High-Temperature Gaseous Oxidation

  • E. McCafferty


So far this text has considered the corrosion of metals or alloys in aqueous environments. However, when a metal or alloy is exposed to an oxidizing gas, corrosion may occur in the absence of an electrolyte, especially at high temperatures. This phenomenon is sometimes called “dry corrosion” as opposed to “wet corrosion” which occurs in the presence of an aqueous electrolyte. Oxidizing gases include O2, SO2, H2S, H2O, and CO2 but the most common oxidant is O2.


Oxide Film Oxidation Rate Electron Hole Parabolic Rate Constant Rust Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys”, Butterworths, London (1962).Google Scholar
  2. 2.
    K. Hauffe, “Oxidation of Metals”, Plenum Press, New York (1965).Google Scholar
  3. 3.
    P. Kofstad, “High Temperature Corrosion”, Elsevier Applied Science, London (1988).Google Scholar
  4. 4.
    A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM International, Materials Park, OH (2002).Google Scholar
  5. 5.
    M. W. Chase, Jr., Ed., “NIST-JANAF Thermochemical Tables”, National Institute of Standards and Technology, Gaithersburg, MD (1998).Google Scholar
  6. 6.
    J. P. Coughlin, “Contributions to the Data on Theoretical Metallurgy”, Vol. XII, US Government Printing Office, Washington, DC (1954).Google Scholar
  7. 7.
    D. R. Gaskell, “Introduction to Metallurgical Thermodynamics”, p. 272, Hemisphere Publishing Corp., Washington, DC (1981).Google Scholar
  8. 8.
    F. D. Richardson and J. H. Jeffes, J. Iron Steel. Inst., 160, 261 (1948).Google Scholar
  9. 9.
    D. F. Mitchell and M. J. Graham in “High Temperature Corrosion”, R. A. Rapp, Ed., p. 18, National Association of Corrosion Engineers, Houston, TX (1983).Google Scholar
  10. 10.
    C. Wagner, Z. Physik. Chem., B21, 25 (1933).Google Scholar
  11. 11.
    M. G. Fontana and N. D. Greene, “Corrosion Engineering”,  Chapter 11, McGraw-Hill, New York (1978).Google Scholar
  12. 12.
    D. Caplan, M. J. Graham, and M. Cohen, J. Electrochem. Soc., 119, 1205 (1972).CrossRefGoogle Scholar
  13. 13.
    K. Hauffe, “Oxidation of Metals”, p. 237, Plenum Press, New York (1965).Google Scholar
  14. 14.
    H. H. Uhlig and W. R. Revie, “Corrosion and Corrosion Control”,  Chapter 10, John Wiley, New York (1985).Google Scholar
  15. 15.
    O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys”, p. 82, Butterworths, London (1962).Google Scholar
  16. 16.
    T. P. Hoar and L. E. Price, Trans. Faraday Soc., 34, 867 (1938).CrossRefGoogle Scholar
  17. 17.
    N. D. Tomashov, “Theory of Corrosion and Protection of Metals”, p. 74, MacMillan Co., New York (1966).Google Scholar
  18. 18.
    G. Wranglen, “An Introduction to Corrosion and Protection of Metals”,  Chapter 11, Chapman and Hall, London (1985).CrossRefGoogle Scholar
  19. 19.
    J. B. Horton, W. C. Hahn, and J. F. Libsch, “Proceedings of the Third International Congress on Metallic Corrosion”, Vol. IV, p. 401, Moscow (1969).Google Scholar
  20. 20.
    W. W. Smeltzer, H. M. Hindam, and F. A. Elrefaie in “High Temperature Corrosion”, R. A. Rapp, Ed., p. 251, NACE, Houston, TX (1983).Google Scholar
  21. 21.
    P. K. Kofstad and A. Z. Hed, “Proceedings of the Fourth International Congress on Metallic Corrosion”, p. 196, NACE, Houston, TX (1972).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. McCafferty
    • 1
  1. 1.AlexandriaUSA

Personalised recommendations