Advertisement

Somatic Molecular Genetics of Prostate Cancer

  • Laure Humbert
  • Mario Chevrette
Chapter
Part of the Cancer Genetics book series (CANGENETICS)

Abstract

Despite progress in diagnosis and treatment, prostate cancer is still one of the most frequent lethal diseases in men in Western countries. Today, an increasing number of prostate cancers are detected through elevated serum prostate-specific antigen (PSA) levels. PSA detection is very sensitive. Determining free versus total PSA serum level has enabled the achievement of better specificity (Balk et al. 2003), however, this tool remains imperfect. Many patients undergo unnecessary diagnostic procedures, experiencing physiological and psychological stress. Similarly, current techniques such as imaging and biopsies are not optimal thus, hopes are high for the discovery of new molecular markers for prostate cancer. Studying prostate cancer progression may reveal new insights into the molecular mechanisms of cancer development to help improve prevention, provide better tools for diagnosis, as well as for prognosis and treatment.

There is no site-specific inherited prostate cancer susceptibility gene, but epidemiological studies have demonstrated familial clustering of prostate cancer suggesting an important role of hereditary factors in the development of the disease. Almost 25% of all prostate cancer occurs in family clusters and about 9% can be attributed to hereditary prostate cancer with an autosomal dominant transmission (Carter et al. 1993; Gronberg et al. 1997; Schaid et al. 1998; Langeberg et al. 2007). Men having an affected first-degree relative have two- to threefold higher risk of developing prostate cancer compared with men with no family history (Johns and Houlston 2003). Studies of twins showed higher frequency for prostate cancer in monozygotic as compared to dizygotic twins (Lichtenstein et al. 2000). Several chromosomes may harbor high-penetrance prostate cancer susceptibility genes. Molecular studies have identified three candidate susceptibility genes: the HPC2/ELAC2 gene located at 17p12 encoding a protein with a poorly defined function (Tavtigian et al. 2001), the putative tumor suppressor gene RNASEL located at 1q24–q25 (Carpten et al. 2002), and the MSR1 gene located at 8p22–23 (Xu et al. 2002). However, no functional study has clearly shown that they have a clear role as ­susceptibility genes and thus further investigations are needed. These issues are discussed in detail in the chapters of Lange, and Eeles and colleagues.

Keywords

Prostate Cancer Androgen Receptor Prostate Cancer Cell Prostate Intraepithelial Neoplasia Prostate Stem Cell Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Laure Humbert received studentships from the McGill Urology Division and from the Research Institute of the McGill University Health Centre. The work from Mario Chevrette’s laboratory (CD9 section) was funded by the Cancer Research Society, Inc. A special thanks to David Adler, Ph.D., Department of Pathology, University of Washington, Seattle for the use of Idiogram Albums and for having the vision of creating a web site devoted to cytogenetics.

References

  1. Abate-Shen C, Banach-Petrosky WA, Sun X, Economides KD, Desai N, Gregg JP, Borowsky AD, Cardiff RD, Shen MM (2003) Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res 63:3886–3890PubMedGoogle Scholar
  2. Abdulkadir SA, Magee JA, Peters TJ, Kaleem Z, Naughton CK, Humphrey PA, Milbrandt J (2002) Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Mol Cell Biol 22:1495–1503PubMedGoogle Scholar
  3. Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, Tanke HJ, Schroder FH, van Dekken H (2000) Identification of genetic markers for prostatic cancer progression. Lab Invest 80:931–942PubMedGoogle Scholar
  4. Alvarado C, Beitel LK, Sircar K, Aprikian A, Trifiro M, Gottlieb B (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res 65:8514–8518PubMedGoogle Scholar
  5. Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22–R1. Cancer Res 60:6134–6141PubMedGoogle Scholar
  6. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645PubMedGoogle Scholar
  7. Asatiani E, Huang WX, Wang A, Ortner ER, Cavalli LR, Haddad BR, Gelmann EP (2005) Deletion, methylation, and expression of the NKX3.1 suppressor gene in primary human prostate cancer. Cancer Res 65:1164–1173PubMedGoogle Scholar
  8. Balk SP, Ko YJ, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21:383–391PubMedGoogle Scholar
  9. Bennett CL, Price DK, Kim S, Liu D, Jovanovic BD, Nathan D, Johnson ME, Montgomery JS, Cude K, Brockbank JC, Sartor O, Figg WD (2002) Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. J Clin Oncol 20:3599–3604PubMedGoogle Scholar
  10. Bentel JM, Tilley WD (1996) Androgen receptors in prostate cancer. J Endocrinol 151:1–11PubMedGoogle Scholar
  11. Berube NG, Speevak MD, Chevrette M (1994) Suppression of tumorigenicity of human prostate cancer cells by introduction of human chromosome del(12)(q13). Cancer Res 54:3077–3081PubMedGoogle Scholar
  12. Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate-Shen C, Shen MM (1999) Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13:966–977PubMedGoogle Scholar
  13. Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34PubMedGoogle Scholar
  14. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26:2525–2534PubMedGoogle Scholar
  15. Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC (1993) p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res 53:3369–3373PubMedGoogle Scholar
  16. Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB (1997) Tumour-suppressor genes in prostatic oncogenesis: a positional approach. Br J Urol 79:28–36PubMedGoogle Scholar
  17. Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205PubMedGoogle Scholar
  18. Bouras T, Frauman AG (1999) Expression of the prostate cancer metastasis suppressor gene KAI1 in primary prostate cancers: a biphasic relationship with tumour grade. J Pathol 188:382–388PubMedGoogle Scholar
  19. Bova GS, Carter BS, Bussemakers MJG, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, Isaacs WB (1993) Homozygous deletion and frequent allelic loss of chromosome-8P22 loci in human prostate-cancer. Cancer Res 53:3869–3873PubMedGoogle Scholar
  20. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, Gasser TC, Koivisto P, Lack EE, Kononen J, Kallioniemi OP, Gelmann EP (2000) Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res 60:6111–6115PubMedGoogle Scholar
  21. Bratt O, Borg A, Kristoffersson U, Lundgren R, Zhang QX, Olsson H (1999) CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 81:672–676PubMedGoogle Scholar
  22. Buchanan G, Greenberg NM, Scher HI, Harris JM, Marshall VR, Tilley WD (2001) Collocation of androgen receptor gene mutations in prostate cancer. Clin Cancer Res 7:1273–1281PubMedGoogle Scholar
  23. Buchanan G, Yang M, Cheong A, Harris JM, Irvine RA, Lambert PF, Moore NL, Raynor M, Neufing PJ, Coetzee GA, Tilley WD (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Hum Mol Genet 13:1677–1692PubMedGoogle Scholar
  24. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours (Reprinted from Trends Biochem Sci 12 (1999)). Trends Cell Biol 9:M57–M60PubMedGoogle Scholar
  25. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Isaacs WB, Bova GS, Sidransky D (1997a) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57:4997–5000PubMedGoogle Scholar
  26. Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG, Jen J, Isaacs WB, Bova GS, Sidransky D (1997b) Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57:4997–5000PubMedGoogle Scholar
  27. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, Chow NH, Grasso M, Wu L, Westra WB, Sidransky D (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730PubMedGoogle Scholar
  28. Cajot JF, Sordat I, Silvestre T, Sordat B (1997) Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells. Cancer Res 57:2593–2597PubMedGoogle Scholar
  29. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, Hu P, Buinovszky P, Makalowska I, Baffoe-Bonnie A, Faith D, Smith J, Stephan D, Wiley K, Brownstein M, Gildea D, Kelly B, Jenkins R, Hostetter G, Matikainen M, Schleutker J, Klinger K, Connors T, Xiang Y, Wang Z, De Marzo A, Papadopoulos N, Kallioniemi OP, Burk R, Meyers D, Gronberg H, Meltzer P, Silverman R, Bailey-Wilson J, Walsh P, Isaacs W, Trent J (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181–184PubMedGoogle Scholar
  30. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, Walsh PC (1993) Hereditary prostate-cancer – epidemiologic and clinical-features. J Urol 150:797–802PubMedGoogle Scholar
  31. Chang GTG, Steenbeek M, Schippers E, Blok LJ, van Weerden WM, van Alewijk DCJG, Eussen BHJ, van Steenbrugge GJ, Brinkmann AO (2000) Characterization of a zinc-finger protein and its association with apoptosis in prostate cancer cells. J Natl Cancer Inst 92:1414–1421PubMedGoogle Scholar
  32. Chen C, Hyytinen ER, Sun X, Helin HJ, Koivisto PA, Frierson HF Jr, Vessella RL, Dong JT (2003) Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 162:1349–1354PubMedGoogle Scholar
  33. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH (1996) Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 56:3091–3102PubMedGoogle Scholar
  34. Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, Lieskovosky G (1998) Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst 90:916–920PubMedGoogle Scholar
  35. Counter CM, Avilion AA, Lefeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929PubMedGoogle Scholar
  36. Culig Z, Hobisch A, Hittmair A, Cronauer MV, Radmayr C, Bartsch G, Klocker H (1997) Androgen receptor gene mutations in prostate cancer. Implications for disease progression and therapy. Drugs Aging 10:50–58PubMedGoogle Scholar
  37. Culig Z, Klocker H, Bartsch G, Hobisch A (2001) Androgen receptor mutations in carcinoma of the prostate: significance for endocrine therapy. Am J Pharmacogenomics 1:241–249PubMedGoogle Scholar
  38. Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K, Pfeifer GP (2005) The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 20:645–663PubMedGoogle Scholar
  39. Davies MA, Kim SJ, Parikh NU, Dong Z, Bucana CD, Gallick GE (2002) Adenoviral-mediated expression of MMAC/PTEN inhibits proliferation and metastasis of human prostate cancer cells. Clin Cancer Res 8:1904–1914PubMedGoogle Scholar
  40. De Marzo AM, Meeker AK, Epstein JI, Coffey DS (1998) Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 153:911–919PubMedGoogle Scholar
  41. De Marzo AM, Meeker AK, Zha S, Luo J, Nakayama M, Platz EA, Isaacs WB, Nelson WG (2003) Human prostate cancer precursors and pathobiology. Urology 62:55–62PubMedGoogle Scholar
  42. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964PubMedGoogle Scholar
  43. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP (2001) Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27:222–224PubMedGoogle Scholar
  44. DiPaola RS, Patel J, Rafi MM (2001) Targeting apoptosis in prostate cancer. Hematol Oncol Clin North Am 15:509–524PubMedGoogle Scholar
  45. Donaldson L, Fordyce C, Gilliland F, Smith A, Feddersen R, Joste N, Moyzis R, Griffith J (1999) Association between outcome and telomere DNA content in prostate cancer. J Urol 162:1788–1792PubMedGoogle Scholar
  46. Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886PubMedGoogle Scholar
  47. Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT (1996) Down-regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 56:4387–4390PubMedGoogle Scholar
  48. Dong JT, Sipe TW, Hyytinen ER, Li CL, Heise C, McClintock DE, Grant CD, Chung LWK, Frierson HF (1998) PTEN/MMAC1 is infrequently mutated in pT2 and pT3 carcinomas of the prostate. Oncogene 17:1979–1982PubMedGoogle Scholar
  49. Dong JT, Li CL, Sipe TW, Frierson HF (2001) Mutations of PTEN/MMAC1 in primary prostate cancers from Chinese patients. Clin Cancer Res 7:304–308PubMedGoogle Scholar
  50. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, Petros J, Li Q, Vessella RL, Kibel AS, Stevens VL, Calle EE, Dong JT (2008) SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet 17:1031–1042PubMedGoogle Scholar
  51. Eagle LR, Yin XY, Brothman AR, Williams BJ, Atkin NB, Prochownik EV (1995) Mutation of the Mxi1 gene in prostate-cancer. Nat Genet 9:249–255PubMedGoogle Scholar
  52. Elo JP, Visakorpi T (2001) Molecular genetics of prostate cancer. Ann Med 33:130–141PubMedGoogle Scholar
  53. Emmertbuck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang ZP, Bostwick DG, Liotta LA, Linehan WM (1995) Allelic loss on chromosome 8P12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55:2959–2962Google Scholar
  54. Ewing CM, Ru N, Morton RA, Robinson JC, Wheelock MJ, Johnson KR, Barrett JC, Isaacs WB (1995) Chromosome 5 suppresses tumorigenicity of PC3 prostate cancer cells: correlation with re-expression of alpha-catenin and restoration of E-cadherin function. Cancer Res 55:4813–4817PubMedGoogle Scholar
  55. Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM (1998) Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16:1743–1748PubMedGoogle Scholar
  56. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180PubMedGoogle Scholar
  57. Fromont G, Vallancien G, Validire P, Levillain P, Cussenot O (2007) BCAR1 expression in prostate cancer: association with 16q23 LOH status, tumor progression and EGFR/KAI1 staining. Prostate 67:268–273PubMedGoogle Scholar
  58. Fujita N, Sato S, Katayama K, Tsuruo T (2002) Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 277:28706–28713PubMedGoogle Scholar
  59. Gagnon A, Ripeau JS, Zvieriev V, Chevrette M (2006) Chromosome 18 suppresses tumorigenic properties of human prostate cancer cells. Genes Chromosomes Cancer 45:220–230PubMedGoogle Scholar
  60. Gao AC, Lou W, Dong JT, Isaacs JT (1997) CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 57:846–849PubMedGoogle Scholar
  61. Giovannucci E, Stampfer MJ, Krithivas K, Brown M, Dahl D, Brufsky A, Talcott J, Hennekens CH, Kantoff PW (1997) The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 94:3320–3323PubMedGoogle Scholar
  62. Goessl C, Krause H, Muller M, Heicappell R, Schrader M, Sachsinger J, Miller K (2000) Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res 60:5941–5945PubMedGoogle Scholar
  63. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG (2003) Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res 9:2673–2677PubMedGoogle Scholar
  64. Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguia R, Dean DC, Esteller M, Jenuwein T, Blasco MA (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7:420–428PubMedGoogle Scholar
  65. Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199PubMedGoogle Scholar
  66. Gronberg H, Isaacs SD, Smith JR, Carpten JD, Bova GS, Freije D, Xu JF, Meyers DA, Collins FS, Trent JM, Walsh PC, Isaacs WB (1997) Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 278:1251–1255PubMedGoogle Scholar
  67. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, Witte ON, Said JW, Loda M, Reiter RE (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19:1288–1296PubMedGoogle Scholar
  68. Guo Y, Sklar GN, Borkowski A, Kyprianou N (1997) Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res 3:2269–2274PubMedGoogle Scholar
  69. Haapala K, Hyytinen ER, Roiha M, Laurila M, Rantala I, Helin HJ, Koivisto PA (2001) Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Lab Invest 81:1647–1651PubMedGoogle Scholar
  70. Hackett JA, Greider CW (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21:619–626PubMedGoogle Scholar
  71. Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M, Miyamoto M (2003) Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 63:149–153PubMedGoogle Scholar
  72. Hardy DO, Scher HI, Bogenreider T, Sabbatini P, Zhang ZF, Nanus DM, Catterall JF (1996) Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J Clin Endocrinol Metab 81:4400–4405PubMedGoogle Scholar
  73. Hashida H, Takabayashi A, Tokuhara T, Taki T, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Integrin alpha3 expression as a prognostic factor in colon cancer: association with MRP-1/CD9 and KAI1/CD82. Int J Cancer 97:518–525PubMedGoogle Scholar
  74. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, AbateShen C, Carter KC (1997) A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43:69–77PubMedGoogle Scholar
  75. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308PubMedGoogle Scholar
  76. Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1107PubMedGoogle Scholar
  77. Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, Kodama K, Doi O, Miyake M (1995) Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer. Cancer Res 55:6040–6044PubMedGoogle Scholar
  78. Higashiyama M, Doi O, Kodama K, Yokouchi H, Adachi M, Huang CL, Taki T, Kasugai T, Ishiguro S, Nakamori S, Miyake M (1997) Immunohistochemically detected expression of motility-related protein-1 (MRP-1/CD9) in lung adenocarcinoma and its relation to prognosis. Int J Cancer 74:205–211PubMedGoogle Scholar
  79. Hosoki S, Ota S, Ichikawa Y, Suzuki H, Ueda T, Naya Y, Akakura K, Igarashi T, Oshimura M, Nihei N, Barrett JC, Ichikawa T, Ito H (2002) Suppression of metastasis of rat prostate cancer by introduction of human chromosome 13. Asian J Androl 4:131–136PubMedGoogle Scholar
  80. Houle CD, Ding XY, Foley JF, Afshari CA, Barrett JC, Davis BJ (2002) Loss of expression and altered localization of KAI1 and CD9 protein are associated with epithelial ovarian cancer progression. Gynecol Oncol 86:69–78PubMedGoogle Scholar
  81. Hsing AW, Gao YT, Wu G, Wang X, Deng J, Chen YL, Sesterhenn IA, Mostofi FK, Benichou J, Chang C (2000) Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 60:5111–5116PubMedGoogle Scholar
  82. Huggins C, Hodges CV (2002) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J Urol 168:9–12PubMedGoogle Scholar
  83. Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765PubMedGoogle Scholar
  84. Hyytinen ER, Frierson HF, Boyd JC, Chung LWK, Dong JT (1999) Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosomes Cancer 25:108–114PubMedGoogle Scholar
  85. Ichikawa T, Ichikawa Y, Dong J, Hawkins AL, Griffin CA, Isaacs WB, Oshimura M, Barrett JC, Isaacs JT (1992) Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Res 52:3486–3490PubMedGoogle Scholar
  86. Ichikawa T, Nihei N, Suzuki H, Oshimura M, Emi M, Nakamura Y, Hayata I, Isaacs JT, Shimazaki J (1994) Suppression of metastasis of rat prostatic cancer by introducing human chromosome 8. Cancer Res 54:2299–2302PubMedGoogle Scholar
  87. Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237PubMedGoogle Scholar
  88. Jaeger EB, Samant RS, Rinker-Schaeffer CW (2001) Metastasis suppression in prostate cancer. Cancer Metastasis Rev 20:279–286PubMedGoogle Scholar
  89. Jiang Z, Woda BA, Rock KL, Xu Y, Savas L, Khan A, Pihan G, Cai F, Babcook JS, Rathanaswami P, Reed SG, Xu J, Fanger GR (2001) P504S: a new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol 25:1397–1404PubMedGoogle Scholar
  90. Johns LE, Houlston RS (2003) A systematic review and meta-analysis of familial prostate cancer risk. BJU Int 91:789–794PubMedGoogle Scholar
  91. Jung V, Kindich R, Kamradt J, Jung M, Muller M, Schulz WA, Engers R, Unteregger G, Stockle M, Zimmermann R, Wullich B (2006) Genomic and expression analysis of the 3q25–q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer. Mol Cancer Res 4:169–176PubMedGoogle Scholar
  92. Kantoff P, Giovannucci E, Brown M (1998) The androgen receptor CAG repeat polymorphism and its relationship to prostate cancer. Biochim Biophys Acta 1378:C1–C5PubMedGoogle Scholar
  93. Karran P, Bignami M (1994) DNA damage tolerance, mismatch repair and genome instability. Bioessays 16:833–839PubMedGoogle Scholar
  94. Kaspar P, Dvorakova M, Kralova J, Pajer P, Kozmik Z, Dvorak M (1999) Myb-interacting protein, ATBF1, represses transcriptional activity of Myb oncoprotein. J Biol Chem 274:14422–14428PubMedGoogle Scholar
  95. Kauffman EC, Robinson VL, Stadler WM, Sokoloff MH, Rinker-Schaeffer CW (2003) Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J Urol 169:1122–1133PubMedGoogle Scholar
  96. Kibel AS, Schutte M, Kern SE, Isaacs WB, Bova GS (1998) Identification of 12p as a region of frequent deletion in advanced prostate cancer. Cancer Res 58:5652–5655PubMedGoogle Scholar
  97. Kibel AS, Freije D, Isaacs WB, Bova GS (1999) Deletion mapping at 12p12–13 in metastatic prostate cancer. Genes Chromosomes Cancer 25:270–276PubMedGoogle Scholar
  98. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, Abate-Shen C (2002) Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99:2884–2889PubMedGoogle Scholar
  99. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535PubMedGoogle Scholar
  100. Koivisto P, Kononen J, Palmberg C, Tammela T, Hyytinen E, Isola J, Trapman J, Cleutjens K, Noordzij A, Visakorpi T, Kallioniemi OP (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57:314–319PubMedGoogle Scholar
  101. Kok K, Naylor SL, Buys CH (1997) Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res 71:27–92PubMedGoogle Scholar
  102. Kokontis JM, Liao S (1999) Molecular action of androgen in the normal and neoplastic prostate. Vitam Horm 55:219–307PubMedGoogle Scholar
  103. Kwabi-Addo B, Giri D, Schmidt K, Podsypanina K, Parsons R, Greenberg N, Ittmann M (2001) Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci USA 98:11563–11568PubMedGoogle Scholar
  104. Langeberg WJ, Isaacs WB, Stanford JL (2007) Genetic etiology of hereditary prostate cancer. Front Biosci 12:4101–4110PubMedGoogle Scholar
  105. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321PubMedGoogle Scholar
  106. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91:11733–11737PubMedGoogle Scholar
  107. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947PubMedGoogle Scholar
  108. Li LC, Chui R, Nakajima K, Oh BR, Au HC, Dahiya R (2000) Frequent methylation of estrogen receptor in prostate cancer: correlation with tumor progression. Cancer Res 60:702–706PubMedGoogle Scholar
  109. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85PubMedGoogle Scholar
  110. Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, Hood L, Nelson PS (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59:4180–4184PubMedGoogle Scholar
  111. Lin X, Tascilar M, Lee WH, Vles WJ, Lee BH, Veeraswamy R, Asgari K, Freije D, van Rees B, Gage WR, Bova GS, Isaacs WB, Brooks JD, DeWeese TL, De Marzo AM, Nelson WG (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159:1815–1826PubMedGoogle Scholar
  112. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T (2001) Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61:3550–3555PubMedGoogle Scholar
  113. Liu W, Bulgaru A, Haigentz M, Stein CA, Perez-Soler R, Mani S (2003) The BCL2-family of protein ligands as cancer drugs: the next generation of therapeutics. Curr Med Chem Anticancer Agents 3:217–223PubMedGoogle Scholar
  114. Liu W, Chang BL, Cramer S, Koty PP, Li T, Sun J, Turner AR, Kap-Herr C, Bobby P, Rao J, Zheng SL, Isaacs WB, Xu J (2007) Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers. Clin Cancer Res 13:5028–5033PubMedGoogle Scholar
  115. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079PubMedGoogle Scholar
  116. Lou W, Krill D, Dhir R, Becich MJ, Dong JT, Frierson HF Jr, Isaacs WB, Isaacs JT, Gao AC (1999) Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res 59:2329–2331PubMedGoogle Scholar
  117. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, Trent JM, Isaacs WB, De Marzo AM (2002) Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res 62:2220–2226PubMedGoogle Scholar
  118. Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442PubMedGoogle Scholar
  119. Magee JA, Abdulkadir SA, Milbrandt J (2003) Haploinsufficiency at the Nkx3.1 locus: a paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3:273–283PubMedGoogle Scholar
  120. Marcelli M, Ittmann M, Mariani S, Sutherland R, Nigam R, Murthy L, Zhao Y, DiConcini D, Puxeddu E, Esen A, Eastham J, Weigel NL, Lamb DJ (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60:944–949PubMedGoogle Scholar
  121. Mashimo T, Watabe M, Cuthbert AP, Newbold RF, Rinker-Schaeffer CW, Helfer E, Watabe K (1998) Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Res 58:4572–4576PubMedGoogle Scholar
  122. McClintock B (1941) The stability of broken ends of chromosomes in zea mays. Genetics 26:234–282PubMedGoogle Scholar
  123. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR (1999) Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59:4291–4296PubMedGoogle Scholar
  124. Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409PubMedGoogle Scholar
  125. Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872PubMedGoogle Scholar
  126. Miller DC, Zheng SL, Dunn RL, Sarma AV, Montie JE, Lange EM, Meyers DA, Xu J, Cooney KA (2003) Germ-line mutations of the macrophage scavenger receptor 1 gene: association with prostate cancer risk in African-American men. Cancer Res 63:3486–3489PubMedGoogle Scholar
  127. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324PubMedGoogle Scholar
  128. Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, Koh T, Taki T (1995) Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res 55:4127–4131PubMedGoogle Scholar
  129. Miyake M, Nakano K, Itoi SI, Koh T, Taki T (1996) Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res 56:1244–1249PubMedGoogle Scholar
  130. Mousses S, Wagner U, Chen Y, Kim JW, Bubendorf L, Bittner M, Pretlow T, Elkahloun AG, Trepel JB, Kallioniemi OP (2001) Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20:6718–6723PubMedGoogle Scholar
  131. Muhlbauer KR, Grone HJ, Ernst T, Grone E, Tschada R, Hergenhahn M, Hollstein M (2003) Analysis of human prostate cancers and cell lines for mutations in the TP53 and KLF6 tumour suppressor genes. Br J Cancer 89:687–690PubMedGoogle Scholar
  132. Mulholland DJ, Cheng H, Reid K, Rennie PS, Nelson CC (2002) The androgen receptor can promote beta-catenin nuclear translocation independently of adenomatous polyposis coli. J Biol Chem 277:17933–17943PubMedGoogle Scholar
  133. Murakami YS, Brothman AR, Leach RJ, White RL (1995) Suppression of malignant phenotype in a human prostate cancer cell line by fragments of normal chromosomal region 17q. Cancer Res 55:3389–3394PubMedGoogle Scholar
  134. Murakami YS, Albertsen H, Brothman AR, Leach RJ, White RL (1996) Suppression of the malignant phenotype of human prostate cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10. Cancer Res 56:2157–2160PubMedGoogle Scholar
  135. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 95:13513–13518PubMedGoogle Scholar
  136. Nagle RB, Hao J, Knox JD, Dalkin BL, Clark V, Cress AE (1995) Expression of hemidesmosomal and extracellular matrix proteins by normal and malignant human prostate tissue. Am J Pathol 146:1498–1507PubMedGoogle Scholar
  137. Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR (2000) Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20:8969–8982PubMedGoogle Scholar
  138. Nakayama M, Bennett CJ, Hicks JL, Epstein JI, Platz EA, Nelson WG, De Marzo AM (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163:923–933PubMedGoogle Scholar
  139. Nam RK, Elhaji Y, Krahn MD, Hakimi J, Ho M, Chu W, Sweet J, Trachtenberg J, Jewett MA, Narod SA (2000) Significance of the CAG repeat polymorphism of the androgen receptor gene in prostate cancer progression. J Urol 164:567–572PubMedGoogle Scholar
  140. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, Glucksman MJ, Narla J, Eng FJ, Chan AM, Ferrari AC, Martignetti JA, Friedman SL (2001) KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294:2563–2566PubMedGoogle Scholar
  141. Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, Katz A, Isaacs WB, Hebbring S, Komiya A, McDonnell SK, Wiley KE, Jacobsen SJ, Isaacs SD, Walsh PC, Zheng SL, Chang BL, Friedrichsen DM, Stanford JL, Ostrander EA, Chinnaiyan AM, Rubin MA, Xu J, Thibodeau SN, Friedman SL, Martignetti JA (2005a) A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65:1213–1222PubMedGoogle Scholar
  142. Narla G, Difeo A, Yao S, Banno A, Hod E, Reeves HL, Qiao RF, Camacho-Vanegas O, Levine A, Kirschenbaum A, Chan AM, Friedman SL, Martignetti JA (2005b) Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res 65:5761–5768PubMedGoogle Scholar
  143. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657–1669PubMedGoogle Scholar
  144. Nelson JB, Lee WH, Nguyen SH, Jarrard DF, Brooks JD, Magnuson SR, Opgenorth TJ, Nelson WG, Bova GS (1997) Methylation of the 5′ CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 57:35–37PubMedGoogle Scholar
  145. Nelson WG, De Marzo AM, Isaacs WB (2003) Prostate cancer. N Engl J Med 349:366–381PubMedGoogle Scholar
  146. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER (1992) Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci USA 89:6319–6323PubMedGoogle Scholar
  147. Nihei N, Ichikawa T, Kawana Y, Kuramochi H, Kugo H, Oshimura M, Killary AM, Rinker-Schaeffer CW, Barrett JC, Isaacs JT (1995) Localization of metastasis suppressor gene(s) for rat prostatic cancer to the long arm of human chromosome 10. Genes Chromosomes Cancer 14:112–119PubMedGoogle Scholar
  148. Nihei N, Ichikawa T, Kawana Y, Kuramochi H, Kugoh H, Oshimura M, Hayata I, Shimazaki J, Ito H (1996) Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes Chromosomes Cancer 17:260–268PubMedGoogle Scholar
  149. Nihei N, Ohta S, Kuramochi H, Kugoh H, Oshimura M, Barrett JC, Isaacs JT, Igarashi T, Ito H, Masai M, Ichikawa Y, Ichikawa T (1999) Metastasis suppressor gene(s) for rat ­prostate cancer on the long arm of human chromosome 7. Genes Chromosomes Cancer 24:1–8PubMedGoogle Scholar
  150. Nupponen NN, Visakorpi T (2000) Molecular cytogenetics of prostate cancer. Microsc Res Tech 51:456–463PubMedGoogle Scholar
  151. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153:141–148PubMedGoogle Scholar
  152. Nupponen NN, Porkka K, Kakkola L, Tanner M, Persson K, Borg K, Isola J, Visakorpi T (1999) Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am J Pathol 154:1777–1783PubMedGoogle Scholar
  153. Orikasa K, Fukushige S, Hoshi S, Orikasa S, Kondo K, Miyoshi Y, Kubota Y, Horii A (1998) Infrequent genetic alterations of the PTEN gene in Japanese patients with sporadic prostate cancer. J Hum Genet 43:228–230PubMedGoogle Scholar
  154. Ornstein DK, Cinquanta M, Weiler S, Duray PH, Emmert-Buck MR, Vocke CD, Linehan WM, Ferretti JA (2001) Expression studies and mutational analysis of the androgen regulated homeobox gene NKX3.1 in benign and malignant prostate epithelium. J Urol 165:1329–1334PubMedGoogle Scholar
  155. Padalecki SS, Weldon KS, Reveles XT, Buller CL, Grubbs B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M, Guise TA, Leach RJ, Johnson-Pais TL (2003) Chromosome 18 suppresses prostate cancer metastases. Urol Oncol 21:366–373PubMedGoogle Scholar
  156. Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164:1992–1995PubMedGoogle Scholar
  157. Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE (1997) Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 44:309–320PubMedGoogle Scholar
  158. Pawlowski JE, Ertel JR, Allen MP, Xu M, Butler C, Wilson EM, Wierman ME (2002) Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells. J Biol Chem 277:20702–20710PubMedGoogle Scholar
  159. Pei L, Peng Y, Yang Y, Ling XB, Van Eyndhoven WG, Nguyen KC, Rubin M, Hoey T, Powers S, Li J (2002) PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res 62:5420–5424PubMedGoogle Scholar
  160. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776PubMedGoogle Scholar
  161. Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M, Eng C, Lidereau R (1998) PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 16:2879–2883PubMedGoogle Scholar
  162. Philipp-Staheli J, Payne SR, Kemp CJ (2001) p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168PubMedGoogle Scholar
  163. Phillips SMA, Barton CM, Lee SJ, Morton DG, Wallace DMA, Lemoine NR, Neoptolemos JP (1994) Loss of the Retinoblastoma Susceptibility Gene (Rb1) Is A Frequent and Early Event in Prostatic Tumorigenesis. Br J Cancer 70:1252–1257PubMedGoogle Scholar
  164. Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional? – The mouse’s tale. J Clin Invest 108:649–654PubMedGoogle Scholar
  165. Porkka KP, Visakorpi T (2004) Molecular mechanisms of prostate cancer. Eur Urol 45:683–691PubMedGoogle Scholar
  166. Porkka K, Saramaki O, Tanner M, Visakorpi T (2002) Amplification and overexpression of elongin C gene discovered in prostate cancer by cDNA microarrays. Lab Invest 82:629–637PubMedGoogle Scholar
  167. Porkka KP, Tammela TL, Vessella RL, Visakorpi T (2004) RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosomes Cancer 39:1–10PubMedGoogle Scholar
  168. Reiter RE, Gu ZN, Watabe T, Thomas G, Szigeti K, Davis E, Wahl M, Nisitani S, Yamashiro J, Le Beau MM, Loda M, Witte ON (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 95:1735–1740PubMedGoogle Scholar
  169. Reiter RE, Sato I, Thomas G, Qian J, Gu Z, Watabe T, Loda M, Jenkins RB (2000) Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes Chromosomes Cancer 27:95–103PubMedGoogle Scholar
  170. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433PubMedGoogle Scholar
  171. Rubin MA, De Marzo AM (2004) Molecular genetics of human prostate cancer. Modern Pathology 17:380–388PubMedGoogle Scholar
  172. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM (2002) alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 287:1662–1670PubMedGoogle Scholar
  173. Rubinstein E, Le Naour F, Lagaudriere-Gesbert C, Billard M, Conjeaud H, Boucheix C (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665PubMedGoogle Scholar
  174. Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174PubMedGoogle Scholar
  175. Saramaki O, Willi N, Bratt O, Gasser TC, Koivisto P, Nupponen NN, Bubendorf L, Visakorpi T (2001) Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am J Pathol 159:2089–2094PubMedGoogle Scholar
  176. Sartor O, Zheng Q, Eastham JA (1999) Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 53:378–380PubMedGoogle Scholar
  177. Sasaki M, Tanaka Y, Perinchery G, Dharia A, Kotcherguina I, Fujimoto S, Dahiya R (2002) Methylation and inactivation of estrogen, progesterone, and androgen receptors in prostate cancer. J Natl Cancer Inst 94:384–390PubMedGoogle Scholar
  178. Savinainen KJ, Linja MJ, Saramaki OR, Tammela TL, Chang GT, Brinkmann AO, Visakorpi T (2004) Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Br J Cancer 90:1041–1046PubMedGoogle Scholar
  179. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62:1425–1438PubMedGoogle Scholar
  180. Schoenberg MP, Hakimi JM, Wang S, Bova GS, Epstein JI, Fischbeck KH, Isaacs WB, Walsh PC, Barrack ER (1994) Microsatellite mutation (CAG24→gt;18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 198:74–80PubMedGoogle Scholar
  181. Seppala EH, Ikonen T, Autio V, Rokman A, Mononen N, Matikainen MP, Tammela TL, Schleutker J (2003) Germ-line alterations in MSR1 gene and prostate cancer risk. Clin Cancer Res 9:5252–5256PubMedGoogle Scholar
  182. Shand RL, Gelmann ER (2006) Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol 16:123–131PubMedGoogle Scholar
  183. Shang Y, Myers M, Brown M (2002) Formation of the androgen receptor transcription complex. Mol Cell 9:601–610PubMedGoogle Scholar
  184. Shurbaji MS, Kuhajda FP, Pasternack GR, Thurmond TS (1992) Expression of oncogenic antigen 519 (OA-519) in prostate cancer is a potential prognostic indicator. Am J Clin Pathol 97:686–691PubMedGoogle Scholar
  185. Slagsvold T, Kraus I, Fronsdal K, Saatcioglu F (2001) DNA binding-independent transcriptional activation by the androgen receptor through triggering of coactivators. J Biol Chem 276:31030–31036PubMedGoogle Scholar
  186. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS (1996) Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56:218–222PubMedGoogle Scholar
  187. Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci USA 98:4575–4580PubMedGoogle Scholar
  188. Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J (1993) Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 46:759–765PubMedGoogle Scholar
  189. Suzuki H, Komiya A, Emi M, Kuramochi H, Shiraishi T, Yatani R, Shimazaki J (1996) Three distinct commonly deleted regions of chromosome arm 16q in human primary and metastatic prostate cancers. Genes Chromosomes Cancer 17:225–233PubMedGoogle Scholar
  190. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, Isaacs WB, Bova GS (1998) Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res 58:204–209PubMedGoogle Scholar
  191. Swalwell JI, Vocke CD, Yang YF, Walker JR, Grouse L, Myers SH, Gillespie JW, Bostwick DG, Duray PH, Linehan WM, Emmert-Buck MR (2002) Determination of a minimal deletion interval on chromosome band 8p21 in sporadic prostate cancer. Genes Chromosomes Cancer 33:201–205PubMedGoogle Scholar
  192. Swinnen JV, Roskams T, Joniau S, Van Poppel H, Oyen R, Baert L, Heyns W, Verhoeven G (2002) Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19–22PubMedGoogle Scholar
  193. Takaku H, Minagawa A, Takagi M, Nashimoto M (2003) A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 31:2272–2278PubMedGoogle Scholar
  194. Tan J, Sharief Y, Hamil KG, Gregory CW, Zang DY, Sar M, Gumerlock PH, deVere White RW, Pretlow TG, Harris SE, Wilson EM, Mohler JL, French FS (1997) Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 11:450–459PubMedGoogle Scholar
  195. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, Keer HN, Balk SP (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332:1393–1398PubMedGoogle Scholar
  196. Taplin ME, Bubley GJ, Ko YJ, Small EJ, Upton M, Rajeshkumar B, Balk SP (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59:2511–2515PubMedGoogle Scholar
  197. Taplin ME, Rajeshkumar B, Halabi S, Werner CP, Woda BA, Picus J, Stadler W, Hayes DF, Kantoff PW, Vogelzang NJ, Small EJ (2003) Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J Clin Oncol 21:2673–2678PubMedGoogle Scholar
  198. Tavtigian SV, Simard J, Teng DHF, Abtin V, Baumgard M, Beck A, Camp NJ, Carillo AR, Chen Y, Dayananth P, Desrochers M, Dumont M, Farnham JM, Frank D, Frye C, Ghaffari S, Gupte JS, Hu R, Iliev D, Janecki T, Kort EN, Laity KE, Leavitt A, Leblanc G, McArthur-Morrison J, Pederson A, Penn B, Peterson KT, Reid JE, Richards S, Schroeder M, Smith R, Snyder SC, Swedlund B, Swensen J, Thomas A, Tranchant M, Woodland AM, Labrie F, Skolnick MH, Neuhausen S, Rommens J, Cannon-Albright LA (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180PubMedGoogle Scholar
  199. Tayeb MT, Clark C, Murray GI, Sharp L, Haites NE, McLeod HL (2004) Length and somatic mosaicism of CAG and GGN repeats in the androgen receptor gene and the risk of prostate cancer in men with benign prostatic hyperplasia. Ann Saudi Med 24:21–26PubMedGoogle Scholar
  200. Tilley WD, Buchanan G, Hickey TE, Bentel JM (1996) Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 2:277–285PubMedGoogle Scholar
  201. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMedGoogle Scholar
  202. Trapman J, Sleddens HFBM, Vanderweiden MM, Dinjens WNM, Konig JJ, Schroder FH, Faber PW, Bosman FT (1994) Loss of heterozygosity of chromosome-8 microsatellite loci implicates a candidate tumor-suppressor gene between the loci D8S87 and D8S133 in human prostate-cancer. Cancer Res 54:6061–6064PubMedGoogle Scholar
  203. Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60:4709–4713PubMedGoogle Scholar
  204. Tsujimoto Y, Takakuwa T, Takayama H, Nishimura K, Okuyama A, Aozasa K, Nonomura N (2004) In situ shortening of CAG repeat length within the androgen receptor gene in prostatic cancer and its possible precursors. Prostate 58:283–290PubMedGoogle Scholar
  205. Ueda T, Ichikawa T, Tamaru J, Mikata A, Akakura K, Akimoto S, Imai T, Yoshie O, Shiraishi T, Yatani R, Ito H, Shimazaki J (1996) Expression of the KAI1 protein in benign prostatic hyperplasia and prostate cancer. Am J Pathol 149:1435–1440PubMedGoogle Scholar
  206. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, Debruyne FM, Schalken JA (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54:3929–3933PubMedGoogle Scholar
  207. Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P (2001) The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 94:705–710PubMedGoogle Scholar
  208. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629PubMedGoogle Scholar
  209. Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, Claassen E, van Rooij HC, Trapman J, Brinkmann AO, Mulder E (1990a) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 173:534–540PubMedGoogle Scholar
  210. Veldscholte J, Voorhorst-Ogink MM, Bolt-de Vries J, van Rooij HC, Trapman J, Mulder E (1990b) Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1052:187–194PubMedGoogle Scholar
  211. Visakorpi T (2003) The molecular genetics of prostate cancer. Urology 62:3–10PubMedGoogle Scholar
  212. Visakorpi T, Kallioniemi OP, Heikkinen A, Koivula T, Isola J (1992) Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst 84:883–887PubMedGoogle Scholar
  213. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinanen R, Palmberg C, Palotie A, Tammela T, Isola J, Kallioniemi OP (1995a) In vivo amplification of the androgen receptor gene and progression of human prostate-cancer. Nat Genet 9:401–406PubMedGoogle Scholar
  214. Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ, Kallioniemi OP (1995b) Genetic changes in primary and recurrent prostate-cancer by comparative genomic hybridization. Cancer Res 55:342–347PubMedGoogle Scholar
  215. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501PubMedGoogle Scholar
  216. Vocke CD, Pozzatti RO, Bostwick DG, Florence CD, Jennings SB, Strup SE, Duray PH, Liotta LA, Emmertbuck MR, Linehan WM (1996) Analysis of 99 microdissected prostate carcinomas reveals a high frequency of allelic loss on chromosome 8p12–21. Cancer Res 56:2411–2416PubMedGoogle Scholar
  217. Voeller HJ, Augustus M, Madike V, Bova GS, Carter KC, Gelmann EP (1997) Coding region of NKX3.1, a prostate-specific homeobox gene on 8p21, is not mutated in human prostate cancers. Cancer Res 57:4455–4459PubMedGoogle Scholar
  218. Voeller HJ, Truica CI, Gelmann EP (1998) Beta-catenin mutations in human prostate cancer. Cancer Res 58:2520–2523PubMedGoogle Scholar
  219. Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T (1999) Androgen receptor gene mutations in hormone-refractory prostate cancer. J Pathol 189:559–563PubMedGoogle Scholar
  220. Wang SI, Parsons R, Ittmann M (1998) Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4:811–815PubMedGoogle Scholar
  221. Wang L, McDonnell SK, Cunningham JM, Hebbring S, Jacobsen SJ, Cerhan JR, Slager SL, Blute ML, Schaid DJ, Thibodeau SN (2003a) No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet 35:128–129PubMedGoogle Scholar
  222. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H (2003b) Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4:209–221PubMedGoogle Scholar
  223. Wang JC, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, Chevrette M (2007) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361PubMedGoogle Scholar
  224. Weng J, Wang J, Hu X, Wang F, Ittmann M, Liu M (2006) PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer. Int J Cancer 118:1471–1480PubMedGoogle Scholar
  225. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL (1998) Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95:5246–5250PubMedGoogle Scholar
  226. Woodson K, Hayes R, Wideroff L, Villaruz L, Tangrea J (2003) Hypermethylation of GSTP1, CD44, and E-cadherin genes in prostate cancer among US Blacks and Whites. Prostate 55:199–205PubMedGoogle Scholar
  227. Xu JF, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, Sterling D, Lange EM, Hawkins GA, Turner A, Ewing CM, Faith DA, Johnson JR, Suzuki H, Bujnovszky P, Wiley KE, DeMarzo AM, Bova GS, Chang BL, Hall MC, McCullough DL, Partin AW, Kassabian VS, Carpten JD, Bailey-Wilson JE, Trent JM, Ohar J, Bleecker ER, Walsh PC, Isaacs WB, Meyers DA (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321–325PubMedGoogle Scholar
  228. Xu J, Langefeld CD, Zheng SL, Gillanders EM, Chang BL, Isaacs SD, Williams AH, Wiley KE, Dimitrov L, Meyers DA, Walsh PC, Trent JM, Isaacs WB (2004) Interaction effect of PTEN and CDKN1B chromosomal regions on prostate cancer linkage. Hum Genet 115:255–262PubMedGoogle Scholar
  229. Yanez-Mo M, Tejedor R, Rousselle P, Madrid F (2001) Tetraspanins in intercellular adhesion of polarized epithelial cells: spatial and functional relationship to integrins and cadherins. J Cell Sci 114:577–587PubMedGoogle Scholar
  230. Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE (1998) Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 159:941–945PubMedGoogle Scholar
  231. Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z (2002) Linking beta-catenin to androgen-signaling pathway. J Biol Chem 277:11336–11344PubMedGoogle Scholar
  232. Yasuda H, Mizuno A, Tamaoki T, Morinaga T (1994) ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol 14:1395–1401PubMedGoogle Scholar
  233. Zheng SL, Ju JH, Chang BL, Ortner E, Sun JL, Isaacs SD, Sun JS, Wiley KE, Liu WN, Zemedkun M, Walsh PC, Ferretti J, Gruschus J, Isaacs WB, Gelmann EP, Xu JF (2006) Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function. Cancer Res 66:69–77PubMedGoogle Scholar
  234. Zvereff V, Wang JC, Shun K, Lacoste J, Chevrette M (2007) Colocalisation of CD9 and mortalin in CD9-induced mitotic catastrophe in human prostate cancer cells. Br J Cancer 97:941–948PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Urology, Department of SurgeryThe Research Institute of the McGill University Health Center, McGill UniversityMontrealCanada

Personalised recommendations