (HRI 2008), Amsterdam, 12–15 March.

    Google Scholar 

  29. P.F. Dominey, 2007, Sharing Intentional Plans for Imitation and Cooperation: Integrating Clues from Child Developments and Neurophysiology into Robotics, Proceedings of AISB 2007 Workshop on Imitation.

    Google Scholar 

  30. E. Bonabeau, M. Dorigo, and G. Theraulaz, 1999, Swarm intelligence: from natural to artificial systems. Oxford University Press, New York, NY.

    MATH  Google Scholar 

  31. S. Camazine, J-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, 2003, Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  32. D.W. Stephens and J.R. Krebs, 1987, Foraging Theory. Princeton University Press, Princeton, NJ.

    Google Scholar 

  33. E. Sahin, 2004, Swarm Robotics: From sources of inspiration to domains of application. Springer-Verlag, Heidelberg.

    Google Scholar 

  34. S. Kernbach, R. Thenius, O. Kernbach, and T. Schmickl, 2009, Re-embodiment of honeybee aggregation behavior in artificial micro-robotic system. Adaptive Behavior, 17(3):237–259.

    Google Scholar 

  35. S. Kornienko, O. Kornienko, and P. Levi, 2005, IR-based communication and perception in microrobotic swarms. In Proceedings of IROS 2005, Edmonton, Canada.

    Google Scholar 

  36. G. Weiss, 1999, Multiagent systems. A modern approach to distributed artificial intelligence. MIT Press, Cambridge, MA.

    Google Scholar 

  37. J.Y. Halpern and Y. Moses, 1990, Knowledge and common knowledge in a distributed environment. Journal of ACM, 37(3):549–587.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Haken, 1983, Synergetics: An introduction, third edition. Springer-Verlag, New York, NY.

    MATH  Google Scholar 

  39. S. Kornienko, O. Kornienko, A. Nagarathinam, and P. Levi, 2007, From real robot swarm to evolutionary multi-robot organism. In Proceedings of CEC2007, Singapore.

    Google Scholar 

  40. D. Häbe, 2007, Bio-inspired approach towards collective decision making in robotic swarms. Master Thesis, University of Stuttgart, Germany.

    Google Scholar 

  41. T. Kancheva, 2007, Adaptive role dynamics in energy foraging behavior of a real micro-robotic swarm. Master Thesis, University of Stuttgart, Germany.

    Google Scholar 

  42. A. Attarzadeh, 2006, Development of advanced power management for autonomous micro-robots. Master Thesis, University of Stuttgart, Germany.

    Google Scholar 

  43. A. Ishiguro and T. Maegawa, 2006, Self-assembly through the interplay between control and mechanical systems. In Proceedings of IEEE/RSJ06 International Conference on Intelligent Robots and Systems. Beijing, China, pp. 631–638.

    Google Scholar 

  44. S. Murata, K. Kakomura, and H. Kurokawa, 2006, Docking experiments of a modular robot by visual feedback. In Proceedings of IEEE/RSJ06 International Conference on Intelligent Robots and Systems. Beijing, China, pp. 625–630.

    Google Scholar 

  45. W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh, 2006, Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2):165–177.

    Article  Google Scholar 

  46. H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata, 2008, Distributed self-reconfiguration of m-tran iii modular robotic system. International Journal of Robotics Research, 27(3–4):373–386.

    Google Scholar 

  47. A. Golovinsky, M. Yim, Y. Zhang, C. Eldershaw, and D. Duff, 2004, Polybot and polykinetic/spl trade/system: a modular robotic platform for education. In IEEE ICRA, 1381–1386.

    Google Scholar 

  48. V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, 2005, Self-reproducing machines. Nature, 435(7039):163–164.

    Article  Google Scholar 

  49. D.J. Christensen, E.H. Ostergaard, and H.H. Lund, 2004, Metamodule control for the atron self-reconfigurable robotic system. In Proceedings of IAS-8. Amsterdam, pp.685–692.

    Google Scholar 

  50. J. Koza, 1992, Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  51. M. Srinivas and L.M. Patnaik, 1994, Genetic algorithms: A survey. Computer, 27(6):17–26.

    Article  Google Scholar 

Download references

Acknowledgments

The Rat’s Life benchmark was supported by the European Commission ICEA project,Footnote 17 while the work on iCub was supported by the European Commission FP6 Project RobotCub and FP7 Project ITALKFootnote 18 within the Cognitive Systems and Robotics unit. The authors would like to thank the RobotCub Consortium. Paul Fitzpatrick is gratefully acknowledged for the continuous support to YARP. The REPLICATOR and SYMBRION projects are funded by European Commission within the 7th framework program. The authors also acknowledge the support of the FP6 euCognitionFootnote 19 Coordinated Action project funded under the same Cognitive Systems and Robotics unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Courtney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Courtney, P. et al. (2009). Cognitive Systems Platforms using Open Source. In: Madhavan, R., Tunstel, E., Messina, E. (eds) Performance Evaluation and Benchmarking of Intelligent Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0492-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0492-8_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0491-1

  • Online ISBN: 978-1-4419-0492-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics