Skip to main content

Mechanically Assisted Corrosion

  • Chapter
  • First Online:

Abstract

In the previous chapter we discussed two forms of localized corrosion – crevice corrosion and pitting. This chapter considers five more forms of localized corrosion, and these have the added common feature that they are assisted by mechanical processes. These five forms of mechanically assisted localized corrosion are stress-corrosion cracking, corrosion fatigue, cavitation corrosion, erosion corrosion, and fretting corrosion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. F. Brown, “Stress Corrosion Cracking Control Measures”, U. S. Government Printing Office, Washington, DC (1977).

    Google Scholar 

  2. R. W. Staehle in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 3, NACE, Houston, TX (1969).

    Google Scholar 

  3. J. H. Brunton and M. C. Rochester in “Treatise on Materials Science and Technology”, Vol. 16, C. M. Preece, Ed., p. 185, Academic Press, New York, NY (1979).

    Google Scholar 

  4. A. S. Tetelman and A. J. McEvily, Jr., “Fracture of Structural Materials”, Chapter 1 and 2, John Wiley, New York, NY (1967).

    Google Scholar 

  5. B. F. Brown in “Stress Corrosion Cracking of Metals – A State of the Art”, ASTM STP 518, p. 3, ASTM, Philadelphia, PA (1972).

    Book  Google Scholar 

  6. B. F. Brown in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 2, U. S. Government Printing Office, Washington, DC (1972).

    Google Scholar 

  7. B. F. Brown in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 186, NATO, Brussels, Belgium (1971).

    Google Scholar 

  8. B. F. Brown, C. T. Fujii, and E. P. Dahlberg, J. Electrochem. Soc., 116, 218 (1969).

    Article  CAS  Google Scholar 

  9. G. Sandoz, C. T. Fujii, and B. F. Brown, Corros. Sci., 10, 839 (1970).

    Article  CAS  Google Scholar 

  10. J. A. Smith, M. H. Peterson, and B. F. Brown, Corrosion, 26, 539 (1970).

    CAS  Google Scholar 

  11. J. C. Scully, “The Fundamentals of Corrosion”, p. 177, Pergamon Press, Oxford (1990).

    Google Scholar 

  12. M. Kowaka and T. Kudo, Trans. JIM, 16, 385 (1975).

    Google Scholar 

  13. G. R. Irwin and A. A. Wells, Met. Revs., 10, 223 (1965).

    Article  Google Scholar 

  14. B. F. Brown, Met. Revs., 13, 171, (1968).

    Article  CAS  Google Scholar 

  15. B. F. Brown and C. D. Beachem, Corros. Sci., 5, 745 (1965).

    Article  Google Scholar 

  16. M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover, Corrosion, 23, 142 (1967).

    CAS  Google Scholar 

  17. P. C. Paris and G. C. Sigh in “Fracture Toughness Testing and Its Applications”, ASTM STP 381, p. 30, ASTM, Philadelphia, PA (1965).

    Book  Google Scholar 

  18. H. Tada, P. C. Paris, and G. R. Irwin, “The Stress Analysis of Cracks Handbook”, Del Research Corporation, St. Louis, MO (1973).

    Google Scholar 

  19. S. A. Meguid, “Engineering Fracture Mechanics”, p. 134, Elsevier Applied Science, London (1989).

    Google Scholar 

  20. A. J. Sedriks, “Corrosion of Stainless Steels”, Chapter 7, Wiley-Interscience, New York, NY (1996).

    Google Scholar 

  21. R. W. Judy, Jr. and R. J. Goode, “Stress-Corrosion Cracking Characteristics of Alloys of Titanium in Salt Water”, NRL Report 6564, Naval Research Laboratory, Washington, DC, July 21 (1967).

    Google Scholar 

  22. R. W. Schutz in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 265, ASM International, Materials Park, OH (1992).

    Google Scholar 

  23. A. J. Sedriks, “Stress Corrosion Cracking Test Methods”, NACE, Houston, TX (1990).

    Google Scholar 

  24. M. V. Hyatt and M. O. Speidel in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 147, U. S. Government Printing Office, Washington, DC (1972).

    Google Scholar 

  25. D. O. Sprowls and R. H. Brown in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 466, NACE, Houston, TX (1969).

    Google Scholar 

  26. S. W. Ciaraldi in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 41, ASM International, Materials Park, OH (1992).

    Google Scholar 

  27. E. N. Pugh, J. V. Craig, and A. J. Sedriks in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 118, NACE, Houston, TX (1969).

    Google Scholar 

  28. R. M. Latanision and R. W. Staehle in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 214, NACE, Houston, TX (1969).

    Google Scholar 

  29. R. N. Parkins in “Fundamental Aspects of Stress Corrosion Cracking”, R. W. Staehle, A. J. Forty, and D. van Rooyen, Eds., p. 361, NACE, Houston, TX (1969).

    Google Scholar 

  30. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, p. 129, John Wiley & Sons, New York, NY (1996).

    Google Scholar 

  31. H. H. Uhlig and E. W. Cook, Jr, J, Electrochem. Soc., 116, 173 (1969).

    Article  CAS  Google Scholar 

  32. N. Sridhar and G. Cragnolino in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 131, ASM International, Materials Park, OH (1992).

    Google Scholar 

  33. G. Sandoz in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 79, U. S. Government Printing Office, Washington, DC (1972).

    Google Scholar 

  34. T. R. Beck in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 64, NATO, Brussels, Belgium (1971).

    Google Scholar 

  35. C. T. Fujii and E. A. Metzbower “Stress-Corrosion Cracking in the HY-130 System”, NRL Memorandum Report 2814, Naval Research Laboratory, Washington, DC, June (1974).

    Google Scholar 

  36. P. G. Marsh and W. W. Gerberich in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 64, ASM International, Materials Park, OH (1992).

    Google Scholar 

  37. M. J. Blackburn, W. H. Smyrl, and J. A. Feeny in “Stress-Corrosion Cracking in High Strength Steels and in Titanium and Titanium Alloys”, B. F. Brown, Ed., p. 245, U. S. Government Printing Office, Washington, DC (1972).

    Google Scholar 

  38. J. A. Beavers in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 211, ASM International, Materials Park, OH (1992).

    Google Scholar 

  39. W. K. Miller in “Stress-Corrosion Cracking”, R. H. Jones, Ed., p. 251, ASM International, Materials Park, OH (1992).

    Google Scholar 

  40. H. H. Uhlig and R. W. Revie, “Corrosion and Corrosion Control”, Chapter 7, John Wiley, New York, NY (1985).

    Google Scholar 

  41. E. N. Pugh in “The Theory of Stress Corrosion Cracking in Alloys”, J. C. Scully, Ed., p. 418, NATO, Brussels, Belgium (1971).

    Google Scholar 

  42. J. O’M. Bockris and A. K. N. Reddy, “Modern Electrochemistry”, Vol. 2, p. 1233, Plenum Press, New York, NY (1977).

    Book  Google Scholar 

  43. C. D. Beachem, Metall. Trans., 3, 437 (1972).

    Article  CAS  Google Scholar 

  44. B. F. Brown, “Stress-Corrosion Cracking and Related Phenomena in High-Strength Steels”, NRL Report 6041, Naval Research Laboratory, Washington, DC, November 6 (1963).

    Google Scholar 

  45. M. A. Devanathan and Z. Stachurski, J. Electrochem. Soc., 111, 619 (1964).

    Article  CAS  Google Scholar 

  46. B. E. Wilde, Corrosion, 27, 326 (1971).

    CAS  Google Scholar 

  47. M. G. Fontana and N. D. Greene, “Corrosion Engineering”, pp. 72, 88–115, McGraw-Hill, New York, NY (1978).

    Google Scholar 

  48. C. P. Dieport in “Impact Surface Treatment”, S. A. Meguid, Ed., p. 86, Elsevier Applied Science, London, (1986).

    Google Scholar 

  49. D. W. Hoeppner in “Corrosion Fatigue: Chemistry, Mechanics, and Microstructure”, A. J. McEvily and R. W. Staehle, Eds., p. 3, NACE, Houston, TX (1972).

    Google Scholar 

  50. D. J. Duquette in “Corrosion Mechanisms”, F. Mansfeld, Ed., p. 367, Marcel Dekker, New York, NY (1987).

    Google Scholar 

  51. V. I. Pokhmurskii and A. M. Krohmalnyi in “Corrosion Fatigue”, R. M. Parkins and Y. M. Kolotrykin, Eds., p. 54, The Metals Society, London (1983).

    Google Scholar 

  52. T. W. Crooker “Basic Concepts for Design Against Structural Failure by Fatigue Crack Propagation”, NRL Report 7347, Naval Research Laboratory, Washington, DC, January 13 (1972).

    Google Scholar 

  53. P. Paris and F. Erdogan, Trans. ASME, J. Basic Engineering, Series D, 85, 528 (1963).

    Article  CAS  Google Scholar 

  54. A. J. Sedriks, “Corrosion of Stainless Steels”, Chapter 8, Wiley-Interscience, New York, NY (1996).

    Google Scholar 

  55. F. D. Bogar and T. W. Crooker, J. Testing Evaluation, 7, 155 (1979).

    Article  CAS  Google Scholar 

  56. J. Yu, Z. J. Zhao, and L. X. Li, Corrros. Sci., 35, 587 (1993).

    Article  CAS  Google Scholar 

  57. C. M. Preece in “Treatise on Materials Science and Technology”, Vol. 16, C. M. Preece, Ed., p. 249, Academic Press, New York, NY (1979).

    Google Scholar 

  58. A. Karimi and J. L. Martin, Inter. Metal Revs., 31, 1 (1986).

    Article  CAS  Google Scholar 

  59. A. W. Adamson, “Physical Chemistry of Surfaces”, 3rd edition, p. 2, John Wiley, New York, NY (1976).

    Google Scholar 

  60. “Standard Test Method for Cavitation Erosion Using Vibratory Apparatus”, ASTM Test Method G32-92, “1998 Annual Book of ASTM Standards”, Volume 3.02, p. 103, ASTM, West Conshohocken, PA (1998).

    Google Scholar 

  61. G. Engelberg and J. Yahalom, Corros. Sci., 12, 649 (1972).

    Article  Google Scholar 

  62. A. Al-Hashem, P. G. Caceres, W. T. Riad, and H. M. Shalaby, Corrosion, 51, 331 (1995).

    Article  CAS  Google Scholar 

  63. W. W. Hu, C. R. Clayton, and H. Herman, Mater. Sci. Eng, 45, 263 (1980).

    Article  CAS  Google Scholar 

  64. N. D. Tomashov, “Theory of Corrosion and Protection of Metals”, p. 465, MacMillan Company, New York, NY (1966).

    Google Scholar 

  65. W. F. Czyrkalis and M. Levy, “Stress Corrosion Cracking of Uranium Alloys”, AMMRC Report TR 73-54, Army Materials and Mechanics Research Center, Watertown, MA, December (1973).

    Google Scholar 

  66. T. R. Beck, J. Electrochem. Soc., 115, 890 (1968).

    Article  CAS  Google Scholar 

  67. R. A. Bayles and D. A. Meyn in “Corrosion Cracking”, V. S. Goel, Ed., p. 241, American Society of Metals, Metals Park, OH (1986).

    Google Scholar 

  68. W. H. Smyrl and M. J. Blackburn, J. Mater. Sci., 9, 777 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McCafferty, E. (2010). Mechanically Assisted Corrosion. In: Introduction to Corrosion Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0455-3_11

Download citation

Publish with us

Policies and ethics