Advertisement

Mechanically Assisted Corrosion

  • E. McCafferty
Chapter

Abstract

In the previous chapter we discussed two forms of localized corrosion – crevice corrosion and pitting. This chapter considers five more forms of localized corrosion, and these have the added common feature that they are assisted by mechanical processes. These five forms of mechanically assisted localized corrosion are stress-corrosion cracking, corrosion fatigue, cavitation corrosion, erosion corrosion, and fretting corrosion.

Keywords

Stress Intensity Factor Crack Length Crack Growth Rate Hydrogen Embrittlement Anodic Dissolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. F. Brown, “Stress Corrosion Cracking Control Measures”, U. S. Government Printing Office, Washington, DC (1977).Google Scholar
  2. 2.
    R. W. Staehle in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 3, NACE, Houston, TX (1969).Google Scholar
  3. 3.
    J. H. Brunton and M. C. Rochester in “Treatise on Materials Science and Technology”, Vol. 16, C. M. Preece, Ed., p. 185, Academic Press, New York, NY (1979).Google Scholar
  4. 4.
    A. S. Tetelman and A. J. McEvily, Jr., “Fracture of Structural Materials”,  Chapter 1 and  2, John Wiley, New York, NY (1967).Google Scholar
  5. 5.
    B. F. Brown in “Stress Corrosion Cracking of Metals – A State of the Art”, ASTM STP 518, p. 3, ASTM, Philadelphia, PA (1972).CrossRefGoogle Scholar
  6. 6.
    B. F. Brown in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 2, U. S. Government Printing Office, Washington, DC (1972).Google Scholar
  7. 7.
    B. F. Brown in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 186, NATO, Brussels, Belgium (1971).Google Scholar
  8. 8.
    B. F. Brown, C. T. Fujii, and E. P. Dahlberg, J. Electrochem. Soc., 116, 218 (1969).CrossRefGoogle Scholar
  9. 9.
    G. Sandoz, C. T. Fujii, and B. F. Brown, Corros. Sci., 10, 839 (1970).CrossRefGoogle Scholar
  10. 10.
    J. A. Smith, M. H. Peterson, and B. F. Brown, Corrosion, 26, 539 (1970).Google Scholar
  11. 11.
    J. C. Scully, “The Fundamentals of Corrosion”, p. 177, Pergamon Press, Oxford (1990).Google Scholar
  12. 12.
    M. Kowaka and T. Kudo, Trans. JIM, 16, 385 (1975).Google Scholar
  13. 13.
    G. R. Irwin and A. A. Wells, Met. Revs., 10, 223 (1965).CrossRefGoogle Scholar
  14. 14.
    B. F. Brown, Met. Revs., 13, 171, (1968).CrossRefGoogle Scholar
  15. 15.
    B. F. Brown and C. D. Beachem, Corros. Sci., 5, 745 (1965).CrossRefGoogle Scholar
  16. 16.
    M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover, Corrosion, 23, 142 (1967).Google Scholar
  17. 17.
    P. C. Paris and G. C. Sigh in “Fracture Toughness Testing and Its Applications”, ASTM STP 381, p. 30, ASTM, Philadelphia, PA (1965).CrossRefGoogle Scholar
  18. 18.
    H. Tada, P. C. Paris, and G. R. Irwin, “The Stress Analysis of Cracks Handbook”, Del Research Corporation, St. Louis, MO (1973).Google Scholar
  19. 19.
    S. A. Meguid, “Engineering Fracture Mechanics”, p. 134, Elsevier Applied Science, London (1989).Google Scholar
  20. 20.
    A. J. Sedriks, “Corrosion of Stainless Steels”,  Chapter 7, Wiley-Interscience, New York, NY (1996).Google Scholar
  21. 21.
    R. W. Judy, Jr. and R. J. Goode, “Stress-Corrosion Cracking Characteristics of Alloys of Titanium in Salt Water”, NRL Report 6564, Naval Research Laboratory, Washington, DC, July 21 (1967).Google Scholar
  22. 22.
    R. W. Schutz in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 265, ASM International, Materials Park, OH (1992).Google Scholar
  23. 23.
    A. J. Sedriks, “Stress Corrosion Cracking Test Methods”, NACE, Houston, TX (1990).Google Scholar
  24. 24.
    M. V. Hyatt and M. O. Speidel in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 147, U. S. Government Printing Office, Washington, DC (1972).Google Scholar
  25. 25.
    D. O. Sprowls and R. H. Brown in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 466, NACE, Houston, TX (1969).Google Scholar
  26. 26.
    S. W. Ciaraldi in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 41, ASM International, Materials Park, OH (1992).Google Scholar
  27. 27.
    E. N. Pugh, J. V. Craig, and A. J. Sedriks in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 118, NACE, Houston, TX (1969).Google Scholar
  28. 28.
    R. M. Latanision and R. W. Staehle in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 214, NACE, Houston, TX (1969).Google Scholar
  29. 29.
    R. N. Parkins in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 361, NACE, Houston, TX (1969).Google Scholar
  30. 30.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, p. 129, John Wiley & Sons, New York, NY (1996).Google Scholar
  31. 31.
    H. H. Uhlig and E. W. Cook, Jr, J, Electrochem. Soc., 116, 173 (1969).CrossRefGoogle Scholar
  32. 32.
    N. Sridhar and G. Cragnolino in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 131, ASM International, Materials Park, OH (1992).Google Scholar
  33. 33.
    G. Sandoz in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 79, U. S. Government Printing Office, Washington, DC (1972).Google Scholar
  34. 34.
    T. R. Beck in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 64, NATO, Brussels, Belgium (1971).Google Scholar
  35. 35.
    C. T. Fujii and E. A. Metzbower “Stress-Corrosion Cracking in the HY-130 System”, NRL Memorandum Report 2814, Naval Research Laboratory, Washington, DC, June (1974).Google Scholar
  36. 36.
    P. G. Marsh and W. W. Gerberich in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 64, ASM International, Materials Park, OH (1992).Google Scholar
  37. 37.
    M. J. Blackburn, W. H. Smyrl, and J. A. Feeny in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 245, U. S. Government Printing Office, Washington, DC (1972).Google Scholar
  38. 38.
    J. A. Beavers in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 211, ASM International, Materials Park, OH (1992).Google Scholar
  39. 39.
    W. K. Miller in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 251, ASM International, Materials Park, OH (1992).Google Scholar
  40. 40.
    H. H. Uhlig and R. W. Revie, “Corrosion and Corrosion Control”,  Chapter 7, John Wiley, New York, NY (1985).Google Scholar
  41. 41.
    E. N. Pugh in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 418, NATO, Brussels, Belgium (1971).Google Scholar
  42. 42.
    J. O’M. Bockris and A. K. N. Reddy, “Modern Electrochemistry”, Vol. 2, p. 1233, Plenum Press, New York, NY (1977).CrossRefGoogle Scholar
  43. 43.
    C. D. Beachem, Metall. Trans., 3, 437 (1972).CrossRefGoogle Scholar
  44. 44.
    B. F. Brown, “Stress-Corrosion Cracking and Related Phenomena in High-Strength Steels”, NRL Report 6041, Naval Research Laboratory, Washington, DC, November 6 (1963).Google Scholar
  45. 45.
    M. A. Devanathan and Z. Stachurski, J. Electrochem. Soc., 111, 619 (1964).CrossRefGoogle Scholar
  46. 46.
    B. E. Wilde, Corrosion, 27, 326 (1971).Google Scholar
  47. 47.
    M. G. Fontana and N. D. Greene, “Corrosion Engineering”, pp. 72, 88–115, McGraw-Hill, New York, NY (1978).Google Scholar
  48. 48.
    C. P. Dieport in “Impact Surface Treatment”, S. A. Meguid, Ed., p. 86, Elsevier Applied Science, London, (1986).Google Scholar
  49. 49.
    D. W. Hoeppner in “Corrosion Fatigue: Chemistry, Mechanics, and Microstructure”, A. J. McEvily and R. W. Staehle, Eds., p. 3, NACE, Houston, TX (1972).Google Scholar
  50. 50.
    D. J. Duquette in “Corrosion Mechanisms”, F. Mansfeld, Ed., p. 367, Marcel Dekker, New York, NY (1987).Google Scholar
  51. 51.
    V. I. Pokhmurskii and A. M. Krohmalnyi in “Corrosion Fatigue”, R. M. Parkins and Y. M. Kolotrykin, Eds., p. 54, The Metals Society, London (1983).Google Scholar
  52. 52.
    T. W. Crooker “Basic Concepts for Design Against Structural Failure by Fatigue Crack Propagation”, NRL Report 7347, Naval Research Laboratory, Washington, DC, January 13 (1972).Google Scholar
  53. 53.
    P. Paris and F. Erdogan, Trans. ASME, J. Basic Engineering, Series D, 85, 528 (1963).CrossRefGoogle Scholar
  54. 54.
    A. J. Sedriks, “Corrosion of Stainless Steels”,  Chapter 8, Wiley-Interscience, New York, NY (1996).Google Scholar
  55. 55.
    F. D. Bogar and T. W. Crooker, J. Testing Evaluation, 7, 155 (1979).CrossRefGoogle Scholar
  56. 56.
    J. Yu, Z. J. Zhao, and L. X. Li, Corrros. Sci., 35, 587 (1993).CrossRefGoogle Scholar
  57. 57.
    C. M. Preece in “Treatise on Materials Science and Technology”, Vol. 16, C. M. Preece, Ed., p. 249, Academic Press, New York, NY (1979).Google Scholar
  58. 58.
    A. Karimi and J. L. Martin, Inter. Metal Revs., 31, 1 (1986).CrossRefGoogle Scholar
  59. 59.
    A. W. Adamson, “Physical Chemistry of Surfaces”, 3rd edition, p. 2, John Wiley, New York, NY (1976).Google Scholar
  60. 60.
    “Standard Test Method for Cavitation Erosion Using Vibratory Apparatus”, ASTM Test Method G32-92, “1998 Annual Book of ASTM Standards”, Volume 3.02, p. 103, ASTM, West Conshohocken, PA (1998).Google Scholar
  61. 61.
    G. Engelberg and J. Yahalom, Corros. Sci., 12, 649 (1972).CrossRefGoogle Scholar
  62. 62.
    A. Al-Hashem, P. G. Caceres, W. T. Riad, and H. M. Shalaby, Corrosion, 51, 331 (1995).CrossRefGoogle Scholar
  63. 63.
    W. W. Hu, C. R. Clayton, and H. Herman, Mater. Sci. Eng, 45, 263 (1980).CrossRefGoogle Scholar
  64. 64.
    N. D. Tomashov, “Theory of Corrosion and Protection of Metals”, p. 465, MacMillan Company, New York, NY (1966).Google Scholar
  65. 65.
    W. F. Czyrkalis and M. Levy, “Stress Corrosion Cracking of Uranium Alloys”, AMMRC Report TR 73-54, Army Materials and Mechanics Research Center, Watertown, MA, December (1973).Google Scholar
  66. 66.
    T. R. Beck, J. Electrochem. Soc., 115, 890 (1968).CrossRefGoogle Scholar
  67. 67.
    R. A. Bayles and D. A. Meyn in “Corrosion Cracking”, V. S. Goel, Ed., p. 241, American Society of Metals, Metals Park, OH (1986).Google Scholar
  68. 68.
    W. H. Smyrl and M. J. Blackburn, J. Mater. Sci., 9, 777 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. McCafferty
    • 1
  1. 1.AlexandriaUSA

Personalised recommendations