Skip to main content

Somatic Molecular Genetics of Prostate Cancer

  • Chapter
  • First Online:
Male Reproductive Cancers

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 818 Accesses

Abstract

Despite progress in diagnosis and treatment, prostate cancer is still one of the most frequent lethal diseases in men in Western countries. Today, an increasing number of prostate cancers are detected through elevated serum prostate-specific antigen (PSA) levels. PSA detection is very sensitive. Determining free versus total PSA serum level has enabled the achievement of better specificity (Balk et al. 2003), however, this tool remains imperfect. Many patients undergo unnecessary diagnostic procedures, experiencing physiological and psychological stress. Similarly, current techniques such as imaging and biopsies are not optimal thus, hopes are high for the discovery of new molecular markers for prostate cancer. Studying prostate cancer progression may reveal new insights into the molecular mechanisms of cancer development to help improve prevention, provide better tools for diagnosis, as well as for prognosis and treatment.

There is no site-specific inherited prostate cancer susceptibility gene, but epidemiological studies have demonstrated familial clustering of prostate cancer suggesting an important role of hereditary factors in the development of the disease. Almost 25% of all prostate cancer occurs in family clusters and about 9% can be attributed to hereditary prostate cancer with an autosomal dominant transmission (Carter et al. 1993; Gronberg et al. 1997; Schaid et al. 1998; Langeberg et al. 2007). Men having an affected first-degree relative have two- to threefold higher risk of developing prostate cancer compared with men with no family history (Johns and Houlston 2003). Studies of twins showed higher frequency for prostate cancer in monozygotic as compared to dizygotic twins (Lichtenstein et al. 2000). Several chromosomes may harbor high-penetrance prostate cancer susceptibility genes. Molecular studies have identified three candidate susceptibility genes: the HPC2/ELAC2 gene located at 17p12 encoding a protein with a poorly defined function (Tavtigian et al. 2001), the putative tumor suppressor gene RNASEL located at 1q24–q25 (Carpten et al. 2002), and the MSR1 gene located at 8p22–23 (Xu et al. 2002). However, no functional study has clearly shown that they have a clear role as ­susceptibility genes and thus further investigations are needed. These issues are discussed in detail in the chapters of Lange, and Eeles and colleagues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, Borowsky AD, Cardiff RD, Shen MM (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63:3886–3890

    PubMed  CAS  Google Scholar 

  • Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA, Milbrandt J (2002) Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22:1495–1503

    PubMed  CAS  Google Scholar 

  • Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, Tanke HJ, Schroder FH, van Dekken H (2000) Identification of genetic markers for prostatic cancer progression. Lab Invest 80:931–942

    PubMed  CAS  Google Scholar 

  • Alvarado C, Beitel LK, Sircar K, Aprikian A, Trifiro M, Gottlieb B (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res 65:8514–8518

    PubMed  CAS  Google Scholar 

  • Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22–R1. Cancer Res 60:6134–6141

    PubMed  CAS  Google Scholar 

  • Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645

    PubMed  CAS  Google Scholar 

  • Asatiani E, Huang WX, Wang A, Ortner ER, Cavalli LR, Haddad BR, Gelmann EP (2005) Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 65:1164–1173

    PubMed  CAS  Google Scholar 

  • Balk SP, Ko YJ, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21:383–391

    PubMed  CAS  Google Scholar 

  • Bennett CL, Price DK, Kim S, Liu D, Jovanovic BD, Nathan D, Johnson ME, Montgomery JS, Cude K, Brockbank JC, Sartor O, Figg WD (2002) Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J Clin Oncol 20:3599–3604

    PubMed  CAS  Google Scholar 

  • Bentel JM, Tilley WD (1996) Androgen receptors in prostate cancer. J Endocrinol 151:1–11

    PubMed  CAS  Google Scholar 

  • Berube NG, Speevak MD, Chevrette M (1994) Suppression of tumorigenicity of human prostate cancer cells by introduction of human chromosome del(12)(q13). Cancer Res 54:3077–3081

    PubMed  CAS  Google Scholar 

  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13:966–977

    PubMed  CAS  Google Scholar 

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    PubMed  CAS  Google Scholar 

  • Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26:2525–2534

    PubMed  CAS  Google Scholar 

  • Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC (1993) p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53:3369–3373

    PubMed  CAS  Google Scholar 

  • Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB (1997) Tumour-suppressor genes in prostatic oncogenesis: a positional approach. Br J Urol 79:28–36

    PubMed  Google Scholar 

  • Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    PubMed  CAS  Google Scholar 

  • Bouras T, Frauman AG (1999) Expression of the prostate cancer metastasis suppressor gene KAI1 in primary prostate cancers: a biphasic relationship with tumour grade. J Pathol 188:382–388

    PubMed  CAS  Google Scholar 

  • Bova GS, Carter BS, Bussemakers MJG, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, Isaacs WB (1993) Homozygous deletion and frequent allelic loss of chromosome-8P22 loci in human prostate-cancer. Cancer Res 53:3869–3873

    PubMed  CAS  Google Scholar 

  • Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, Gasser TC, Koivisto P, Lack EE, Kononen J, Kallioniemi OP, Gelmann EP (2000) Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60:6111–6115

    PubMed  CAS  Google Scholar 

  • Bratt O, Borg A, Kristoffersson U, Lundgren R, Zhang QX, Olsson H (1999) CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 81:672–676

    PubMed  CAS  Google Scholar 

  • Buchanan G, Greenberg NM, Scher HI, Harris JM, Marshall VR, Tilley WD (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7:1273–1281

    PubMed  CAS  Google Scholar 

  • Buchanan G, Yang M, Cheong A, Harris JM, Irvine RA, Lambert PF, Moore NL, Raynor M, Neufing PJ, Coetzee GA, Tilley WD (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum Mol Genet 13:1677–1692

    PubMed  CAS  Google Scholar 

  • Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours (Reprinted from Trends Biochem Sci 12 (1999)). Trends Cell Biol 9:M57–M60

    PubMed  CAS  Google Scholar 

  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Isaacs WB, Bova GS, Sidransky D (1997a) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57:4997–5000

    PubMed  CAS  Google Scholar 

  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D (1997b) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57:4997–5000

    PubMed  CAS  Google Scholar 

  • Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730

    PubMed  CAS  Google Scholar 

  • Cajot JF, Sordat I, Silvestre T, Sordat B (1997) Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells. Cancer Res 57:2593–2597

    PubMed  CAS  Google Scholar 

  • Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, Hu P, Buinovszky P, Makalowska I, Baffoe-Bonnie A, Faith D, Smith J, Stephan D, Wiley K, Brownstein M, Gildea D, Kelly B, Jenkins R, Hostetter G, Matikainen M, Schleutker J, Klinger K, Connors T, Xiang Y, Wang Z, De Marzo A, Papadopoulos N, Kallioniemi OP, Burk R, Meyers D, Gronberg H, Meltzer P, Silverman R, Bailey-Wilson J, Walsh P, Isaacs W, Trent J (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184

    PubMed  CAS  Google Scholar 

  • Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, Walsh PC (1993) Hereditary prostate-cancer – epidemiologic and clinical-features. J Urol 150:797–802

    PubMed  CAS  Google Scholar 

  • Chang GTG, Steenbeek M, Schippers E, Blok LJ, van Weerden WM, van Alewijk DCJG, Eussen BHJ, van Steenbrugge GJ, Brinkmann AO (2000) Characterization of a zinc-finger protein and its association with apoptosis in prostate cancer cells. J Natl Cancer Inst 92:1414–1421

    PubMed  CAS  Google Scholar 

  • Chen C, Hyytinen ER, Sun X, Helin HJ, Koivisto PA, Frierson HF Jr, Vessella RL, Dong JT (2003) Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 162:1349–1354

    PubMed  CAS  Google Scholar 

  • Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH (1996) Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 56:3091–3102

    PubMed  CAS  Google Scholar 

  • Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G (1998) Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 90:916–920

    PubMed  CAS  Google Scholar 

  • Counter CM, Avilion AA, Lefeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    PubMed  CAS  Google Scholar 

  • Culig Z, Hobisch A, Hittmair A, Cronauer MV, Radmayr C, Bartsch G, Klocker H (1997) Androgen receptor gene mutations in prostate cancer. Implications for disease progression and therapy. Drugs Aging 10:50–58

    PubMed  CAS  Google Scholar 

  • Culig Z, Klocker H, Bartsch G, Hobisch A (2001) Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am J Pharmacogenomics 1:241–249

    PubMed  CAS  Google Scholar 

  • Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K, Pfeifer GP (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20:645–663

    PubMed  CAS  Google Scholar 

  • Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE (2002) Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 8:1904–1914

    PubMed  CAS  Google Scholar 

  • De Marzo AM, Meeker AK, Epstein JI, Coffey DS (1998) Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 153:911–919

    PubMed  CAS  Google Scholar 

  • De Marzo AM, Meeker AK, Zha S, Luo J, Nakayama M, Platz EA, Isaacs WB, Nelson WG (2003) Human prostate cancer precursors and pathobiology. Urology 62:55–62

    PubMed  Google Scholar 

  • DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964

    PubMed  CAS  Google Scholar 

  • Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27:222–224

    PubMed  CAS  Google Scholar 

  • DiPaola RS, Patel J, Rafi MM (2001) Targeting apoptosis in prostate cancer. Hematol Oncol Clin North Am 15:509–524

    PubMed  CAS  Google Scholar 

  • Donaldson L, Fordyce C, Gilliland F, Smith A, Feddersen R, Joste N, Moyzis R, Griffith J (1999) Association between outcome and telomere DNA content in prostate cancer. J Urol 162:1788–1792

    PubMed  CAS  Google Scholar 

  • Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886

    PubMed  CAS  Google Scholar 

  • Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT (1996) Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 56:4387–4390

    PubMed  CAS  Google Scholar 

  • Dong JT, Sipe TW, Hyytinen ER, Li CL, Heise C, McClintock DE, Grant CD, Chung LWK, Frierson HF (1998) PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 17:1979–1982

    PubMed  CAS  Google Scholar 

  • Dong JT, Li CL, Sipe TW, Frierson HF (2001) Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin Cancer Res 7:304–308

    PubMed  CAS  Google Scholar 

  • Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, Stevens VL, Calle EE, Dong JT (2008) SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17:1031–1042

    PubMed  CAS  Google Scholar 

  • Eagle LR, Yin XY, Brothman AR, Williams BJ, Atkin NB, Prochownik EV (1995) Mutation of the Mxi1 gene in prostate-cancer. Nat Genet 9:249–255

    PubMed  CAS  Google Scholar 

  • Elo JP, Visakorpi T (2001) Molecular genetics of prostate cancer. Ann Med 33:130–141

    PubMed  CAS  Google Scholar 

  • Emmertbuck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang ZP, Bostwick DG, Liotta LA, Linehan WM (1995) Allelic loss on chromosome 8P12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55:2959–2962

    CAS  Google Scholar 

  • Ewing CM, Ru N, Morton RA, Robinson JC, Wheelock MJ, Johnson KR, Barrett JC, Isaacs WB (1995) Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correlation with re-expression of alpha-catenin and restoration of E-cadherin function. Cancer Res 55:4813–4817

    PubMed  CAS  Google Scholar 

  • Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM (1998) Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16:1743–1748

    PubMed  CAS  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180

    PubMed  CAS  Google Scholar 

  • Fromont G, Vallancien G, Validire P, Levillain P, Cussenot O (2007) BCAR1 expression in prostate cancer: association with 16q23 LOH status, tumor progression and EGFR/KAI1 staining. Prostate 67:268–273

    PubMed  Google Scholar 

  • Fujita N, Sato S, Katayama K, Tsuruo T (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277:28706–28713

    PubMed  CAS  Google Scholar 

  • Gagnon A, Ripeau JS, Zvieriev V, Chevrette M (2006) Chromosome 18 suppresses tumorigenic properties of human prostate cancer cells. Genes Chromosomes Cancer 45:220–230

    PubMed  CAS  Google Scholar 

  • Gao AC, Lou W, Dong JT, Isaacs JT (1997) CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 57:846–849

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94:3320–3323

    PubMed  CAS  Google Scholar 

  • Goessl C, Krause H, Muller M, Heicappell R, Schrader M, Sachsinger J, Miller K (2000) Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 60:5941–5945

    PubMed  CAS  Google Scholar 

  • Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG (2003) Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 9:2673–2677

    PubMed  CAS  Google Scholar 

  • Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7:420–428

    PubMed  CAS  Google Scholar 

  • Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    PubMed  CAS  Google Scholar 

  • Gronberg H, Isaacs SD, Smith JR, Carpten JD, Bova GS, Freije D, Xu JF, Meyers DA, Collins FS, Trent JM, Walsh PC, Isaacs WB (1997) Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 278:1251–1255

    PubMed  CAS  Google Scholar 

  • Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, Witte ON, Said JW, Loda M, Reiter RE (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19:1288–1296

    PubMed  CAS  Google Scholar 

  • Guo Y, Sklar GN, Borkowski A, Kyprianou N (1997) Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 3:2269–2274

    PubMed  CAS  Google Scholar 

  • Haapala K, Hyytinen ER, Roiha M, Laurila M, Rantala I, Helin HJ, Koivisto PA (2001) Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Lab Invest 81:1647–1651

    PubMed  CAS  Google Scholar 

  • Hackett JA, Greider CW (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21:619–626

    PubMed  CAS  Google Scholar 

  • Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, Miyamoto M (2003) Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 63:149–153

    PubMed  CAS  Google Scholar 

  • Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang ZF, Nanus DM, Catterall JF (1996) Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 81:4400–4405

    PubMed  CAS  Google Scholar 

  • Hashida H, Takabayashi A, Tokuhara T, Taki T, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Integrin alpha3 expression as a prognostic factor in colon cancer: association with MRP-1/CD9 and KAI1/CD82. Int J Cancer 97:518–525

    PubMed  CAS  Google Scholar 

  • He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, AbateShen C, Carter KC (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43:69–77

    PubMed  CAS  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    PubMed  CAS  Google Scholar 

  • Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1107

    PubMed  CAS  Google Scholar 

  • Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, Kodama K, Doi O, Miyake M (1995) Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res 55:6040–6044

    PubMed  CAS  Google Scholar 

  • Higashiyama M, Doi O, Kodama K, Yokouchi H, Adachi M, Huang CL, Taki T, Kasugai T, Ishiguro S, Nakamori S, Miyake M (1997) Immunohistochemically detected expression of motility-related protein-1 (MRP-1/CD9) in lung adenocarcinoma and its relation to prognosis. Int J Cancer 74:205–211

    PubMed  CAS  Google Scholar 

  • Hosoki S, Ota S, Ichikawa Y, Suzuki H, Ueda T, Naya Y, Akakura K, Igarashi T, Oshimura M, Nihei N, Barrett JC, Ichikawa T, Ito H (2002) Suppression of metastasis of rat prostate cancer by introduction of human chromosome 13. Asian J Androl 4:131–136

    PubMed  CAS  Google Scholar 

  • Houle CD, Ding XY, Foley JF, Afshari CA, Barrett JC, Davis BJ (2002) Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol 86:69–78

    PubMed  Google Scholar 

  • Hsing AW, Gao YT, Wu G, Wang X, Deng J, Chen YL, Sesterhenn IA, Mostofi FK, Benichou J, Chang C (2000) Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 60:5111–5116

    PubMed  CAS  Google Scholar 

  • Huggins C, Hodges CV (2002) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J Urol 168:9–12

    PubMed  Google Scholar 

  • Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765

    PubMed  CAS  Google Scholar 

  • Hyytinen ER, Frierson HF, Boyd JC, Chung LWK, Dong JT (1999) Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 25:108–114

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Ichikawa Y, Dong J, Hawkins AL, Griffin CA, Isaacs WB, Oshimura M, Barrett JC, Isaacs JT (1992) Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Res 52:3486–3490

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Nihei N, Suzuki H, Oshimura M, Emi M, Nakamura Y, Hayata I, Isaacs JT, Shimazaki J (1994) Suppression of metastasis of rat prostatic cancer by introducing human chromosome 8. Cancer Res 54:2299–2302

    PubMed  CAS  Google Scholar 

  • Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237

    PubMed  CAS  Google Scholar 

  • Jaeger EB, Samant RS, Rinker-Schaeffer CW (2001) Metastasis suppression in prostate cancer. Cancer Metastasis Rev 20:279–286

    PubMed  CAS  Google Scholar 

  • Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR (2001) P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol 25:1397–1404

    PubMed  CAS  Google Scholar 

  • Johns LE, Houlston RS (2003) A systematic review and meta-analysis of familial prostate cancer risk. BJU Int 91:789–794

    PubMed  CAS  Google Scholar 

  • Jung V, Kindich R, Kamradt J, Jung M, Muller M, Schulz WA, Engers R, Unteregger G, Stockle M, Zimmermann R, Wullich B (2006) Genomic and expression analysis of the 3q25–q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer. Mol Cancer Res 4:169–176

    PubMed  CAS  Google Scholar 

  • Kantoff P, Giovannucci E, Brown M (1998) The androgen receptor CAG repeat polymorphism and its relationship to prostate cancer. Biochim Biophys Acta 1378:C1–C5

    PubMed  CAS  Google Scholar 

  • Karran P, Bignami M (1994) DNA damage tolerance, mismatch repair and genome instability. Bioessays 16:833–839

    PubMed  CAS  Google Scholar 

  • Kaspar P, Dvorakova M, Kralova J, Pajer P, Kozmik Z, Dvorak M (1999) Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J Biol Chem 274:14422–14428

    PubMed  CAS  Google Scholar 

  • Kauffman EC, Robinson VL, Stadler WM, Sokoloff MH, Rinker-Schaeffer CW (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169:1122–1133

    PubMed  Google Scholar 

  • Kibel AS, Schutte M, Kern SE, Isaacs WB, Bova GS (1998) Identification of 12p as a region of frequent deletion in advanced prostate cancer. Cancer Res 58:5652–5655

    PubMed  CAS  Google Scholar 

  • Kibel AS, Freije D, Isaacs WB, Bova GS (1999) Deletion mapping at 12p12–13 in metastatic prostate cancer. Genes Chromosomes Cancer 25:270–276

    PubMed  CAS  Google Scholar 

  • Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99:2884–2889

    PubMed  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535

    PubMed  CAS  Google Scholar 

  • Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–319

    PubMed  CAS  Google Scholar 

  • Kok K, Naylor SL, Buys CH (1997) Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res 71:27–92

    PubMed  CAS  Google Scholar 

  • Kokontis JM, Liao S (1999) Molecular action of androgen in the normal and neoplastic prostate. Vitam Horm 55:219–307

    PubMed  CAS  Google Scholar 

  • Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 98:11563–11568

    PubMed  CAS  Google Scholar 

  • Langeberg WJ, Isaacs WB, Stanford JL (2007) Genetic etiology of hereditary prostate cancer. Front Biosci 12:4101–4110

    PubMed  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    PubMed  CAS  Google Scholar 

  • Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91:11733–11737

    PubMed  CAS  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    PubMed  CAS  Google Scholar 

  • Li LC, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R (2000) Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 60:702–706

    PubMed  CAS  Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    PubMed  CAS  Google Scholar 

  • Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59:4180–4184

    PubMed  CAS  Google Scholar 

  • Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159:1815–1826

    PubMed  CAS  Google Scholar 

  • Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61:3550–3555

    PubMed  CAS  Google Scholar 

  • Liu W, Bulgaru A, Haigentz M, Stein CA, Perez-Soler R, Mani S (2003) The BCL2-family of protein ligands as cancer drugs: the next generation of therapeutics. Curr Med Chem Anticancer Agents 3:217–223

    PubMed  CAS  Google Scholar 

  • Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J, Turner AR, Kap-Herr C, Bobby P, Rao J, Zheng SL, Isaacs WB, Xu J (2007) Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res 13:5028–5033

    PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  • Lou W, Krill D, Dhir R, Becich MJ, Dong JT, Frierson HF Jr, Isaacs WB, Isaacs JT, Gao AC (1999) Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res 59:2329–2331

    PubMed  CAS  Google Scholar 

  • Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, Trent JM, Isaacs WB, De Marzo AM (2002) Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62:2220–2226

    PubMed  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    PubMed  CAS  Google Scholar 

  • Magee JA, Abdulkadir SA, Milbrandt J (2003) Haploinsufficiency at the Nkx3.1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3:273–283

    PubMed  CAS  Google Scholar 

  • Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R, Murthy L, Zhao Y, DiConcini D, Puxeddu E, Esen A, Eastham J, Weigel NL, Lamb DJ (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60:944–949

    PubMed  CAS  Google Scholar 

  • Mashimo T, Watabe M, Cuthbert AP, Newbold RF, Rinker-Schaeffer CW, Helfer E, Watabe K (1998) Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Res 58:4572–4576

    PubMed  CAS  Google Scholar 

  • McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26:234–282

    PubMed  CAS  Google Scholar 

  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR (1999) Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59:4291–4296

    PubMed  CAS  Google Scholar 

  • Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409

    PubMed  CAS  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872

    PubMed  CAS  Google Scholar 

  • Miller DC, Zheng SL, Dunn RL, Sarma AV, Montie JE, Lange EM, Meyers DA, Xu J, Cooney KA (2003) Germ-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res 63:3486–3489

    PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    PubMed  CAS  Google Scholar 

  • Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, Koh T, Taki T (1995) Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res 55:4127–4131

    PubMed  CAS  Google Scholar 

  • Miyake M, Nakano K, Itoi SI, Koh T, Taki T (1996) Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 56:1244–1249

    PubMed  CAS  Google Scholar 

  • Mousses S, Wagner U, Chen Y, Kim JW, Bubendorf L, Bittner M, Pretlow T, Elkahloun AG, Trepel JB, Kallioniemi OP (2001) Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20:6718–6723

    PubMed  CAS  Google Scholar 

  • Muhlbauer KR, Grone HJ, Ernst T, Grone E, Tschada R, Hergenhahn M, Hollstein M (2003) Analysis of human prostate cancers and cell lines for mutations in the TP53 and KLF6 tumour suppressor genes. Br J Cancer 89:687–690

    PubMed  Google Scholar 

  • Mulholland DJ, Cheng H, Reid K, Rennie PS, Nelson CC (2002) The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli. J Biol Chem 277:17933–17943

    PubMed  CAS  Google Scholar 

  • Murakami YS, Brothman AR, Leach RJ, White RL (1995) Suppression of malignant phenotype in a human prostate cancer cell line by fragments of normal chromosomal region 17q. Cancer Res 55:3389–3394

    PubMed  CAS  Google Scholar 

  • Murakami YS, Albertsen H, Brothman AR, Leach RJ, White RL (1996) Suppression of the malignant phenotype of human prostate cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10. Cancer Res 56:2157–2160

    PubMed  CAS  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 95:13513–13518

    PubMed  CAS  Google Scholar 

  • Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 146:1498–1507

    PubMed  CAS  Google Scholar 

  • Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20:8969–8982

    PubMed  CAS  Google Scholar 

  • Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG, De Marzo AM (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163:923–933

    PubMed  CAS  Google Scholar 

  • Nam RK, Elhaji Y, Krahn MD, Hakimi J, Ho M, Chu W, Sweet J, Trachtenberg J, Jewett MA, Narod SA (2000) Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J Urol 164:567–572

    PubMed  CAS  Google Scholar 

  • Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, Glucksman MJ, Narla J, Eng FJ, Chan AM, Ferrari AC, Martignetti JA, Friedman SL (2001) KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294:2563–2566

    PubMed  CAS  Google Scholar 

  • Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, Katz A, Isaacs WB, Hebbring S, Komiya A, McDonnell SK, Wiley KE, Jacobsen SJ, Isaacs SD, Walsh PC, Zheng SL, Chang BL, Friedrichsen DM, Stanford JL, Ostrander EA, Chinnaiyan AM, Rubin MA, Xu J, Thibodeau SN, Friedman SL, Martignetti JA (2005a) A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65:1213–1222

    PubMed  CAS  Google Scholar 

  • Narla G, Difeo A, Yao S, Banno A, Hod E, Reeves HL, Qiao RF, Camacho-Vanegas O, Levine A, Kirschenbaum A, Chan AM, Friedman SL, Martignetti JA (2005b) Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res 65:5761–5768

    PubMed  CAS  Google Scholar 

  • Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657–1669

    PubMed  CAS  Google Scholar 

  • Nelson JB, Lee WH, Nguyen SH, Jarrard DF, Brooks JD, Magnuson SR, Opgenorth TJ, Nelson WG, Bova GS (1997) Methylation of the 5′ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 57:35–37

    PubMed  CAS  Google Scholar 

  • Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349:366–381

    PubMed  CAS  Google Scholar 

  • Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89:6319–6323

    PubMed  CAS  Google Scholar 

  • Nihei N, Ichikawa T, Kawana Y, Kuramochi H, Kugo H, Oshimura M, Killary AM, Rinker-Schaeffer CW, Barrett JC, Isaacs JT (1995) Localization of metastasis suppressor gene(s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chromosomes Cancer 14:112–119

    PubMed  CAS  Google Scholar 

  • Nihei N, Ichikawa T, Kawana Y, Kuramochi H, Kugoh H, Oshimura M, Hayata I, Shimazaki J, Ito H (1996) Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes Chromosomes Cancer 17:260–268

    PubMed  CAS  Google Scholar 

  • Nihei N, Ohta S, Kuramochi H, Kugoh H, Oshimura M, Barrett JC, Isaacs JT, Igarashi T, Ito H, Masai M, Ichikawa Y, Ichikawa T (1999) Metastasis suppressor gene(s) for rat ­prostate cancer on the long arm of human chromosome 7. Genes Chromosomes Cancer 24:1–8

    PubMed  CAS  Google Scholar 

  • Nupponen NN, Visakorpi T (2000) Molecular cytogenetics of prostate cancer. Microsc Res Tech 51:456–463

    PubMed  CAS  Google Scholar 

  • Nupponen NN, Kakkola L, Koivisto P, Visakorpi T (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153:141–148

    PubMed  CAS  Google Scholar 

  • Nupponen NN, Porkka K, Kakkola L, Tanner M, Persson K, Borg K, Isola J, Visakorpi T (1999) Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am J Pathol 154:1777–1783

    PubMed  CAS  Google Scholar 

  • Orikasa K, Fukushige S, Hoshi S, Orikasa S, Kondo K, Miyoshi Y, Kubota Y, Horii A (1998) Infrequent genetic alterations of the PTEN gene in Japanese patients with sporadic prostate cancer. J Hum Genet 43:228–230

    PubMed  CAS  Google Scholar 

  • Ornstein DK, Cinquanta M, Weiler S, Duray PH, Emmert-Buck MR, Vocke CD, Linehan WM, Ferretti JA (2001) Expression studies and mutational analysis of the androgen regulated homeobox gene NKX3.1 in benign and malignant prostate epithelium. J Urol 165:1329–1334

    PubMed  CAS  Google Scholar 

  • Padalecki SS, Weldon KS, Reveles XT, Buller CL, Grubbs B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M, Guise TA, Leach RJ, Johnson-Pais TL (2003) Chromosome 18 suppresses prostate cancer metastases. Urol Oncol 21:366–373

    PubMed  CAS  Google Scholar 

  • Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995

    PubMed  CAS  Google Scholar 

  • Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44:309–320

    PubMed  CAS  Google Scholar 

  • Pawlowski JE, Ertel JR, Allen MP, Xu M, Butler C, Wilson EM, Wierman ME (2002) Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells. J Biol Chem 277:20702–20710

    PubMed  CAS  Google Scholar 

  • Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S, Li J (2002) PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res 62:5420–5424

    PubMed  CAS  Google Scholar 

  • Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    PubMed  CAS  Google Scholar 

  • Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M, Eng C, Lidereau R (1998) PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16:2879–2883

    PubMed  CAS  Google Scholar 

  • Philipp-Staheli J, Payne SR, Kemp CJ (2001) p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168

    PubMed  CAS  Google Scholar 

  • Phillips SMA, Barton CM, Lee SJ, Morton DG, Wallace DMA, Lemoine NR, Neoptolemos JP (1994) Loss of the Retinoblastoma Susceptibility Gene (Rb1) Is A Frequent and Early Event in Prostatic Tumorigenesis. Br J Cancer 70:1252–1257

    PubMed  CAS  Google Scholar 

  • Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional? – The mouse’s tale. J Clin Invest 108:649–654

    PubMed  CAS  Google Scholar 

  • Porkka KP, Visakorpi T (2004) Molecular mechanisms of prostate cancer. Eur Urol 45:683–691

    PubMed  CAS  Google Scholar 

  • Porkka K, Saramaki O, Tanner M, Visakorpi T (2002) Amplification and overexpression of elongin C gene discovered in prostate cancer by cDNA microarrays. Lab Invest 82:629–637

    PubMed  CAS  Google Scholar 

  • Porkka KP, Tammela TL, Vessella RL, Visakorpi T (2004) RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes Cancer 39:1–10

    PubMed  CAS  Google Scholar 

  • Reiter RE, Gu ZN, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 95:1735–1740

    PubMed  CAS  Google Scholar 

  • Reiter RE, Sato I, Thomas G, Qian J, Gu Z, Watabe T, Loda M, Jenkins RB (2000) Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes Chromosomes Cancer 27:95–103

    PubMed  CAS  Google Scholar 

  • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433

    PubMed  CAS  Google Scholar 

  • Rubin MA, De Marzo AM (2004) Molecular genetics of human prostate cancer. Modern Pathology 17:380–388

    PubMed  CAS  Google Scholar 

  • Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287:1662–1670

    PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour F, Lagaudriere-Gesbert C, Billard M, Conjeaud H, Boucheix C (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    PubMed  CAS  Google Scholar 

  • Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    PubMed  CAS  Google Scholar 

  • Saramaki O, Willi N, Bratt O, Gasser TC, Koivisto P, Nupponen NN, Bubendorf L, Visakorpi T (2001) Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol 159:2089–2094

    PubMed  CAS  Google Scholar 

  • Sartor O, Zheng Q, Eastham JA (1999) Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 53:378–380

    PubMed  CAS  Google Scholar 

  • Sasaki M, Tanaka Y, Perinchery G, Dharia A, Kotcherguina I, Fujimoto S, Dahiya R (2002) Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst 94:384–390

    PubMed  CAS  Google Scholar 

  • Savinainen KJ, Linja MJ, Saramaki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T (2004) Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer 90:1041–1046

    PubMed  CAS  Google Scholar 

  • Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62:1425–1438

    PubMed  CAS  Google Scholar 

  • Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER (1994) Microsatellite mutation (CAG24→gt;18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 198:74–80

    PubMed  CAS  Google Scholar 

  • Seppala EH, Ikonen T, Autio V, Rokman A, Mononen N, Matikainen MP, Tammela TL, Schleutker J (2003) Germ-line alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9:5252–5256

    PubMed  Google Scholar 

  • Shand RL, Gelmann ER (2006) Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 16:123–131

    PubMed  Google Scholar 

  • Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610

    PubMed  CAS  Google Scholar 

  • Shurbaji MS, Kuhajda FP, Pasternack GR, Thurmond TS (1992) Expression of oncogenic antigen 519 (OA-519) in prostate cancer is a potential prognostic indicator. Am J Clin Pathol 97:686–691

    PubMed  CAS  Google Scholar 

  • Slagsvold T, Kraus I, Fronsdal K, Saatcioglu F (2001) DNA binding-independent transcriptional activation by the androgen receptor through triggering of coactivators. J Biol Chem 276:31030–31036

    PubMed  CAS  Google Scholar 

  • Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS (1996) Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56:218–222

    PubMed  CAS  Google Scholar 

  • Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci USA 98:4575–4580

    PubMed  CAS  Google Scholar 

  • Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J (1993) Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 46:759–765

    PubMed  CAS  Google Scholar 

  • Suzuki H, Komiya A, Emi M, Kuramochi H, Shiraishi T, Yatani R, Shimazaki J (1996) Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 17:225–233

    PubMed  CAS  Google Scholar 

  • Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, Isaacs WB, Bova GS (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58:204–209

    PubMed  CAS  Google Scholar 

  • Swalwell JI, Vocke CD, Yang YF, Walker JR, Grouse L, Myers SH, Gillespie JW, Bostwick DG, Duray PH, Linehan WM, Emmert-Buck MR (2002) Determination of a minimal deletion interval on chromosome band 8p21 in sporadic prostate cancer. Genes Chromosomes Cancer 33:201–205

    PubMed  CAS  Google Scholar 

  • Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22

    PubMed  CAS  Google Scholar 

  • Takaku H, Minagawa A, Takagi M, Nashimoto M (2003) A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 31:2272–2278

    PubMed  CAS  Google Scholar 

  • Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS (1997) Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 11:450–459

    PubMed  CAS  Google Scholar 

  • Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398

    PubMed  CAS  Google Scholar 

  • Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, Balk SP (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515

    PubMed  CAS  Google Scholar 

  • Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, Stadler W, Hayes DF, Kantoff PW, Vogelzang NJ, Small EJ (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21:2673–2678

    PubMed  CAS  Google Scholar 

  • Tavtigian SV, Simard J, Teng DHF, Abtin V, Baumgard M, Beck A, Camp NJ, Carillo AR, Chen Y, Dayananth P, Desrochers M, Dumont M, Farnham JM, Frank D, Frye C, Ghaffari S, Gupte JS, Hu R, Iliev D, Janecki T, Kort EN, Laity KE, Leavitt A, Leblanc G, McArthur-Morrison J, Pederson A, Penn B, Peterson KT, Reid JE, Richards S, Schroeder M, Smith R, Snyder SC, Swedlund B, Swensen J, Thomas A, Tranchant M, Woodland AM, Labrie F, Skolnick MH, Neuhausen S, Rommens J, Cannon-Albright LA (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180

    PubMed  CAS  Google Scholar 

  • Tayeb MT, Clark C, Murray GI, Sharp L, Haites NE, McLeod HL (2004) Length and somatic mosaicism of CAG and GGN repeats in the androgen receptor gene and the risk of prostate cancer in men with benign prostatic hyperplasia. Ann Saudi Med 24:21–26

    PubMed  Google Scholar 

  • Tilley WD, Buchanan G, Hickey TE, Bentel JM (1996) Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 2:277–285

    PubMed  CAS  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648

    PubMed  CAS  Google Scholar 

  • Trapman J, Sleddens HFBM, Vanderweiden MM, Dinjens WNM, Konig JJ, Schroder FH, Faber PW, Bosman FT (1994) Loss of heterozygosity of chromosome-8 microsatellite loci implicates a candidate tumor-suppressor gene between the loci D8S87 and D8S133 in human prostate-cancer. Cancer Res 54:6061–6064

    PubMed  CAS  Google Scholar 

  • Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60:4709–4713

    PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Takakuwa T, Takayama H, Nishimura K, Okuyama A, Aozasa K, Nonomura N (2004) In situ shortening of CAG repeat length within the androgen receptor gene in prostatic cancer and its possible precursors. Prostate 58:283–290

    PubMed  CAS  Google Scholar 

  • Ueda T, Ichikawa T, Tamaru J, Mikata A, Akakura K, Akimoto S, Imai T, Yoshie O, Shiraishi T, Yatani R, Ito H, Shimazaki J (1996) Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol 149:1435–1440

    PubMed  CAS  Google Scholar 

  • Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, Debruyne FM, Schalken JA (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54:3929–3933

    PubMed  CAS  Google Scholar 

  • Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P (2001) The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 94:705–710

    PubMed  CAS  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    PubMed  CAS  Google Scholar 

  • Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO, Mulder E (1990a) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173:534–540

    PubMed  CAS  Google Scholar 

  • Veldscholte J, Voorhorst-Ogink MM, Bolt-de Vries J, van Rooij HC, Trapman J, Mulder E (1990b) Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1052:187–194

    PubMed  CAS  Google Scholar 

  • Visakorpi T (2003) The molecular genetics of prostate cancer. Urology 62:3–10

    PubMed  Google Scholar 

  • Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 84:883–887

    PubMed  CAS  Google Scholar 

  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP (1995a) In vivo amplification of the androgen receptor gene and progression of human prostate-cancer. Nat Genet 9:401–406

    PubMed  CAS  Google Scholar 

  • Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi OP (1995b) Genetic changes in primary and recurrent prostate-cancer by comparative genomic hybridization. Cancer Res 55:342–347

    PubMed  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    PubMed  CAS  Google Scholar 

  • Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, Duray PH, Liotta LA, Emmertbuck MR, Linehan WM (1996) Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12–21. Cancer Res 56:2411–2416

    PubMed  CAS  Google Scholar 

  • Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP (1997) Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res 57:4455–4459

    PubMed  CAS  Google Scholar 

  • Voeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58:2520–2523

    PubMed  CAS  Google Scholar 

  • Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T (1999) Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 189:559–563

    PubMed  CAS  Google Scholar 

  • Wang SI, Parsons R, Ittmann M (1998) Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4:811–815

    PubMed  CAS  Google Scholar 

  • Wang L, McDonnell SK, Cunningham JM, Hebbring S, Jacobsen SJ, Cerhan JR, Slager SL, Blute ML, Schaid DJ, Thibodeau SN (2003a) No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet 35:128–129

    PubMed  CAS  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H (2003b) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221

    PubMed  CAS  Google Scholar 

  • Wang JC, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, Chevrette M (2007) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361

    PubMed  CAS  Google Scholar 

  • Weng J, Wang J, Hu X, Wang F, Ittmann M, Liu M (2006) PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer. Int J Cancer 118:1471–1480

    PubMed  CAS  Google Scholar 

  • Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95:5246–5250

    PubMed  CAS  Google Scholar 

  • Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55:199–205

    PubMed  CAS  Google Scholar 

  • Xu JF, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A, Ewing CM, Faith DA, Johnson JR, Suzuki H, Bujnovszky P, Wiley KE, DeMarzo AM, Bova GS, Chang BL, Hall MC, McCullough DL, Partin AW, Kassabian VS, Carpten JD, Bailey-Wilson JE, Trent JM, Ohar J, Bleecker ER, Walsh PC, Isaacs WB, Meyers DA (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321–325

    PubMed  CAS  Google Scholar 

  • Xu J, Langefeld CD, Zheng SL, Gillanders EM, Chang BL, Isaacs SD, Williams AH, Wiley KE, Dimitrov L, Meyers DA, Walsh PC, Trent JM, Isaacs WB (2004) Interaction effect of PTEN and CDKN1B chromosomal regions on prostate cancer linkage. Hum Genet 115:255–262

    PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Tejedor R, Rousselle P, Madrid F (2001) Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins. J Cell Sci 114:577–587

    PubMed  CAS  Google Scholar 

  • Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE (1998) Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 159:941–945

    PubMed  CAS  Google Scholar 

  • Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z (2002) Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277:11336–11344

    PubMed  CAS  Google Scholar 

  • Yasuda H, Mizuno A, Tamaoki T, Morinaga T (1994) ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol 14:1395–1401

    PubMed  CAS  Google Scholar 

  • Zheng SL, Ju JH, Chang BL, Ortner E, Sun JL, Isaacs SD, Sun JS, Wiley KE, Liu WN, Zemedkun M, Walsh PC, Ferretti J, Gruschus J, Isaacs WB, Gelmann EP, Xu JF (2006) Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function. Cancer Res 66:69–77

    PubMed  CAS  Google Scholar 

  • Zvereff V, Wang JC, Shun K, Lacoste J, Chevrette M (2007) Colocalisation of CD9 and mortalin in CD9-induced mitotic catastrophe in human prostate cancer cells. Br J Cancer 97:941–948

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Laure Humbert received studentships from the McGill Urology Division and from the Research Institute of the McGill University Health Centre. The work from Mario Chevrette’s laboratory (CD9 section) was funded by the Cancer Research Society, Inc. A special thanks to David Adler, Ph.D., Department of Pathology, University of Washington, Seattle for the use of Idiogram Albums and for having the vision of creating a web site devoted to cytogenetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Chevrette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Humbert, L., Chevrette, M. (2010). Somatic Molecular Genetics of Prostate Cancer. In: Foulkes, W., Cooney, K. (eds) Male Reproductive Cancers. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0449-2_5

Download citation

Publish with us

Policies and ethics