Somatic Genetic Development in Epithelial Ovarian Cancer

  • Kate Lawrenson
  • Susan J. Ramus
  • Simon A. Gayther
Part of the Cancer Genetics book series (CANGENETICS)


The genetic and biological mechanisms that underlie the somatic development of epithelial ovarian cancers remain poorly understood. For many other tumour types, there is substantial evidence of an ordered series of stages in neoplastic development, driven by the accumulation of somatic genetic changes and the deregulation of specific biological pathways [1]. For ovarian cancer, there is still debate in the published literature about the tissue type from which epithelial ovarian cancers originate and the nature of the precursor lesions.

The picture for ovarian cancer is complicated by disease heterogeneity; epithelial ovarian cancers, which represent 90% of malignant ovarian tumours, comprise multiple different histological subtypes, the most common being serous, mucinous, endometrioid and clear cell tumours. There is now substantial evidence to suggest that different pathways of mutagenesis exist for each tumour subtype. In part, this lack of understanding of the aetiology of the disease has contributed to the lack of substantial improvement in long-term survival for patients diagnosed with ovarian cancer for more than three decades.

The therapeutic options for patients diagnosed with ovarian cancer are also limited, consisting broadly of aggressive cytoreductive surgery and platinum-based combination chemotherapy. As with many other tumour types, it is hoped that detailed analysis of the evolution of ovarian cancers will lead to the identification of novel therapeutic approaches that can improve treatment and outcome. For example, it seems likely that the molecular genetic “signatures” of tumours will reflect underlying biology and aetiological heterogeneity of the disease. Conceivably, by identifying genetic profiles that predict disease outcome, it will be possible to tailor each individual’s treatment to improve their survival. It is also critical that there is a greater understanding of the functional complexities of ovarian tumour development in order to identify novel therapeutic targets and develop better treatments.

The purpose of this article is to review the current understanding of somatic changes that underlie the initiation and development of epithelial ovarian cancers, and to discuss the prospects of using this knowledge to improve treatment and long-term survival for patients with the disease.


Ovarian Cancer Epithelial Ovarian Cancer Ovarian Tumour BRAF Mutation Ovarian Cancer Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 61:759–67.PubMedGoogle Scholar
  2. 2.
    Gayther SA, Russell P, Harrington P, Antoniou AC, Easton DF, Ponder BA. The contribution of germline BRCA1 and BRCA2 mutations to familial ovarian cancer: no evidence for other ovarian cancer-susceptibility genes. Am J Hum Genet. 1999 65:1021–9.PubMedGoogle Scholar
  3. 3.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, Sobol H, Teare MD, Struewing J, Arason A, Scherneck S, Peto J, Rebbeck TR, Tonin P, Neuhausen S, Barkardottir R, Eyfjord J, Lynch H, Ponder BA, Gayther SA, Zelada-Hedman M, and the Breast Cancer Linkage Consortium. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998 62:676–89.PubMedGoogle Scholar
  4. 4.
    Ramus SJ, Harrington PA, Pye C, DiCioccio RA, Cox MJ, Garlinghouse-Jones K, Oakley-Girvan I, Jacobs IJ, Hardy RM, Whittemore AS, Ponder BA, Piver MS, Pharoah PD, Gayther SA. Contribution of BRCA1 and BRCA2 mutations to inherited ovarian cancer. Hum Mutat. 2007 28:1207–15.PubMedGoogle Scholar
  5. 5.
    Smith SA, Easton DF, Evans DG, Ponder BA. Allele losses in the region 17q12–21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet. 1992 2:128–31.PubMedGoogle Scholar
  6. 6.
    Collins N, McManus R, Wooster R, Mangion J, Seal S, Lakhani SR, Ormiston W, Daly PA, Ford D, Easton DF, et al. Consistent loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. Oncogene. 1995 10:1673–5.PubMedGoogle Scholar
  7. 7.
    Geisler JP, Goodheart MJ, Sood AK, Holmes RJ, Hatterman-Zogg MA, Buller RE. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer. 2003 98:2199–206.PubMedGoogle Scholar
  8. 8.
    Fujita M, Enomoto T, Murata Y. Genetic alterations in ovarian carcinoma: with specific reference to histological subtypes. Mol Cell Endocrinol. 2003 202:97–9.PubMedGoogle Scholar
  9. 9.
    Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW. The tumor suppressor gene BRCA1 is required for embryonic cellular proliferation in the mouse. Cell. 1996 85:1009–23.PubMedGoogle Scholar
  10. 10.
    Connor F, Bertwistle D, Mee PJ, Ross GM, Swift S, Grigorieva E, Tybulewicz VL, Ashworth A. Tumorigenesis and a DNA repair defect in mice with a truncating BRCA2 mutation. Nat Genet. 1997 17:423–30.Google Scholar
  11. 11.
    Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of BRCA1, BRCA2, BRCA1/BRCA2, BRCA1/p53, and BRCA2/p53 nullizygous embryos. Genes Dev. 1997 11:1226–41.PubMedGoogle Scholar
  12. 12.
    Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H. BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci U S A. 1998 95:2302–6.Google Scholar
  13. 13.
    Hoglund M, Gisselsson D, Hansen GB, Sall T, Mitelman F. Ovarian carcinoma develops through multiple modes of chromosomal evolution. Cancer Res. 2003 63:3378–85.PubMedGoogle Scholar
  14. 14.
    Heim S, Mitelman F. 1995. Cancer Cytogenetics. New York: John Wiley & Sons, Inc.Google Scholar
  15. 15.
    Rao PH, Harris CP, Yan Lu X, Li XN, Mok SC, Lau CC. Multicolor spectral karyotyping of serous ovarian adenocarcinoma. Genes Chromosomes Cancer. 2002 33:123–32.PubMedGoogle Scholar
  16. 16.
    Cliby W, Ritland S, Hartmann L, Dodson M, Halling KC, Keeney G, Podratz KC, Jenkins RB. Human epithelial ovarian cancer allelotype. Cancer Res. 1993 53(10 Suppl):2393–8.PubMedGoogle Scholar
  17. 17.
    Sonoda G, Palazzo J, du Manoir S, Godwin AK, Feder M, Yakushiji M, Testa JR. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer. 1997 20:320–8.PubMedGoogle Scholar
  18. 18.
    Launonen V, Mannermaa A, Stenback F, Kosma VM, Puistola U, Huusko P, Anttila M, Bloigu R, Saarikoski S, Kauppila A, Winqvist R. Loss of heterozygosity at chromosomes 3, 6, 8, 11, 16, and 17 in ovarian cancer: correlation to clinicopathological variables.Cancer Genet Cytogenet. 2000 122:49–54.PubMedGoogle Scholar
  19. 19.
    Ramus SJ, Pharoah PD, Harrington P, Pye C, Werness B, Bobrow L, Ayhan A, Wells D, Fishman A, Gore M, DiCioccio RA, Piver MS, Whittemore AS, Ponder BA, Gayther SA. BRCA1/2 mutation status influences somatic genetic progression in inherited and sporadic epithelial ovarian cancer cases. Cancer Res. 2003 63:417–23.PubMedGoogle Scholar
  20. 20.
    Iwabuchi H, Sakamoto M, Sakunaga H, Ma YY, Carcangiu ML, Pinkel D, Yang-Feng TL, Gray JW. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 1995 55:6172–80.PubMedGoogle Scholar
  21. 21.
    Kiechle M, Jacobsen A, Schwarz-Boeger U, Hedderich J, Pfisterer J, Arnold N. Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer. 2001 91:534–40.PubMedGoogle Scholar
  22. 22.
    Arnold N, Hagele L, Walz L, Schempp W, Pfisterer J, Bauknecht T, Kiechle M. Overrepresentation of 3q and 8q material and loss of 18q material are recurrent findings in advanced human ovarian cancer. Genes Chromosomes Cancer 1996 16: 46–54.PubMedGoogle Scholar
  23. 23.
    Bayani J, Brenton JD, Macgregor PF, Beheshti B, Albert M, Nallainathan D, Karaskova J, Rosen B, Murphy J, Laframboise S, Zanke B, Squire JA. Parallel analysis of sporadic primary ovarian carcinomas by spectral karyotyping, comparative genomic hybridization, and expression microarrays. Cancer Res. 2002 62:3466–76.PubMedGoogle Scholar
  24. 24.
    Israeli O, Gotlieb WH, Friedman E, Korach J, Friedman E, Goldman B, Zeltser A, Ben-Baruch G, Rienstein S, Aviram-Goldring A. Genomic analyses of primary and metastatic serous epithelial ovarian cancer. Cancer Genet Cytogenet. 2004;154:16–21.PubMedGoogle Scholar
  25. 25.
    Gorringe KL, Jacobs S, Thompson ER, Sridhar A, Qiu W, Choong DY, Campbell IG. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res. 2007 13:4731–9.PubMedGoogle Scholar
  26. 26.
    Nakayama K, Nakayama N, Jinawath N, Salani R, Kurman RJ, Shih IM, Wang TL. Amplicon profiles in ovarian serous carcinomas. Int J Cancer. 2007 Mar 9; [Epub ahead of print].Google Scholar
  27. 27.
    Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, King W, Wilber K, Mihatsch MJ, Moch H. Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5–q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol. 2003 163:985–92.PubMedGoogle Scholar
  28. 28.
    Manderson EN, Presneau N, Provencher D, Mes-Masson AM, Tonin PN. Comparative analysis of loss of heterozygosity of specific chromosome 3, 13, 17, and X loci and TP53 mutations in human epithelial ovarian cancer. Mol Carcinog. 2002 34:78–90.PubMedGoogle Scholar
  29. 29.
    Lee-Jones L. Ovary: Epithelial tumours. Atlas Genet Cytogenet Oncol Haematol. Dec 2003. URL:
  30. 30.
    Feltmate CM, Lee KR, Johnson M, Schorge JO, Wong KK, Hao K, Welch WR, Bell DA, Berkowitz RS, Mok SC. Whole-genome allelotyping identified distinct loss-of-heterozygosity patterns in mucinous ovarian and appendiceal carcinomas. Clin Cancer Res. 2005 11:7651–7.PubMedGoogle Scholar
  31. 31.
    Helou K, Padilla-Nash H, Wangsa D, Karlsson E, Osterberg L, Karlsson P, Ried T, Knutsen T. Comparative genome hybridization reveals specific genomic imbalances during the genesis from benign through borderline to malignant ovarian tumors. Cancer Genet Cytogenet. 2006 170:1–8.PubMedGoogle Scholar
  32. 32.
    Hauptmann S, Denkert C, Koch I, Petersen S, Schluns K, Reles A, Dietel M, Petersen I. Genetic alterations in epithelial ovarian tumors analyzed by comparative genomic hybridization. Hum Pathol. 2002 33:632–41.PubMedGoogle Scholar
  33. 33.
    Dent J, Hall GD, Wilkinson N, Perren TJ, Richmond I, Markham AF, Murphy H, Bell SM. Cytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridisation. Br J Cancer. 2003 88:1578–83.PubMedGoogle Scholar
  34. 34.
    Tapper J, Butzow R, Wahlstrom T, Seppala M, Knuutila S. Evidence for divergence of DNA copy number changes in serous, mucinous and endometrioid ovarian carcinomas. Br J Cancer 1997;75:1782–7.PubMedGoogle Scholar
  35. 35.
    Suehiro Y, Sakamoto M, Umayahara K, Iwabuchi H, Sakamoto H, Tanaka N, Takeshima N, Yamauchi K, Hasumi K, Akiya T, Sakunaga H, Muroya T, Numa F, Kato H, Tenjin Y, Sugishita T. Genetic aberrations detected by comparative genomic hybridization in ovarian clear cell adenocarcinomas. Oncology. 2000 59:50–6.PubMedGoogle Scholar
  36. 36.
    Osterberg L, Levan K, Partheen K, Helou K, Horvath G. Cytogenetic analysis of carboplatin resistance in early-stage epithelial ovarian carcinoma. Cancer Genet Cytogenet 2005 163:144e50.Google Scholar
  37. 37.
    Mayr D, Kanitz V, Anderegg B, Luthardt B, Engel J, Lohrs U, Amann G, Diebold J. Analysis of gene amplification and prognostic markers in ovarian cancer using comparative genomic hybridization for microarrays and immunohistochemical analysis for tissue microarrays. Am J Clin Pathol. 2006 126:101–9.PubMedGoogle Scholar
  38. 38.
    Wang V, Li C, Lin M, Welch W, Bell D, Wong YF, Berkowitz R, Mok SC, Bandera CA. Ovarian cancer is a heterogeneous disease. Cancer Genet Cytogenet. 2005 161:170–3.PubMedGoogle Scholar
  39. 39.
    Dodson MK, Hartmann LC, Cliby WA, DeLacey KA, Keeney GL, Ritland SR, Su JQ, Podratz KC, Jenkins RB. Comparison of loss of heterozygosity patterns in invasive low-grade and high-grade epithelial ovarian carcinomas. Cancer Res. 1993 53:4456–60.PubMedGoogle Scholar
  40. 40.
    Pere H, Tapper J, Seppälä M, Knuutila S, Butzow R. Genomic alterations in fallopian tube carcinoma: comparison to serous uterine and ovarian carcinomas reveals similarity suggesting likeness in molecular pathogenesis. Cancer Res. 1998 58:4274–6.PubMedGoogle Scholar
  41. 41.
    Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao JH, Yu M, Miller MA, Santos JL, Kalloger SE, Carlson JW, Ginzinger DG, Celniker SE, Mills GB, Huntsman DG, Gray JW. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. 2007 13:5745–55.PubMedGoogle Scholar
  42. 42.
    Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, Flanagan A, Teague J, Wooster R, Futreal PA, Stratton MR. COSMIC 2005. Br J Cancer. 2006 94:318–22.PubMedGoogle Scholar
  43. 43.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007 28:622–9.PubMedGoogle Scholar
  44. 44.
    Russell PA, Pharoah PD, De Foy K, Ramus SJ, Symmonds I, Wilson A, Scott I, Ponder BA, Gayther SA. Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. Int J Cancer. 2000 87:317–21.PubMedGoogle Scholar
  45. 45.
    Welcsh PL, King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer.Hum Mol Genet. 2001 10:705–13.PubMedGoogle Scholar
  46. 46.
    Wang C, Horiuchi A, Imai T, Ohira S, Itoh K, Nikaido T, Katsuyama Y, Konishi I. Expression of BRCA1 protein in benign, borderline, and malignant epithelial ovarian neoplasms and its relationship to methylation and allelic loss of the BRCA1 gene. J Pathol. 2004 202:215–23.PubMedGoogle Scholar
  47. 47.
    Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol. 2004 95:449–55.PubMedGoogle Scholar
  48. 48.
    Høgdall EV, Kjaer SK, Blaakaer J, Christensen L, Glud E, Vuust J, Høgdall CK. P53 mutations in tissue from Danish ovarian cancer patients: from the Danish “MALOVA” ovarian cancer study. Gynecol Oncol. 2006 100:76–82.PubMedGoogle Scholar
  49. 49.
    Høgdall EV, Christensen L, Kjaer SK, Blaakaer J, Kjaerbye-Thygesen A, Gayther S, Jacobs IJ, Høgdall CK. CA125 expression pattern, prognosis and correlation with serum CA125 in ovarian tumor patients. From The Danish “MALOVA” Ovarian Cancer Study. Gynecol Oncol. 2007 104:508–15.PubMedGoogle Scholar
  50. 50.
    Høgdall EV, Christensen L, Kjaer SK, Blaakaer J, Christensen IJ, Gayther S, Jacobs IJ, Høgdall CK. Expression level of Wilms tumor 1 (WT1) protein has limited prognostic value in epithelial ovarian cancer: from the Danish “MALOVA” ovarian cancer study. Gynecol Oncol. 2007 106:318–24.PubMedGoogle Scholar
  51. 51.
    Høgdall EV, Christensen L, Høgdall CK, Blaakaer J, Gayther S, Jacobs IJ, Christensen IJ, Kjaer SK. Prognostic value of estrogen receptor and progesterone receptor tumor expression in Danish ovarian cancer patients: from the “MALOVA” ovarian cancer study. Oncol Rep. 2007 18:1051–9.PubMedGoogle Scholar
  52. 52.
    Psyrri A, Kountourakis P, Yu Z, Papadimitriou C, Markakis S, Camp R, Economopoulos T, Dimopoulos M. Analysis of p53 protein expression levels on ovarian cancer tissue microarray using automated quantitative analysis elucidates prognostic patient subsets. Ann Oncol. 2007 18:709–15.PubMedGoogle Scholar
  53. 53.
    Israeli O, Goldring-Aviram A, Rienstein S, Ben-Baruch G, Korach J, Goldman B, Friedman E. In silico chromosomal clustering of genes displaying altered expression patterns in ovarian cancer. Cancer Genet Cytogenet. 2005 160:35–42.PubMedGoogle Scholar
  54. 54.
    Khalique L, Ayhan A, Weale ME, Jacobs IJ, Ramus SJ, Gayther SA. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. J Pathol. 2007 211:286–95.PubMedGoogle Scholar
  55. 55.
    Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE. The consensus coding sequences of human breast and colorectal cancers. Science. 2006 314:268–74.PubMedGoogle Scholar
  56. 56.
    Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature. 2007 446:153–8.PubMedGoogle Scholar
  57. 57.
    Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer genes. Nat Rev Cancer. 2004 4:177–83.PubMedGoogle Scholar
  58. 58.
    Loeb LA, Bielas JH. Limits to the human cancer genome project? Science. 2006 314:268–74.Google Scholar
  59. 59.
    Chng WJ. Limits to the human cancer genome project? Science. 2006 314:268–74.Google Scholar
  60. 60.
    Strauss BS. Limits to the human cancer genome project? Science. 2006 314:268–74.Google Scholar
  61. 61.
    Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM.Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 1997 88:265–75.PubMedGoogle Scholar
  62. 62.
    Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM.Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell. 1997 90:425–35.PubMedGoogle Scholar
  63. 63.
    Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell. 1999 4:1093–9.PubMedGoogle Scholar
  64. 64.
    Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 1998 2:317–28.PubMedGoogle Scholar
  65. 65.
    Venkitaraman AR. Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat Rev Cancer. 2004 4:266–76.PubMedGoogle Scholar
  66. 66.
    Wang W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007 8:735–48.PubMedGoogle Scholar
  67. 67.
    Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 1999 59:3547–51.PubMedGoogle Scholar
  68. 68.
    Shivji MK, Venkitaraman AR. DNA recombination, chromosomal stability and carcinogenesis: insights into the role of BRCA2. DNA Repair (Amst). 2004 3:835–43.Google Scholar
  69. 69.
    Dyck HG, Hamilton TC, Godwin AK, Lynch HT, Maines-Bandiera S, Auersperg N. Autonomy of the epithelial phenotype in human ovarian surface epithelium: changes with neoplastic progression and with a family history of ovarian cancer. Int J Cancer. 1996 69:429–36.PubMedGoogle Scholar
  70. 70.
    Barwell J, Pangon L, Georgiou A, Kesterton I, Langman C, Arden-Jones A, Bancroft E, Salmon A, Locke I, Kote-Jarai Z, Morris JR, Solomon E, Berg J, Docherty Z, Camplejohn R, Eeles R, Hodgson SV. Lymphocyte radiosensitivity in BRCA1 and BRCA2 mutation carriers and implications for breast cancer susceptibility. Int J Cancer. 2007 121:1631–6.PubMedGoogle Scholar
  71. 71.
    Jeng YM, Cai-Ng S, Li A, Furuta S, Chew H, Chen PL, Lee EY, Lee WH. BRCA1 heterozygous mice have shortened life span and are prone to ovarian tumorigenesis with haploinsufficiency upon ionizing irradiation. Oncogene. 2007 26:6160–6.PubMedGoogle Scholar
  72. 72.
    The Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999 91: 1310–6.Google Scholar
  73. 73.
    Syed V, Ulinski G, Mok SC, Yiu GK, Ho SM. Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells. Cancer Res. 2001 61:6768–76.PubMedGoogle Scholar
  74. 74.
    Lindgren PR, Bäckström T, Cajander S, Damber MG, Mählck CG, Zhu D, Olofsson JI. The pattern of estradiol and progesterone differs in serum and tissue of benign and malignant ovarian tumors. Int J Oncol. 2002 21:583–9.PubMedGoogle Scholar
  75. 75.
    Sood AK, Sorosky JI, Dolan M, Anderson B, Buller RE. Distant metastases in ovarian cancer: association with p53 mutations. Clin Cancer Res. 1999 5:2485–90.PubMedGoogle Scholar
  76. 76.
    Crook T, Crossland S, Crompton MR, Osin P, Gusterson BA. p53 mutations in BRCA1-associated familial breast cancer. Lancet. 1997 350:638–9.PubMedGoogle Scholar
  77. 77.
    Ramus SJ, Bobrow LG, Pharoah PD, Finnigan DS, Fishman A, Altaras M, Harrington PA, Gayther SA, Ponder BA, Friedman LS. Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer. 1999 25:91–6.PubMedGoogle Scholar
  78. 78.
    Kerner R, Sabo E, Gershoni-Baruch R, Beck D, Ben-Izhak O. Expression of cell cycle regulatory proteins in ovaries prophylactically removed from Jewish Ashkenazi BRCA1 and BRCA2 mutation carriers: correlation with histopathology. Gynecol Oncol. 2005 99:367–75.PubMedGoogle Scholar
  79. 79.
    Watson P, Lynch HT. Cancer risk in mismatch repair gene mutation carriers. Fam Cancer. 2001 1:57–60.PubMedGoogle Scholar
  80. 80.
    Crijnen TE, Janssen-Heijnen ML, Gelderblom H, Morreau J, Nooij MA, Kenter GG, Vasen HF. Survival of patients with ovarian cancer due to a mismatch repair defect. Fam Cancer. 2005 4:301–5.PubMedGoogle Scholar
  81. 81.
    Malander S, Rambech E, Kristoffersson U, Halvarsson B, Ridderheim M, Borg A, Nilbert M. The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer. Gynecol Oncol. 2006 101:238–43.PubMedGoogle Scholar
  82. 82.
    Allen HJ, DiCioccio RA, Hohmann P, Piver MS, Tworek H. Microsatellite instability in ovarian and other pelvic carcinomas. Cancer Genet Cytogenet. 2000 117:163–6.Google Scholar
  83. 83.
    Buller RE, Shahin MS, Holmes RW, Hatterman M, Kirby PA, Sood AK. p53 Mutations and microsatellite instability in ovarian cancer: Yin and yang. Am J Obstet Gynecol. 2001 184:891–902.PubMedGoogle Scholar
  84. 84.
    Helleman J, van Staveren IL, Dinjens WN, van Kuijk PF, Ritstier K, Ewing PC, van der Burg ME, Stoter G, Berns EM. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer. 2006 6:201.PubMedGoogle Scholar
  85. 85.
    Gras E, Catasus L, Argüelles R, Moreno-Bueno G, Palacios J, Gamallo C, Matias-Guiu X, Prat J. Microsatellite instability, MLH-1 promoter hypermethylation, and frameshift mutations at coding mononucleotide repeat microsatellites in ovarian tumors. Cancer. 2001 92:2829–36.PubMedGoogle Scholar
  86. 86.
    Catasús L, Bussaglia E, Rodrguez I, Gallardo A, Pons C, Irving JA, Prat J. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas. Hum Pathol. 2004 35:1360–8.PubMedGoogle Scholar
  87. 87.
    Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004 164:1511–8.PubMedGoogle Scholar
  88. 88.
    Strathdee G, MacKean MJ, Illand M, Brown R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 1999 18:2335–41.PubMedGoogle Scholar
  89. 89.
    Son BH, Ahn SH, Ko CD, Ka IW, Gong GY, Kim JC. Significance of mismatch repair protein expression in the chemotherapeutic response of sporadic invasive ductal carcinoma of the breast. Breast J. 2004 10:20–6.PubMedGoogle Scholar
  90. 90.
    Brown R, Hirst GL, Gallagher WM, McIlwrath AJ, Margison GP, van der Zee AG, Anthoney DA. hMLH1 expression and cellular responses of ovarian tumour cells to treatment with cytotoxic anticancer agents. Oncogene. 1997 15:45–52.PubMedGoogle Scholar
  91. 91.
    Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts. Cancer Res. 1998 58:3579–85.PubMedGoogle Scholar
  92. 92.
    Scartozzi M, De Nictolis M, Galizia E, Carassai P, Bianchi F, Berardi R, Gesuita R, Piga A, Cellerino R, Porfiri E. Loss of hMLH1 expression correlates with improved survival in stage III–IV ovarian cancer patients. Eur J Cancer. 2003 39:1144–9.PubMedGoogle Scholar
  93. 93.
    Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989 49:4682–9.PubMedGoogle Scholar
  94. 94.
    Thomas NE. BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res. 2006 16:97–103.PubMedGoogle Scholar
  95. 95.
    Russell SE, McCluggage WG. A multistep model for ovarian tumorigenesis: the value of mutation analysis in the KRAS and BRAF genes. J Pathol. 2004 203:617–9.PubMedGoogle Scholar
  96. 96.
    Mayr D, Hirschmann A, Löhrs U, Diebold J. KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006 103:883–7.PubMedGoogle Scholar
  97. 97.
    Pohl G, Ho CL, Kurman RJ, Bristow R, Wang TL, Shih IeM. Inactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations. Cancer Res. 2005 65:1994–2000.PubMedGoogle Scholar
  98. 98.
    Schulze A, Nicke B, Warne PH, Tomlinson S, Downward J. The transcriptional response to Raf activation is almost completely dependent on Mitogen-activated Protein Kinase Kinase activity and shows a major autocrine component. Mol Biol Cell. 2004 15:3450–63.PubMedGoogle Scholar
  99. 99.
    Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys. 2004 58:903–13.PubMedGoogle Scholar
  100. 100.
    Lassus H, Leminen A, Vayrynen A, Cheng G, Gustafsson JA, Isola J, Butzow R. ERBB2 amplification is superior to protein expression status in predicting patient outcome in serous ovarian carcinoma. Gynecol Oncol. 2004 92:31–9.PubMedGoogle Scholar
  101. 101.
    Wu Y, Soslow RA, Marshall DS, Leitao M, Chen B. Her-2/neu expression and amplification in early stage ovarian surface epithelial neoplasms. Gynecol Oncol. 2004 95:570–5.PubMedGoogle Scholar
  102. 102.
    Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Bock JE, Glud E, Nørgaard-Pedersen B, Høgdall CK. Distribution of HER-2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer. 2003 98:66–73.PubMedGoogle Scholar
  103. 103.
    Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, Samuels Y, Velculescu VE, Wang TL, Shih IeM. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther. 2006 5:779–85.PubMedGoogle Scholar
  104. 104.
    Tanner B, Hengstler JG, Luch A, Meinert R, Kreutz E, Arand M, Wilkens C, Hofmann M, Oesch F, Knapstein PG, Becker R. C-MYC mRNA expression in epithelial ovarian carcinomas in relation to estrogen receptor status, metastatic spread, survival time, FIGO stage, and histologic grade and type. Int J Gynecol Pathol. 1998 17:66–74.PubMedGoogle Scholar
  105. 105.
    Nasi S, Ciarapica R, Jucker R, Rosati J, Soucek L. Making decisions through Myc. FEBS Lett. 2001 490:153–62.PubMedGoogle Scholar
  106. 106.
    Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A. 1992 89:9267–71.PubMedGoogle Scholar
  107. 107.
    Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003 2:339–45.PubMedGoogle Scholar
  108. 108.
    Richardson CJ, Schalm SS, Blenis J. PI3-kinase and TOR: PIKTORing cell growth. Semin Cell Dev Biol. 2004 15:147–59.PubMedGoogle Scholar
  109. 109.
    Levine DA, Bogomolniy F, Yee C, Lash C, Barakat RR, Borgen PI, Boyd J. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res. 2005 11:2875–8.Google Scholar
  110. 110.
    Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, Testa JR. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004 23:5853–7.PubMedGoogle Scholar
  111. 111.
    Treeck O, Wackwitz B, Haus U, Ortmann O. Effects of a combined treatment with mTOR inhibitor RAD001 and tamoxifen in vitro on growth and apoptosis of human cancer cells. Gynecol Oncol. 2006 102:292–9.PubMedGoogle Scholar
  112. 112.
    Mabuchi S, Altomare DA, Cheung M, Zhang L, Poulikakos PI, Hensley HH, Schilder RJ, Ozols RF, Testa JR. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res. 2007 13:4261–70.Google Scholar
  113. 113.
    Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett. 1997 410:78–82.PubMedGoogle Scholar
  114. 114.
    Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ, Barrett JC, Boyd J, Birrer MJ. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res. 2005 11:6422–30.PubMedGoogle Scholar
  115. 115.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 87:159–70.PubMedGoogle Scholar
  116. 116.
    Singer G, Kurman RJ, Chang HW, Cho SK, Shih IeM. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol. 2002 160:1223–8.PubMedGoogle Scholar
  117. 117.
    Malpica A, Deavers MT, Lu K, Bodurka DC, Atkinson EN, Gershenson DM, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol 2004 28:496–504.PubMedGoogle Scholar
  118. 118.
    Singer G, Stohr R, Cope L, Dehari R, Hartmann A, Cao DF, Wang TL, Kurman RJ, Shih IeM. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005 29:218–24.PubMedGoogle Scholar
  119. 119.
    Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, Gardner GJ, Hao K, Wong WH, Barrett JC, Lu KH, Sood AK, Gershenson DM, Mok SC, Birrer MJ. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005 65:10602–12.PubMedGoogle Scholar
  120. 120.
    Gemignani ML, Schlaerth AC, Bogomolniy F, Barakat RR, Lin O, Soslow R, Venkatraman E, Boyd J. Role of KRAS and BRAF gene mutations in mucinous ovarian carcinoma. Gynecol Oncol. 2003 90:378–81.PubMedGoogle Scholar
  121. 121.
    Singer G, Oldt R 3rd, Cohen Y, Wang BG, Sidransky D, Kurman RJ, Shih IeM. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003 95:484–6.Google Scholar
  122. 122.
    Ho CL, Kurman RJ, Dehari R, Wang TL, Shih IeM. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 2004 64:6915–8.PubMedGoogle Scholar
  123. 123.
    Jordan S, Green A, Webb P. Benign epithelial ovarian tumours – cancer precursors or markers for ovarian cancer risk? Cancer Causes Control. 2006 17:623–32.Google Scholar
  124. 124.
    Heinzelmann-Schwarz VA, Gardiner-Garden M, Henshall SM, Scurry JP, Scolyer RA, Smith AN, Bali A, Vanden Bergh P, Baron-Hay S, Scott C, Fink D, Hacker NF, Sutherland RL, O’Brien PM. A distinct molecular profile associated with mucinous epithelial ovarian cancer. Br J Cancer. 2006 94:904–13.PubMedGoogle Scholar
  125. 125.
    Eskanazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997 24:235–59.Google Scholar
  126. 126.
    Sainz de la Cuesta R, Eichhorn JH, Rice LW, Fuller AF Jr, Nikrui N, Goff BA. Histologic transformation of benign endometriosis to early epithelial ovarian cancer. Gynecol Oncol. 1996 60:238–44.Google Scholar
  127. 127.
    Willner J, Wurz K, Allison KH, Galic V, Garcia RL, Goff BA, Swisher EM. Alternate molecular genetic pathways in ovarian carcinomas of common histological types. Hum Pathol. 2007 38:607–13.PubMedGoogle Scholar
  128. 128.
    Esteller M, Levine R, Baylin SB, Ellenson LH, Herman JG. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998 17:2413–7.PubMedGoogle Scholar
  129. 129.
    Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ, Campbell IG. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998 58:2095–7.PubMedGoogle Scholar
  130. 130.
    Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, Noguchi M. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000 60:7052–6.PubMedGoogle Scholar
  131. 131.
    Martini M, Ciccarone M, Garganese G, Maggiore C, Evangelista A, Rahimi S, Zannoni G, Vittori G, Larocca LM. Possible involvement of hMLH1, p16(INK4a) and PTEN in the malignant transformation of endometriosis. Int J Cancer. 2002 102:398–406.PubMedGoogle Scholar
  132. 132.
    Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004 64:7678–81.PubMedGoogle Scholar
  133. 133.
    Oliva E, Sarrió D, Brachtel EF, Sánchez-Estévez C, Soslow RA, Moreno-Bueno G, Palacios J. High frequency of beta-catenin mutations in borderline endometrioid tumours of the ovary. J Pathol. 2006 208:708–13.PubMedGoogle Scholar
  134. 134.
    Kolasa IK, Rembiszewska A, Janiec-Jankowska A, Dansonka-Mieszkowska A, Lewandowska AM, Konopka B, Kupryjańczyk J. PTEN mutation, expression and LOH at its locus in ovarian carcinomas. Relation to TP53, K-RAS and BRCA1 mutations. Gynecol Oncol. 2006 103:692–7.PubMedGoogle Scholar
  135. 135.
    Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, Hanash S, Misek DE, Katabuchi H, Williams BO, Fearon ER, Cho KR. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/PTEN signaling pathways. Cancer Cell. 2007 11:321–33.PubMedGoogle Scholar
  136. 136.
    Monaghan H, Williams AR. Brenner tumour with carcinoma in situ: evidence for a spectrum from benign to malignant. Histopathology. 2003 43:502–4.PubMedGoogle Scholar
  137. 137.
    Okamura H, Katabuchi H. Detailed morphology of human ovarian surface epithelium focusing on its metaplastic and neoplastic capability. Ital J Anat Embryol. 2001 106(2 Suppl 2): 263–76.PubMedGoogle Scholar
  138. 138.
    Scully RE. Pathology of ovarian cancer precursors. J Cell Biochem Suppl. 1995 23:208–18.PubMedGoogle Scholar
  139. 139.
    Dehari R, Kurman RJ, Logani S, Shih IM. The development of high-grade serous carcinoma from atypical proliferative (borderline) serous tumors and low-grade micropapillary serous carcinoma: a morphologic and molecular genetic analysis. Am J Surg Pathol. 2007 31:1007–12.PubMedGoogle Scholar
  140. 140.
    Wang Y, Helland A, Holm R, Kristensen GB, Børresen-Dale AL. PIK3CA mutations in advanced ovarian carcinomas. Hum Mutat. 2005 25:322.PubMedGoogle Scholar
  141. 141.
    Gourley C, Al-Nafussi A, Abdulkader M, Smyth JF, Gabra H. Malignant mixed mesodermal tumours: biology and clinical aspects. Eur J Cancer. 2002 38:1437–46.PubMedGoogle Scholar
  142. 142.
    Gruvberger-Saal SK, Edén P, Ringnér M, Baldetorp B, Chebil G, Borg A, Fernö M, Peterson C, Meltzer PS. Predicting continuous values of prognostic markers in breast cancer from microarray gene expression profiles. Mol Cancer Ther. 2004 3:161–8.PubMedGoogle Scholar
  143. 143.
    Auersperg N, Maines-Bandiera SL, Dyck HG, Kruk PA. Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab Invest. 1994 71:510–8.PubMedGoogle Scholar
  144. 144.
    Li NF, Willbanks G, Balkwill F, Jacobs IJ, Dafou D, Gayther SA. A modified culture medium that significantly improves the growth of human normal ovarian surface epithelial (NOSE) cells in vitro. Lab Invest. 2004. 84:923–31.PubMedGoogle Scholar
  145. 145.
    Davies BR, Steele IA, Edmondson RJ, Zwolinski SA, Saretzki G, von Zglinicki T, O’Hare MJ. Immortalisation of human ovarian surface epithelium with telomerase and temperature-sensitive SV40 large T antigen. Exp Cell Res. 2003 288:390–402.PubMedGoogle Scholar
  146. 146.
    Tsao SW, Mok SC, Fey EG, Fletcher JA, Wan TS, Chew EC, Muto MG, Knapp RC, Berkowitz RS. Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (HPV-E6E7 ORFs). Exp Cell Res. 1995 18:499–507.Google Scholar
  147. 147.
    Li NF, Dafou D, Broad S, Lu YJ , Yang JS, Hagemann T, Watson R, Wilbanks G, Jacobs IJ, Balkwill F. Gayther SA hTERT immortalised human ovarian surface epithelial cells maintain functional pRb and p53 expression. Cell Proliferation 2007 40:780–94.PubMedGoogle Scholar
  148. 148.
    Liu J, Yang G, Thompson-Lanza JA, Glassman A, Hayes K, Patterson A, Marquez RT, Auersperg N, Yu Y, Hahn WC, Mills GB, Bast RC Jr. A genetically defined model for human ovarian cancer. Cancer Res. 2004 64:1655–63.PubMedGoogle Scholar
  149. 149.
    Connolly DC, Bao R, Nikitin AY, Stephens KC, Poole TW, Hua X, Harris SS, Vanderhyden BC, Hamilton TC. 2003 Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res. 63:1389–97.PubMedGoogle Scholar
  150. 150.
    Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med. 2005 11:63–70. Epub 2004 Dec 26.PubMedGoogle Scholar
  151. 151.
    Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005 5:65–72.PubMedGoogle Scholar
  152. 152.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD. Herceptin Adjuvant (HERA) Trial Study Team. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005 353:1659–72.PubMedGoogle Scholar
  153. 153.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, Swain SM, Pisansky TM, Fehrenbacher L, Kutteh LA, Vogel VG, Visscher DW, Yothers G, Jenkins RB, Brown AM, Dakhil SR, Mamounas EP, Lingle WL, Klein PM, Ingle JN, Wolmark N. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005 353:1673–84.PubMedGoogle Scholar
  154. 154.
    Baselga J. Targeting tyrosine kinases in cancer: the second wave. Science. 2006 312:1175–8.PubMedGoogle Scholar
  155. 155.
    Savage DG, Antman KH. Imatinib mesylate – a new oral targeted therapy. N Engl J Med. 2002 346:683–93.PubMedGoogle Scholar
  156. 156.
    Herbst RS, Fukuoka M, Baselga J. Gefitinib – a novel targeted approach to treating cancer. Nat Rev Cancer. 2004 4:956–65.PubMedGoogle Scholar
  157. 157.
    Guan Y, Kuo WL, Stilwell JL, Takano H, Lapuk AV, Fridlyand J, Mao JH, Yu M, Miller MA, Santos JL, Kalloger SE, Carlson JW, Ginzinger DG, Celniker SE, Mills GB, Huntsman DG, Gray JW. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res. 2007 13:5745–55.PubMedGoogle Scholar
  158. 158.
    Sieben NL, Macropoulos P, Roemen GM, Kolkman-Uljee SM, Jan Fleuren G, Houmadi R, Diss T, Warren B, Al Adnani M, De Goeij AP, Krausz T, Flanagan AM. In ovarian neoplasms, BRAF, but not KRAS, mutations are restricted to low-grade serous tumours. J Pathol. 2004 202: 336–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kate Lawrenson
    • 1
  • Susan J. Ramus
    • 1
  • Simon A. Gayther
    • 2
  1. 1.Translational Research LaboratoryUCL EGA Institute for Women’s Health, University College LondonLondonUK
  2. 2.Gynaecological Cancer Research LaboratoriesUCL EGA Institute for Women’s Health, The Paul O’Gorman Building, University College LondonLondonUK

Personalised recommendations