Cognitive Systems Platforms using Open Source

  • Patrick Courtney
  • Olivier Michel
  • Angelo Cangelosi
  • Vadim Tikhanoff
  • Giorgio Metta
  • Lorenzo Natale
  • Francesco Nori
  • Serge Kernbach


This chapter reports to the development of the tools and methodologies that are in development within the EU, with an emphasis on the Open Source approaches with a view to performance analysis and comparison, and to provide an overview of cooperative research and especially on the use of Open platforms.


Humanoid Robot Robotic Research Docking Station Swarm Robot Cognitive Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Rat’s Life benchmark was supported by the European Commission ICEA project,17 while the work on iCub was supported by the European Commission FP6 Project RobotCub and FP7 Project ITALK18 within the Cognitive Systems and Robotics unit. The authors would like to thank the RobotCub Consortium. Paul Fitzpatrick is gratefully acknowledged for the continuous support to YARP. The REPLICATOR and SYMBRION projects are funded by European Commission within the 7th framework program. The authors also acknowledge the support of the FP6 euCognition19 Coordinated Action project funded under the same Cognitive Systems and Robotics unit.


  1. 1.
    J. Baltes, 2000, A benchmark suite for mobile robots, IROS 2000 conference proceeding, 2:1101–1106, ISBN: 0-7803-6348-5.Google Scholar
  2. 2.
    A. Serri, 2004, A Lego robot for experimental benchmarking of robust exploration algorithms, Circuits and Systems, iii – 3:163–166, ISBN: 0-7803-8346-X.Google Scholar
  3. 3.
    M. Eaton, J.J. Collins, and L. Sheehan, 2001, Toward a benchmarking framework for research into bio-inspired hardware-software artefacts, Artificial Life and Robotics, Springer Japan, 5(1):40–45, ISSN: 1433-5298.Google Scholar
  4. 4.
    R. Dillmann, 2004, Benchmarks for Robotics Research, EURON, April.Google Scholar
  5. 5.
    J.S. Albus, 2002, Metrics and performance measures for intelligent unmanned ground vehicles. In Proceeding of the performance Metrics for Intelligent System Workshop, NIST, USA.Google Scholar
  6. 6.
    A.P. del Pôbil, 2006, Why do we need benchmarks in robotics research?, International Conference on Intelligent Robot and Systems, Beijing, China.Google Scholar
  7. 7.
    F. Bonsignorio, J. Hallam, and A.P. del Pôbil, 2007, Good experimental methodologies in robotics: State of the art and perspectives, Workshop on Performance Evaluation and Benchmarking for Intelligent Robots and Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA.Google Scholar
  8. 8.
    H. Kitano, M. Asada, Y. Kuniyoshi et al., 1995, RoboCup: the robot world cup initiative, IJCAI-95 workshop on entertainment and AI/ALife.Google Scholar
  9. 9.
    A. Jacoff, B. Weiss, and E. Messina, 2003, Evolution of a Performance Metric for Urban Search and Rescue Robots, Proceedings of the 2003 Performance Metrics for Intelligent Systems (PerMIS) Workshop, Gaithersburg, MD, September 16–18.Google Scholar
  10. 10.
    J.J. Collins, M. Eaton, M. Mansfield, D. Haskett, and S. O’Sullivan, 2004, Developing a benchmarking framework for map building paradigms, Proceedings of the 9th International Symposium on Artificial Life and Robotics, January, Oita, Japan, pp.614–617.Google Scholar
  11. 11.
    O. Michel, 2004, Webots: Professional Mobile Robot Simulation, Journal of Advanced Robotics Systems, 1(1):39–42.Google Scholar
  12. 12.
    V. Braitenberg, 1984, Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT Press.Google Scholar
  13. 13.
    L. Fadiga, L. Craighero, and E. Olivier, 2005, Human motor cortex excitability during the perception of others’ action, Current Biology, 14:331–333.Google Scholar
  14. 14.
    L. Fadiga, L. Craighero, G. Buccino, and G. Rizzolatti, 2002, Speech listening specifically modulates the excitability of tongue muscles: a TMS study, European Journal of Neuroscience, 15:399–402.CrossRefGoogle Scholar
  15. 15.
    G. Rizzolatti and L. Fadiga, 1998, Grasping objects and grasping action meanings: the dual role of monkey rostroventral premotor cortex (area F5), in Sensory Guidance of Movement, Novartis Foundation Symposium, G. R. Bock and J. A. Goode, Eds. Chichester: John Wiley and Sons, New York, NY, pp. 81–103.Google Scholar
  16. 16.
    D. Vernon, G. Metta, and G. Sandini, 2007, A Survey of Cognition and Cognitive Architectures: Implications for the Autonomous Development of Mental Capabilities in Computational Systems, IEEE Transactions on Evolutionary Computation, special issue on AMD, vol. 11.Google Scholar
  17. 17.
    C. von Hofsten, 2003, On the development of perception and action. In J. Valsiner and K. J. Connolly, (Eds.) Handbook of Developmental Psychology. Sage, London, pp. 114–140.Google Scholar
  18. 18.
    P. Fitzpatrick, G. Metta, and L. Natale, 2008, Towards Long-Lived Robot Genes, Journal of Robotics and Autonomous Systems, Special Issue on Humanoid Technologies, 56(1):29–45.Google Scholar
  19. 19.
    S. D. Huston, J. C. E. Johnson, and U. Syyid, 2003, The ACE Programmer’s Guide, Addison-Wesley, Boston, MA.Google Scholar
  20. 20.
    V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, 1996, Action recognition in the premotor cortex. Brain, 119:593–609.CrossRefGoogle Scholar
  21. 21.
    G. Rizzolatti and R. Camarda, 1987, Neural circuits for spatial attention and unilateral neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect. North Holland, Amsterdam, pp. 289–313.Google Scholar
  22. 22.
    L. Craighero, M. Nascimben, and L.Fadiga, 2004, Eye Position Affects Orienting of Visuospatial Attention. Current Biology, 14: 331–333.Google Scholar
  23. 23.
    S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta, and A. Ijspeert, 2008, A modular bio-inspired architecture for movement generation for the infant-like robot iCub. In Proceedings of 2nd IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Scottsdale, AZ.Google Scholar
  24. 24.
    L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor, 2008, Learning object affordances: From sensory motor maps to imitation, IEEE Transactions on Robotics, 24(1):15–26.Google Scholar
  25. 25.
    G. Metta and P. Fitzpatrick, 2003, Early integration of vision and manipulation. Adaptive Behavior, 11(2):109–128.CrossRefGoogle Scholar
  26. 26.
    T. Ziemke, 2003, On the role of robot simulations in embodied cognitive science, AISB Journal, 1(4):389–399.Google Scholar
  27. 27.
    N. Nava,V. Tikhanoff, G. Metta, and G Sandini, 2008, Kinematic and Dynamic Simulations for The Design of RoboCub Upper-Body Structure ESDA.Google Scholar
  28. 28.
    A. Cangelosi, T. Belpaeme, G. Sandini, G. Metta, L. Fadiga, G. Sagerer, K. Rohlfing, B. Wrede, S. Nolfi, D. Parisi, C. Nehaniv, K. Dautenhahn, J. Saunders, K. Fischer, J. Tani, and D. Roy, 2008, The ITALK project: Integration and transfer of action and language knowledge. In: Proceedings of Third ACM/IEEE International Conference on Human Robot Interaction (HRI 2008), Amsterdam, 12–15 March.Google Scholar
  29. 29.
    P.F. Dominey, 2007, Sharing Intentional Plans for Imitation and Cooperation: Integrating Clues from Child Developments and Neurophysiology into Robotics, Proceedings of AISB 2007 Workshop on Imitation.Google Scholar
  30. 30.
    E. Bonabeau, M. Dorigo, and G. Theraulaz, 1999, Swarm intelligence: from natural to artificial systems. Oxford University Press, New York, NY.MATHGoogle Scholar
  31. 31.
    S. Camazine, J-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau, 2003, Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  32. 32.
    D.W. Stephens and J.R. Krebs, 1987, Foraging Theory. Princeton University Press, Princeton, NJ.Google Scholar
  33. 33.
    E. Sahin, 2004, Swarm Robotics: From sources of inspiration to domains of application. Springer-Verlag, Heidelberg.Google Scholar
  34. 34.
    S. Kernbach, R. Thenius, O. Kernbach, and T. Schmickl, 2009, Re-embodiment of honeybee aggregation behavior in artificial micro-robotic system. Adaptive Behavior, 17(3):237–259.Google Scholar
  35. 35.
    S. Kornienko, O. Kornienko, and P. Levi, 2005, IR-based communication and perception in microrobotic swarms. In Proceedings of IROS 2005, Edmonton, Canada.Google Scholar
  36. 36.
    G. Weiss, 1999, Multiagent systems. A modern approach to distributed artificial intelligence. MIT Press, Cambridge, MA.Google Scholar
  37. 37.
    J.Y. Halpern and Y. Moses, 1990, Knowledge and common knowledge in a distributed environment. Journal of ACM, 37(3):549–587.MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    H. Haken, 1983, Synergetics: An introduction, third edition. Springer-Verlag, New York, NY.MATHGoogle Scholar
  39. 39.
    S. Kornienko, O. Kornienko, A. Nagarathinam, and P. Levi, 2007, From real robot swarm to evolutionary multi-robot organism. In Proceedings of CEC2007, Singapore.Google Scholar
  40. 40.
    D. Häbe, 2007, Bio-inspired approach towards collective decision making in robotic swarms. Master Thesis, University of Stuttgart, Germany.Google Scholar
  41. 41.
    T. Kancheva, 2007, Adaptive role dynamics in energy foraging behavior of a real micro-robotic swarm. Master Thesis, University of Stuttgart, Germany.Google Scholar
  42. 42.
    A. Attarzadeh, 2006, Development of advanced power management for autonomous micro-robots. Master Thesis, University of Stuttgart, Germany.Google Scholar
  43. 43.
    A. Ishiguro and T. Maegawa, 2006, Self-assembly through the interplay between control and mechanical systems. In Proceedings of IEEE/RSJ06 International Conference on Intelligent Robots and Systems. Beijing, China, pp. 631–638.Google Scholar
  44. 44.
    S. Murata, K. Kakomura, and H. Kurokawa, 2006, Docking experiments of a modular robot by visual feedback. In Proceedings of IEEE/RSJ06 International Conference on Intelligent Robots and Systems. Beijing, China, pp. 625–630.Google Scholar
  45. 45.
    W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh, 2006, Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2):165–177.CrossRefGoogle Scholar
  46. 46.
    H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and S. Murata, 2008, Distributed self-reconfiguration of m-tran iii modular robotic system. International Journal of Robotics Research, 27(3–4):373–386.Google Scholar
  47. 47.
    A. Golovinsky, M. Yim, Y. Zhang, C. Eldershaw, and D. Duff, 2004, Polybot and polykinetic/spl trade/system: a modular robotic platform for education. In IEEE ICRA, 1381–1386.Google Scholar
  48. 48.
    V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, 2005, Self-reproducing machines. Nature, 435(7039):163–164.CrossRefGoogle Scholar
  49. 49.
    D.J. Christensen, E.H. Ostergaard, and H.H. Lund, 2004, Metamodule control for the atron self-reconfigurable robotic system. In Proceedings of IAS-8. Amsterdam, pp.685–692.Google Scholar
  50. 50.
    J. Koza, 1992, Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, MA.MATHGoogle Scholar
  51. 51.
    M. Srinivas and L.M. Patnaik, 1994, Genetic algorithms: A survey. Computer, 27(6):17–26.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patrick Courtney
    • 1
  • Olivier Michel
    • 2
  • Angelo Cangelosi
    • 3
  • Vadim Tikhanoff
    • 3
  • Giorgio Metta
    • 4
  • Lorenzo Natale
    • 5
  • Francesco Nori
    • 5
  • Serge Kernbach
    • 6
  1. 1.Perkinelmer, BeaconsfieldBeaconsfieldUK
  2. 2.Cyberbotics Ltd.LausanneSwitzerland
  3. 3.Adaptive Behaviour & Cognition Group, University of PlymouthPlymouthUK
  4. 4.Italian Institute of TechnologyUniversity of GenoaGenoaItaly
  5. 5.Italian Institute of TechnologyGenoaItaly
  6. 6.University of StuttgartStuttgartGermany

Personalised recommendations