Skip to main content

Inherited Susceptibility of Aggressive Prostate Cancer

  • Chapter
  • First Online:
  • 776 Accesses

Part of the book series: Cancer Genetics ((CANGENETICS))

Abstract

The severity of prostate cancer varies widely, ranging from latent disease and having essentially no impact on morbidity, to an aggressive course of disease with high morbidity and potential mortality. Deciphering the risk factors for prostate cancer and aggressive forms of the disease is crucial for improving screening, prevention, and treatment of this common but complex disease. Established risk factors for overall prostate cancer include older age, African-American ethnicity, a positive family history of prostate cancer, and a few genetic loci. The potential relationship between these risk factors and more aggressive disease remains to be clearly understood. Moreover, a number of genetic linkage and association studies support an inherited susceptibility to aggressive prostate cancer.

Prostate cancer is the second most common cancer in American men after skin cancer (Carter et al. 2006; SEER Cancer Statistics Review 1975–2004 2007). The only established risk factors for prostate cancer are increasing age, African-American (AA) ethnicity, and a positive family history of prostate cancer. The risk of prostate cancer increases with older ages with most cases diagnosed after age 65. African-Americans have the highest incidence of prostate cancer, Asians the lowest, whereas Caucasians have in-between rates (SEER Cancer Statistics Review 1975–2004 2007). Some studies have also found a higher mortality rate in AA men (Albano et al. 2007; Powell 2007) (see Chap. 9.4). The risk of prostate cancer also increases with the occurrence of the disease in first-degree relatives and increases with increasing numbers of affected family members (Gann 2002; Giovannucci et al. 2007; Noe et al. 2007). There is a twofold risk to men who have one affected first-degree relative and increases to 11-fold with three affected family members (Steinberg et al. 1990). A number of studies have investigated the risk of prostate cancer in families with other cancers (e.g., breast), but the occurrence of other cancers has not been established as risk factors (Peters et al. 2001; Verhage et al. 2004). Studies have also looked at environmental factors such as diet and occupational exposures, but these have not been consistently associated with disease (Carter et al. 2006; SEER Cancer Statistics Review 1975–2004 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA, Stanford JL (2007) Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97:826–831

    PubMed  CAS  Google Scholar 

  • Albano JD, Ward E, Jemal A, Anderson R, Cokkinides VE, Murray T, Henley J et al (2007) Cancer mortality in the United States by education level and race. J Natl Cancer Inst 99:1384–1394

    PubMed  Google Scholar 

  • Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Epstein JI (2001a) Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist. Hum Pathol 32:81–88

    PubMed  Google Scholar 

  • Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, Bostwick DG et al (2001b) Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum Pathol 32:74–80

    PubMed  Google Scholar 

  • Altay B, Kefi A, Nazli O, Killi R, Semerci B, Akar I (2001) Comparison of Gleason scores from sextant prostate biopsies and radical prostatectomy specimens. Urol Int 67:14–18

    PubMed  CAS  Google Scholar 

  • Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA, Sigurdsson A et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38:652–658

    PubMed  CAS  Google Scholar 

  • Antunes AA, Leite KR, Dall’Oglio MF, Crippa A, Nesrallah LJ, Srougi M (2005) Prostate biopsy: is age important for determining the pathological features in prostate cancer? Int Braz J Urol 31:331–337

    PubMed  Google Scholar 

  • Azzouzi AR, Valeri A, Cormier L, Fournier G, Mangin P, Cussenot O (2003) Familial prostate cancer cases before and after radical prostatectomy do not show any aggressiveness compared with sporadic cases. Urology 61:1193–1197

    PubMed  Google Scholar 

  • Bangsi D, Zhou J, Sun Y, Patel NP, Darga LL, Heilbrun LK, Powell IJ et al (2006) Impact of a genetic variant in CYP3A4 on risk and clinical presentation of prostate cancer among white and African-American men. Urol Oncol 24:21–27

    PubMed  CAS  Google Scholar 

  • Bauer JJ, Srivastava S, Connelly RR, Sesterhenn IA, Preston DM, McLeod DG, Moul JW (1998) Significance of familial history of prostate cancer to traditional prognostic variables, genetic biomarkers, and recurrence after radical prostatectomy. Urology 51:970–976

    PubMed  CAS  Google Scholar 

  • Berndt SI, Dodson JL, Huang WY, Nicodemus KK (2006) A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. J Urol 175:1613–1623

    PubMed  CAS  Google Scholar 

  • Billis A, Magna LA, Lira MM, Moreira LR, Okamura H, Paz AR, Perina RC, et al (2005) Relationship of age to outcome and clinicopathologic findings in men submitted to radical prostatectomy. Int Braz J Urol 31:534–539; discussion 9-40

    Google Scholar 

  • Bostwick DG (1994) Grading prostate cancer. Am J Clin Pathol 102:S38–S56

    PubMed  CAS  Google Scholar 

  • Bostwick DG, Myers RP, Oesterling JE (1994) Staging of prostate cancer. Semin Surg Oncol 10:60–72

    PubMed  CAS  Google Scholar 

  • Bova GS, Partin AW, Isaacs SD, Carter BS, Beaty TL, Isaacs WB, Walsh PC (1998) Biological aggressiveness of hereditary prostate cancer: long-term evaluation following radical prostatectomy. J Urol 160:660–663

    PubMed  CAS  Google Scholar 

  • Boyle P, Severi G, Giles GG (2003) The epidemiology of prostate cancer. Urol Clin North Am 30:209–217

    PubMed  Google Scholar 

  • Buschemeyer WC 3rd, Freedland SJ (2007) Obesity and prostate cancer: epidemiology and clinical implications. Eur Urol 52(2):331–343

    PubMed  Google Scholar 

  • Camp NJ, Farnham JM, Cannon-Albright LA (2006) Localization of a prostate cancer predisposition gene to an 880-kb region on chromosome 22q12.3 in Utah high-risk pedigrees. Cancer Res 66:10205–10212

    PubMed  CAS  Google Scholar 

  • Camp NJ, Cannon-Albright LA, Farnham JM, Baffoe-Bonnie AB, George A, Powell I, Bailey-Wilson JE et al (2007) Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Hum Mol Genet 16:1271–1278

    PubMed  CAS  Google Scholar 

  • Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC (1992) Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 89:3367–3371

    PubMed  CAS  Google Scholar 

  • Carter HB, Ferrucci L, Kettermann A, Landis P, Wright EJ, Epstein JI, Trock BJ et al (2006) Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst 98:1521–1527

    PubMed  Google Scholar 

  • Casey G, Neville PJ, Liu X, Plummer SJ, Cicek MS, Krumroy LM, Curran AP et al (2006) Podocalyxin variants and risk of prostate cancer and tumor aggressiveness. Hum Mol Genet 15:735–741

    PubMed  CAS  Google Scholar 

  • Cerhan JR, Torner JC, Lynch CF, Rubenstein LM, Lemke JH, Cohen MB, Lubaroff DM et al (1997) Association of smoking, body mass, and physical activity with risk of prostate cancer in the Iowa 65+ Rural Health Study (United States). Cancer Causes Control 8:229–238

    PubMed  CAS  Google Scholar 

  • Chang BL, Isaacs SD, Wiley KE, Gillanders EM, Zheng SL, Meyers DA, Walsh PC et al (2005) Genome-wide screen for prostate cancer susceptibility genes in men with clinically significant disease. Prostate 64:356–361

    PubMed  CAS  Google Scholar 

  • Chavarro JE, Stampfer MJ, Li H, Campos H, Kurth T, Ma J (2007) A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16(7):1364–1370

    PubMed  CAS  Google Scholar 

  • Cheng I, Plummer SJ, Casey G, Witte JS (2007a) Toll-like receptor 4 genetic variation and advanced prostate cancer risk. Cancer Epidemiol Biomarkers Prev 16:352–355

    PubMed  CAS  Google Scholar 

  • Cheng I, Liu X, Plummer SJ, Krumroy LM, Casey G, Witte JS (2007b) COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br J Cancer 97:557–561

    PubMed  CAS  Google Scholar 

  • Cheng I, Plummer SJ, Jorgenson E, Liu X, Rybicki BA, Casey G, Witte JS (2008) 8q24 and prostate cancer: associated with advanced disease and meta-analysis. Eur J Hum Genet 16(4):496–505

    PubMed  CAS  Google Scholar 

  • Cher ML, MacGrogan D, Bookstein R, Brown JA, Jenkins RB, Jensen RH (1994) Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes Cancer 11:153–162

    PubMed  CAS  Google Scholar 

  • Christensen GB, Camp NJ, Farnham JM, Cannon-Albright LA (2007) Genome-wide linkage analysis for aggressive prostate cancer in Utah high-risk pedigrees. Prostate 67:605–613

    PubMed  CAS  Google Scholar 

  • Cicek MS, Liu X, Casey G, Witte JS (2005) Role of androgen metabolism genes CYP1B1, PSA/KLK3, and CYP11alpha in prostate cancer risk and aggressiveness. Cancer Epidemiol Biomarkers Prev 14:2173–2177

    PubMed  CAS  Google Scholar 

  • Cicek MS, Liu X, Schumacher FR, Casey G, Witte JS (2006) Vitamin D receptor genotypes/haplotypes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 15:2549–2552

    PubMed  CAS  Google Scholar 

  • Cicek MS, Conti DV, Curran A, Neville PJ, Paris PL, Casey G, Witte JS (2004) Association of prostate cancer risk and aggressiveness to androgen pathway genes: SRD5A2, CYP17, and the AR. Prostate 59:69–76

    PubMed  CAS  Google Scholar 

  • Conlon EM, Goode EL, Gibbs M, Stanford JL, Badzioch M, Janer M, Kolb S et al (2003) Oligogenic segregation analysis of hereditary prostate cancer pedigrees: evidence for multiple loci affecting age at onset. Int J Cancer 105:630–635

    PubMed  CAS  Google Scholar 

  • Cooney KA, McCarthy JD, Lange E, Huang L, Miesfeldt S, Montie JE, Oesterling JE et al (1997) Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 89:955–959

    PubMed  CAS  Google Scholar 

  • Coughlin SS, Neaton JD, Sengupta A (1996) Cigarette smoking as a predictor of death from prostate cancer in 348, 874 men screened for the Multiple Risk Factor Intervention Trial. Am J Epidemiol 143:1002–1006

    PubMed  CAS  Google Scholar 

  • Cui J, Staples MP, Hopper JL, English DR, McCredie MR, Giles GG (2001) Segregation analyses of 1, 476 population-based Australian families affected by prostate cancer. Am J Hum Genet 68:1207–1218

    PubMed  CAS  Google Scholar 

  • Cussenot O, Azzouzi AR, Nicolaiew N, Fromont G, Mangin P, Cormier L, Fournier G et al (2007) Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol 25:3596–3602

    PubMed  CAS  Google Scholar 

  • D’Amico AV, Moul J, Carroll PR, Sun L, Lubeck D, Chen MH (2003) Cancer-specific mortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era. J Clin Oncol 21:2163–2172

    PubMed  Google Scholar 

  • Dal Maso L, Zucchetto A, La Vecchia C, Montella M, Conti E, Canzonieri V, Talamini R et al (2004) Prostate cancer and body size at different ages: an Italian multicentre case-control study. Br J Cancer 90:2176–2180

    PubMed  CAS  Google Scholar 

  • Djavan B, Kadesky K, Klopukh B, Marberger M, Roehrborn CG (1998) Gleason scores from prostate biopsies obtained with 18-gauge biopsy needles poorly predict Gleason scores of radical prostatectomy specimens. Eur Urol 33:261–270

    PubMed  CAS  Google Scholar 

  • Edwards SM, Badzioch MD, Minter R, Hamoudi R, Collins N, Ardern-Jones A, Dowe A et al (1999) Androgen receptor polymorphisms: association with prostate cancer risk, relapse and overall survival. Int J Cancer 84:458–465

    PubMed  CAS  Google Scholar 

  • Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R et al (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72:1–12

    PubMed  CAS  Google Scholar 

  • Eeles RA, Durocher F, Edwards S, Teare D, Badzioch M, Hamoudi R, Gill S et al (1998) Linkage analysis of chromosome 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group U.K. Familial Prostate Cancer Study Collaborators. Am J Hum Genet 62:653–658

    PubMed  CAS  Google Scholar 

  • Emmert-Buck MR, Vocke CD, Pozzatti RO, Duray PH, Jennings SB, Florence CD, Zhuang Z et al (1995) Allelic loss on chromosome 8p12–21 in microdissected prostatic intraepithelial neoplasia. Cancer Res 55:2959–2962

    PubMed  CAS  Google Scholar 

  • Epstein JI (2006) What’s new in prostate cancer disease assessment in 2006? Curr Opin Urol 16:146–151

    PubMed  Google Scholar 

  • Epstein JI, Allsbrook WC Jr, Amin MB, Egevad LL (2005) The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am J Surg Pathol 29:1228–1242

    PubMed  Google Scholar 

  • Freedland SJ, Platz EA (2007) Obesity and prostate cancer: making sense out of apparently conflicting data. Epidemiol Rev 29:88–97

    PubMed  Google Scholar 

  • Freedman ML, Pearce CL, Penney KL, Hirschhorn JN, Kolonel LN, Henderson BE, Altshuler D (2005) Systematic evaluation of genetic variation at the androgen receptor locus and risk of prostate cancer in a multiethnic cohort study. Am J Hum Genet 76:82–90

    PubMed  CAS  Google Scholar 

  • Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A, Penney K et al (2006) Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA 103:14068–14073

    PubMed  CAS  Google Scholar 

  • Freeman VL, Coard KC, Wojcik E, Durazo-Arvizu R (2004) Use of the Gleason system in international comparisons of prostatic adenocarcinomas in blacks. Prostate 58:169–173

    PubMed  Google Scholar 

  • Fukagai T, Namiki T, Namiki H, Carlile RG, Shimada M, Yoshida H (2001) Discrepancies between Gleason scores of needle biopsy and radical prostatectomy specimens. Pathol Int 51:364–370

    PubMed  CAS  Google Scholar 

  • Gann PH (2002) Risk factors for prostate cancer. Rev Urol 4(Suppl 5):S3–S10

    PubMed  Google Scholar 

  • Gibbs M, Chakrabarti L, Stanford JL, Goode EL, Kolb S, Schuster EF, Buckley VA et al (1999) Analysis of chromosome 1q42.2–43 in 152 families with high risk of prostate cancer. Am J Hum Genet 64:1087–1095

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121:1571–1578

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Rimm EB, Ascherio A, Colditz GA, Spiegelman D, Stampfer MJ, Willett WC (1999) Smoking and risk of total and fatal prostate cancer in United States health professionals. Cancer Epidemiol Biomarkers Prev 8:277–282

    PubMed  CAS  Google Scholar 

  • Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM (2001) Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 68:1197–1206

    PubMed  CAS  Google Scholar 

  • Gong G, Oakley-Girvan I, Wu AH, Kolonel LN, John EM, West DW, Felberg A et al (2002) Segregation analysis of prostate cancer in 1, 719 white, African-American and Asian-American families in the United States and Canada. Cancer Causes Control 13:471–482

    PubMed  Google Scholar 

  • Goode EL, Stanford JL, Peters MA, Janer M, Gibbs M, Kolb S, Badzioch MD et al (2001) Clinical characteristics of prostate cancer in an analysis of linkage to four putative susceptibility loci. Clin Cancer Res 7:2739–2749

    PubMed  CAS  Google Scholar 

  • Goode EL, Stanford JL, Chakrabarti L, Gibbs M, Kolb S, McIndoe RA, Buckley VA et al (2000) Linkage analysis of 150 high-risk prostate cancer families at 1q24–25. Genet Epidemiol 18:251–275

    PubMed  CAS  Google Scholar 

  • Griffiths DF, Melia J, McWilliam LJ, Ball RY, Grigor K, Harnden P, Jarmulowicz M et al (2006) A study of Gleason score interpretation in different groups of UK pathologists; techniques for improving reproducibility. Histopathology 48:655–662

    PubMed  CAS  Google Scholar 

  • Gronberg H, Damber L, Damber JE, Iselius L (1997) Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146:552–557

    PubMed  CAS  Google Scholar 

  • Gronberg H, Damber L, Tavelin B, Damber JE (1998) No difference in survival between sporadic, familial and hereditary prostate cancer. Br J Urol 82:564–567

    PubMed  CAS  Google Scholar 

  • Gronberg H, Smith J, Emanuelsson M, Jonsson BA, Bergh A, Carpten J, Isaacs W et al (1999) In Swedish families with hereditary prostate cancer, linkage to the HPC1 locus on chromosome 1q24–25 is restricted to families with early-onset prostate cancer. Am J Hum Genet 65:134–140

    PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T et al (2007a) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637

    PubMed  CAS  Google Scholar 

  • Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T et al (2007b) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39:977–983

    PubMed  CAS  Google Scholar 

  • Habuchi T, Suzuki T, Sasaki R, Wang L, Sato K, Satoh S, Akao T et al (2000) Association of vitamin D receptor gene polymorphism with prostate cancer and benign prostatic hyperplasia in a Japanese population. Cancer Res 60:305–308

    PubMed  CAS  Google Scholar 

  • Haeusler J, Hoegel J, Bachmann N, Herkommer K, Paiss T, Vogel W, Maier C (2005) Association of a CAV-1 haplotype to familial aggressive prostate cancer. Prostate 65:171–177

    PubMed  CAS  Google Scholar 

  • Haggman MJ, Wojno KJ, Pearsall CP, Macoska JA (1997) Allelic loss of 8p sequences in prostatic intraepithelial neoplasia and carcinoma. Urology 50:643–647

    PubMed  CAS  Google Scholar 

  • Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J et al (2007) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39:638–44

    Google Scholar 

  • Hamasaki T, Inatomi H, Katoh T, Ikuyama T, Matsumoto T (2001) Clinical and pathological significance of vitamin D receptor gene polymorphism for prostate cancer which is associated with a higher mortality in Japanese. Endocr J 48:543–549

    PubMed  CAS  Google Scholar 

  • Hamel N, Kotar K, Foulkes WD (2003) Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet 4:7

    PubMed  Google Scholar 

  • Hanlon AL, Hanks GE (1998) Patterns of inheritance and outcome in patients treated with external beam radiation for prostate cancer. Urology 52:735–738

    PubMed  CAS  Google Scholar 

  • Hiatt RA, Armstrong MA, Klatsky AL, Sidney S (1994) Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States). Cancer Causes Control 5:66–72

    PubMed  CAS  Google Scholar 

  • Horsburgh S, Matthew A, Bristow R, Trachtenberg J (2005) Male BRCA1 and BRCA2 mutation carriers: a pilot study investigating medical characteristics of patients participating in a prostate cancer prevention clinic. Prostate 65:124–129

    PubMed  Google Scholar 

  • Hsieh CL, Oakley-Girvan I, Gallagher RP, Wu AH, Kolonel LN, Teh CZ, Halpern J et al (1997) Re: prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 89:1893–1894

    PubMed  CAS  Google Scholar 

  • Hsieh TF, Chang CH, Chen WC, Chou CL, Chen CC, Wu HC (2005) Correlation of Gleason scores between needle-core biopsy and radical prostatectomy specimens in patients with prostate cancer. J Chin Med Assoc 68:167–171

    PubMed  Google Scholar 

  • Huang SP, Chou YH, Wayne Chang WS, Wu MT, Chen YY, Yu CC, Wu TT et al (2004) Association between vitamin D receptor polymorphisms and prostate cancer risk in a Taiwanese population. Cancer Lett 207:69–77

    PubMed  CAS  Google Scholar 

  • Hubert A, Peretz T, Manor O, Kaduri L, Wienberg N, Lerer I, Sagi M et al (1999) The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet 65:921–924

    PubMed  CAS  Google Scholar 

  • Humphrey PA (2004) Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol 17:292–306

    PubMed  Google Scholar 

  • Ikonen T, Matikainen MP, Syrjakoski K, Mononen N, Koivisto PA, Rokman A, Seppala EH et al (2003) BRCA1 and BRCA2 mutations have no major role in predisposition to prostate cancer in Finland. J Med Genet 40:e98

    PubMed  CAS  Google Scholar 

  • Ingles SA, Coetzee GA, Ross RK, Henderson BE, Kolonel LN, Crocitto L, Wang W et al (1998) Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 58:1620–1623

    PubMed  CAS  Google Scholar 

  • Jaffe JM, Malkowicz SB, Walker AH, MacBride S, Peschel R, Tomaszewski J, Van Arsdalen K et al (2000) Association of SRD5A2 genotype and pathological characteristics of prostate tumors. Cancer Res 60:1626–1630

    PubMed  CAS  Google Scholar 

  • Kalapurakal JA, Jacob AN, Kim PY, Najjar DD, Hsieh YC, Ginsberg P, Daskal I et al (1999) Racial differences in prostate cancer related to loss of heterozygosity on chromosome 8p12–23. Int J Radiat Oncol Biol Phys 45:835–840

    PubMed  CAS  Google Scholar 

  • Karam JA, Lotan Y, Roehrborn CG, Ashfaq R, Karakiewicz PI, Shariat SF (2007) Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. Prostate 67:614–622

    PubMed  Google Scholar 

  • Kibel AS, Isaacs SD, Isaacs WB, Bova GS (1998) Vitamin D receptor polymorphisms and lethal prostate cancer. J Urol 160:1405–1409

    PubMed  CAS  Google Scholar 

  • Kibel AS, Suarez BK, Belani J, Oh J, Webster R, Brophy-Ebbers M, Guo C et al (2003) CDKN1A and CDKN1B polymorphisms and risk of advanced prostate carcinoma. Cancer Res 63:2033–2036

    PubMed  CAS  Google Scholar 

  • Kirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C, Gulati T et al (2004) BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res 10:2918–2921

    PubMed  CAS  Google Scholar 

  • Kittles RA, Chen W, Panguluri RK, Ahaghotu C, Jackson A, Adebamowo CA, Griffin R et al (2002) CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet 110:553–560

    PubMed  Google Scholar 

  • Kupelian PA, Klein EA, Witte JS (1999) Re: Biological aggressiveness of hereditary prostate cancer: long-term evaluation following radical prostatectomy. J Urol 161:1585–1586

    PubMed  CAS  Google Scholar 

  • Kupelian PA, Klein EA, Witte JS, Kupelian VA, Suh JH (1997a) Familial prostate cancer: a different disease? J Urol 158:2197–2201

    PubMed  CAS  Google Scholar 

  • Kupelian PA, Kupelian VA, Witte JS, Macklis R, Klein EA (1997b) Family history of prostate cancer in patients with localized prostate cancer: an independent predictor of treatment outcome. J Clin Oncol 15:1478–1480

    PubMed  CAS  Google Scholar 

  • Kupelian PA, Reddy CA, Reuther AM, Mahadevan A, Ciezki JP, Klein EA (2006) Aggressiveness of familial prostate cancer. J Clin Oncol 24:3445–3450

    PubMed  Google Scholar 

  • Lange EM, Ho LA, Beebe-Dimmer JL, Wang Y, Gillanders EM, Trent JM, Lange LA et al (2006) Genome-wide linkage scan for prostate cancer susceptibility genes in men with aggressive disease: significant evidence for linkage at chromosome 15q12. Hum Genet 119:400–407

    PubMed  CAS  Google Scholar 

  • Lange EM, Robbins CM, Gillanders EM, Zheng SL, Xu J, Wang Y, White KA et al (2007) Fine-mapping the putative chromosome 17q21–22 prostate cancer susceptibility gene to a 10 cm region based on linkage analysis. Hum Genet 121:49–55

    PubMed  CAS  Google Scholar 

  • Lange EM, Gillanders EM, Davis CC, Brown WM, Campbell JK, Jones M, Gildea D et al (2003) Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57:326–334

    PubMed  CAS  Google Scholar 

  • Li C, Dong J, Guan W (2001) CAG microsatellite polymorphisms of androgen receptor gene and the stage and grade of prostate cancer. Zhonghua Zhong Liu Za Zhi 23:217–219

    PubMed  Google Scholar 

  • Li H, Stampfer MJ, Hollis JB, Mucci LA, Gaziano JM, Hunter D, Giovannucci EL et al (2007) A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med 4:e103

    PubMed  Google Scholar 

  • Liu X, Cicek MS, Plummer SJ, Jorgenson E, Casey G, Witte JS (2007) Association of testis derived transcript gene variants and prostate cancer risk. J Urol 177:894–898

    PubMed  Google Scholar 

  • Loman N, Bladstrom A, Johannsson O, Borg A, Olsson H (2003) Cancer incidence in relatives of a population-based set of cases of early-onset breast cancer with a known BRCA1 and BRCA2 mutation status. Breast Cancer Res 5:R175–R186

    PubMed  Google Scholar 

  • Loukola A, Chadha M, Penn SG, Rank D, Conti DV, Thompson D, Cicek M et al (2004) Comprehensive evaluation of the association between prostate cancer and genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2. Eur J Hum Genet 12:321–332

    PubMed  CAS  Google Scholar 

  • Lutchman M, Pack S, Kim AC, Azim A, Emmert-Buck M, van Huffel C, Zhuang Z et al (1999) Loss of heterozygosity on 8p in prostate cancer implicates a role for dematin in tumor progression. Cancer Genet Cytogenet 115:65–69

    PubMed  CAS  Google Scholar 

  • MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R (1994) Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 10:151–159

    PubMed  CAS  Google Scholar 

  • Maistro S, Snitcovsky I, Sarkis AS, da Silva IA, Brentani MM (2004) Vitamin D receptor polymorphisms and prostate cancer risk in Brazilian men. Int J Biol Markers 19:245–249

    PubMed  CAS  Google Scholar 

  • Matsuyama H, Pan Y, Oba K, Yoshihiro S, Matsuda K, Hagarth L, Kudren D et al (2001) Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clin Cancer Res 7:3139–3143

    PubMed  CAS  Google Scholar 

  • Menon M (1997) Predicting biological aggressiveness in prostate cancer – desperately seeking a marker. J Urol 157:228–229

    PubMed  CAS  Google Scholar 

  • Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Hollis BW, Giovannucci E (2007) Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1, 25-dihydroxyvitamin D, and prostate cancer risk. Prostate 67:911–923

    PubMed  CAS  Google Scholar 

  • Mir K, Edwards J, Paterson PJ, Hehir M, Underwood MA, Bartlett JM (2002) The CAG trinucleotide repeat length in the androgen receptor does not predict the early onset of prostate cancer. BJU Int 90:573–578

    PubMed  CAS  Google Scholar 

  • Mishra DK, Bid HK, Srivastava DS, Mandhani A, Mittal RD (2005) Association of vitamin D receptor gene polymorphism and risk of prostate cancer in India. Urol Int 74:315–318

    PubMed  CAS  Google Scholar 

  • Molitierno J, Evans A, Mohler JL, Wallen E, Moore D, Pruthi RS (2006) Characterization of biochemical recurrence after radical prostatectomy. Urol Int 77:130–134

    PubMed  Google Scholar 

  • Mononen N, Ikonen T, Syrjakoski K, Matikainen M, Schleutker J, Tammela TL, Koivisto PA et al (2001) A missense substitution A49T in the steroid 5-alpha-reductase gene (SRD5A2) is not associated with prostate cancer in Finland. Br J Cancer 84:1344–1347

    PubMed  CAS  Google Scholar 

  • Montironi R, Mazzuccheli R, Scarpelli M, Lopez-Beltran A, Fellegara G, Algaba F (2005) Gleason grading of prostate cancer in needle biopsies or radical prostatectomy specimens: contemporary approach, current clinical significance and sources of pathology discrepancies. BJU Int 95:1146–1152

    PubMed  Google Scholar 

  • Nastiuk KL, Mansukhani M, Terry MB, Kularatne P, Rubin MA, Melamed J, Gammon MD et al (1999) Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate 40:172–177

    PubMed  CAS  Google Scholar 

  • Neuhouser ML, Barnett MJ, Kristal AR, Ambrosone CB, King I, Thornquist M, Goodman G (2007) (n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers. J Nutr 137:1821–1827

    PubMed  CAS  Google Scholar 

  • Neville PJ, Conti DV, Krumroy LM, Catalona WJ, Suarez BK, Witte JS, Casey G (2003) Prostate cancer aggressiveness locus on chromosome segment 19q12–q13.1 identified by linkage and allelic imbalance studies. Genes Chromosomes Cancer 36:332–339

    PubMed  CAS  Google Scholar 

  • Neville PJ, Conti DV, Paris PL, Levin H, Catalona WJ, Suarez BK, Witte JS et al (2002) Prostate cancer aggressiveness locus on chromosome 7q32–q33 identified by linkage and allelic imbalance studies. Neoplasia 4:424–431

    PubMed  CAS  Google Scholar 

  • Nilsen TI, Vatten LJ (1999) Anthropometry and prostate cancer risk: a prospective study of 22, 248 Norwegian men. Cancer Causes Control 10:269–275

    PubMed  CAS  Google Scholar 

  • Nilsen TI, Romundstad PR, Vatten LJ (2006) Recreational physical activity and risk of prostate cancer: a prospective population-based study in Norway (the HUNT study). Int J Cancer 119:2943–2947

    PubMed  CAS  Google Scholar 

  • Nock NL, Cicek MS, Li L, Liu X, Rybicki BA, Moreira A, Plummer SJ et al (2006) Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis 27:1842–1848

    PubMed  CAS  Google Scholar 

  • Noe M, Schroy P, Demierre MF, Babayan R, Geller AC (2007) Increased cancer risk for individuals with a family history of prostate cancer, colorectal cancer, and melanoma and their associated screening recommendations and practices. Cancer Causes Control 19(1):1–12

    PubMed  Google Scholar 

  • Onen IH, Ekmekci A, Eroglu M, Polat F, Biri H (2007) The association of 5alpha-reductase II (SRD5A2) and 17 hydroxylase (CYP17) gene polymorphisms with prostate cancer patients in the Turkish population. DNA Cell Biol 26:100–107

    PubMed  CAS  Google Scholar 

  • Oyama T, Allsbrook WC Jr, Kurokawa K, Matsuda H, Segawa A, Sano T, Suzuki K et al (2005) A comparison of interobserver reproducibility of Gleason grading of prostatic carcinoma in Japan and the United States. Arch Pathol Lab Med 129:1004–1010

    PubMed  Google Scholar 

  • Paiss T, Worner S, Kurtz F, Haeussler J, Hautmann RE, Gschwend JE, Herkommer K et al (2003) Linkage of aggressive prostate cancer to chromosome 7q31–33 in German prostate cancer families. Eur J Hum Genet 11:17–22

    PubMed  CAS  Google Scholar 

  • Pakkanen S, Baffoe-Bonnie AB, Matikainen MP, Koivisto PA, Tammela TL, Deshmukh S, Ou L et al (2007) Segregation analysis of 1, 546 prostate cancer families in Finland shows recessive inheritance. Hum Genet 121:257–267

    PubMed  Google Scholar 

  • Paris PL, Kupelian PA, Hall JM, Williams TL, Levin H, Klein EA, Casey G et al (1999) Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomarkers Prev 8:901–905

    PubMed  CAS  Google Scholar 

  • Patel AV, Rodriguez C, Jacobs EJ, Solomon L, Thun MJ, Calle EE (2005) Recreational physical activity and risk of prostate cancer in a large cohort of U.S. men. Cancer Epidemiol Biomarkers Prev 14:275–279

    PubMed  Google Scholar 

  • Perinchery G, Bukurov N, Nakajima K, Chang J, Hooda M, Oh BR, Dahiya R (1999) Loss of two new loci on chromosome 8 (8p23 and 8q12–13) in human prostate cancer. Int J Oncol 14:495–500

    PubMed  CAS  Google Scholar 

  • Peters MA, Janer M, Kolb S, Jarvik GP, Ostrander EA, Stanford JL (2001) Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer. Prostate 48:292–296

    PubMed  CAS  Google Scholar 

  • Plaskon LA, Penson DF, Vaughan TL, Stanford JL (2003) Cigarette smoking and risk of prostate cancer in middle-aged men. Cancer Epidemiol Biomarkers Prev 12:604–609

    PubMed  CAS  Google Scholar 

  • Plummer SJ, Conti DV, Paris PL, Curran AP, Casey G, Witte JS (2003) CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 12:928–932

    PubMed  CAS  Google Scholar 

  • Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999) Natural history of progression after PSA elevation following radical prostatectomy. Jama 281:1591–1597

    PubMed  CAS  Google Scholar 

  • Powell IJ (2007) Epidemiology and pathophysiology of prostate cancer in African-American men. J Urol 177:444–449

    PubMed  Google Scholar 

  • Powell IJ, Zhou J, Sun Y, Sakr WA, Patel NP, Heilbrun LK, Everson RB (2004) CYP3A4 genetic variant and disease-free survival among white and black men after radical prostatectomy. J Urol 172:1848–1852

    PubMed  Google Scholar 

  • Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90:1225–1229

    PubMed  CAS  Google Scholar 

  • Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    PubMed  CAS  Google Scholar 

  • Roach M 3rd, De Silvio M, Rebbick T, Grignon D, Rotman M, Wolkov H, Fisher B et al (2007) Racial differences in CYP3A4 genotype and survival among men treated on radiation therapy oncology group (RTOG) 9202: a phase III randomized trial. Int J Radiat Oncol Biol Phys 69(1):79–87

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Tatham LM, Thun MJ, Calle EE, Heath CW Jr (1997a) Smoking and fatal prostate cancer in a large cohort of adult men. Am J Epidemiol 145:466–475

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Patel AV, Calle EE, Jacobs EJ, Chao A, Thun MJ (2001) Body mass index, height, and prostate cancer mortality in two large cohorts of adult men in the United States. Cancer Epidemiol Biomarkers Prev 10:345–353

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, Wingo PA, Thun MJ, Heath CW Jr (1997b) Family history and risk of fatal prostate cancer. Epidemiology 8:653–657

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Calle EE, Tatham LM, Wingo PA, Miracle-McMahill HL, Thun MJ, Heath CW Jr (1998) Family history of breast cancer as a predictor for fatal prostate cancer. Epidemiology 9:525–529

    PubMed  CAS  Google Scholar 

  • Roemeling S, Roobol MJ, de Vries SH, Gosselaar C, van der Kwast TH, Schroder FH (2006) Prevalence, treatment modalities and prognosis of familial prostate cancer in a screened population. J Urol 175:1332–1336

    PubMed  Google Scholar 

  • Rohrmann S, Genkinger JM, Burke A, Helzlsouer KJ, Comstock GW, Alberg AJ, Platz EA (2007) Smoking and risk of fatal prostate cancer in a prospective U.S. study. Urology 69:721–725

    PubMed  Google Scholar 

  • Rouprêt M, Fromont G, Bitker MO, Gattegno B, Vallancien G, Cussenot O (2006) Outcome after radical prostatectomy in young men with or without a family history of prostate cancer. Urology 67:1028–1032

    PubMed  Google Scholar 

  • Rukin NJ, Luscombe CJ, Strange RC (2007) Re: A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. S. I. Berndt, J. L. Dodson, W. Y. Huang and K. K. Nicodemus, J Urol 2006; 175: 1613–1623. J Urol 177:404

    Google Scholar 

  • Sacco E, Prayer-Galetti T, Pinto F, Ciaccia M, Fracalanza S, Betto G, Pagano F (2005) Familial and hereditary prostate cancer by definition in an italian surgical series: clinical features and outcome. Eur Urol 47:761–768

    PubMed  Google Scholar 

  • Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ, Jenkins RB (1999) Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst 91:1574–1580

    PubMed  CAS  Google Scholar 

  • Schaid DJ (2006) Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 120:471–485

    PubMed  Google Scholar 

  • Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62:1425–1438

    PubMed  CAS  Google Scholar 

  • Schaid DJ, Stanford JL, McDonnell SK, Suuriniemi M, McIntosh L, Karyadi DM, Carlson EE et al (2007) Genome-wide linkage scan of prostate cancer Gleason score and confirmation of chromosome 19q. Hum Genet 121(6):729–735

    PubMed  CAS  Google Scholar 

  • Schaid DJ, McDonnell SK, Zarfas KE, Cunningham JM, Hebbring S, Thibodeau SN, Eeles RA et al (2006) Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 120:471–485

    PubMed  Google Scholar 

  • Schumacher FR, Feigelson HS, Cox DG, Haiman CA, Albanes D, Buring J, Calle EE et al (2007) A common 8q24 variant in prostate and breast cancer from a large nested case-control study. Cancer Res 67:2951–2956

    PubMed  CAS  Google Scholar 

  • Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA (2000) Anthropometry in relation to prostate cancer risk in the Netherlands Cohort Study. Am J Epidemiol 151:541–549

    PubMed  CAS  Google Scholar 

  • SEER Cancer Statistics Review, 1975-2004 (2007) Ries LAG, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, Clegg L, Horner MJ, Howlader N, Eisner MP, Reichman M, Edwards BK (eds) National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site, 2007

    Google Scholar 

  • Severi G, Hayes VM, Padilla EJ, English DR, Southey MC, Sutherland RL, Hopper JL et al (2007) The common variant rs1447295 on chromosome 8q24 and prostate cancer risk: results from an Australian population-based case-control study. Cancer Epidemiol Biomarkers Prev 16:610–612

    PubMed  CAS  Google Scholar 

  • Sfar S, Hassen E, Saad H, Mosbah F, Chouchane L (2006) Association of VEGF genetic polymorphisms with prostate carcinoma risk and clinical outcome. Cytokine 35:21–28

    PubMed  CAS  Google Scholar 

  • Sfar S, Saad H, Mosbah F, Gabbouj S, Chouchane L (2007) TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet Cytogenet 172:38–44

    PubMed  CAS  Google Scholar 

  • Siddiqui SA, Sengupta S, Slezak JM, Bergstralh EJ, Zincke H, Blute ML (2006) Impact of familial and hereditary prostate cancer on cancer specific survival after radical retropubic prostatectomy. J Urol 176:1118–1121

    PubMed  Google Scholar 

  • Sigurdsson S, Thorlacius S, Tomasson J, Tryggvadottir L, Benediktsdottir K, Eyfjord JE, Jonsson E (1997) BRCA2 mutation in Icelandic prostate cancer patients. J Mol Med 75:758–761

    PubMed  CAS  Google Scholar 

  • Singh R (2000) No evidence of linkage to chromosome 1q42.2–43 in 131 prostate cancer families from the ACTANE consortium. Anglo, Canada, Texas, Australia, Norway, EU Biomed. Br J Cancer 83:1654–1658

    PubMed  CAS  Google Scholar 

  • Slager SL, Zarfas KE, Brown WM, Lange EM, McDonnell SK, Wojno KJ, Cooney KA (2006) Genome-wide linkage scan for prostate cancer aggressiveness loci using families from the University of Michigan Prostate Cancer Genetics Project. Prostate 66:173–179

    PubMed  CAS  Google Scholar 

  • Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ, Hebbring SJ et al (2003) Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72:759–762

    PubMed  CAS  Google Scholar 

  • Slattery ML, Schumacher MC, West DW, Robison LM, French TK (1990) Food-consumption trends between adolescent and adult years and subsequent risk of prostate cancer. Am J Clin Nutr 52:752–757

    PubMed  CAS  Google Scholar 

  • Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, Brownstein MJ et al (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274:1371–1374

    PubMed  CAS  Google Scholar 

  • Snowdon DA, Phillips RL, Choi W (1984) Diet, obesity, and risk of fatal prostate cancer. Am J Epidemiol 120:244–250

    PubMed  CAS  Google Scholar 

  • Spangler E, Zeigler-Johnson CM, Malkowicz SB, Wein AJ, Rebbeck TR (2005) Association of prostate cancer family history with histopathological and clinical characteristics of prostate tumors. Int J Cancer 113:471–474

    PubMed  CAS  Google Scholar 

  • Stanford JL, McDonnell SK, Friedrichsen DM, Carlson EE, Kolb S, Deutsch K, Janer M et al (2006) Prostate cancer and genetic susceptibility: a genome scan incorporating disease aggressiveness. Prostate 66:317–325

    PubMed  CAS  Google Scholar 

  • Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC (1990) Family history and the risk of prostate cancer. Prostate 17:337–347

    PubMed  CAS  Google Scholar 

  • Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM et al (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336:1401–1408

    PubMed  CAS  Google Scholar 

  • Suarez BK, Lin J, Witte JS, Conti DV, Resnick MI, Klein EA, Burmester JK et al (2000) Replication linkage study for prostate cancer susceptibility genes. Prostate 45:106–114

    PubMed  CAS  Google Scholar 

  • Suuriniemi M, Agalliu I, Schaid DJ, Johanneson B, McDonnell SK, Iwasaki L, Stanford JL et al (2007) Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 16:809–814

    PubMed  CAS  Google Scholar 

  • Tayeb MT, Clark C, Haites NE, Sharp L, Murray GI, McLeod HL (2003) CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. Br J Cancer 88:928–932

    PubMed  CAS  Google Scholar 

  • Tayeb MT, Clark C, Murray GI, Sharp L, Haites NE, McLeod HL (2004) Length and somatic mosaicism of CAG and GGN repeats in the androgen receptor gene and the risk of prostate cancer in men with benign prostatic hyperplasia. Ann Saudi Med 24:21–26

    PubMed  Google Scholar 

  • Tayeb MT, Clark C, Sharp L, Haites NE, Rooney PH, Murray GI, Payne SN et al (2002) CYP3A4 promoter variant is associated with prostate cancer risk in men with benign prostate hyperplasia. Oncol Rep 9:653–655

    PubMed  CAS  Google Scholar 

  • Tollefson MK, Leibovich BC, Slezak JM, Zincke H, Blute ML (2006) Long-term prognostic significance of primary Gleason pattern in patients with Gleason score 7 prostate cancer: impact on prostate cancer specific survival. J Urol 175:547–551

    PubMed  Google Scholar 

  • Tryggvadottir L, Vidarsdottir L, Thorgeirsson T, Jonasson JG, Olafsdottir EJ, Olafsdottir GH, Rafnar T et al (2007) Prostate cancer progression and survival in BRCA2 mutation carriers. J Natl Cancer Inst 99:929–935

    PubMed  CAS  Google Scholar 

  • Tulinius H, Egilsson V, Olafsdottir GH, Sigvaldason H (1992) Risk of prostate, ovarian, and endometrial cancer among relatives of women with breast cancer. BMJ 305:855–857

    PubMed  CAS  Google Scholar 

  • Tulinius H, Olafsdottir GH, Sigvaldason H, Arason A, Barkardottir RB, Egilsson V, Ogmundsdottir HM et al (2002) The effect of a single BRCA2 mutation on cancer in Iceland. J Med Genet 39:457–462

    PubMed  CAS  Google Scholar 

  • Valeri A, Briollais L, Azzouzi R, Fournier G, Mangin P, Berthon P, Cussenot O et al (2003) Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence. Ann Hum Genet 67:125–137

    PubMed  CAS  Google Scholar 

  • Vazina A, Baniel J, Yaacobi Y, Shtriker A, Engelstein D, Leibovitz I, Zehavi M et al (2000) The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer 83:463–466

    PubMed  CAS  Google Scholar 

  • Verhage BA, Aben KK, Witjes JA, Straatman H, Schalken JA, Kiemeney LA (2004) Site-specific familial aggregation of prostate cancer. Int J Cancer 109:611–617

    PubMed  CAS  Google Scholar 

  • Verhage BA, Baffoe-Bonnie AB, Baglietto L, Smith DS, Bailey-Wilson JE, Beaty TH, Catalona WJ et al (2001) Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 57:97–101

    PubMed  CAS  Google Scholar 

  • Villeneuve PJ, Johnson KC, Kreiger N, Mao Y (1999) Risk factors for prostate cancer: results from the Canadian National Enhanced Cancer Surveillance System. The Canadian Cancer Registries Epidemiology Research Group. Cancer Causes Control 10:355–367

    PubMed  CAS  Google Scholar 

  • Wang L, McDonnell SK, Slusser JP, Hebbring SJ, Cunningham JM, Jacobsen SJ, Cerhan JR et al (2007) Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 67:2944–50

    Google Scholar 

  • West DW, Slattery ML, Robison LM, French TK, Mahoney AW (1991) Adult dietary intake and prostate cancer risk in Utah: a case-control study with special emphasis on aggressive tumors. Cancer Causes Control 2:85–94

    PubMed  CAS  Google Scholar 

  • Whittemore AS, Halpern J (2006) Nonparametric linkage analysis using person-specific covariates. Genet Epidemiol 30:369–379

    PubMed  Google Scholar 

  • Whittemore AS, Lin IG, Oakley-Girvan I, Gallagher RP, Halpern J, Kolonel LN, Wu AH et al (1999) No evidence of linkage for chromosome 1q42.2–43 in prostate cancer. Am J Hum Genet 65:254–256

    PubMed  CAS  Google Scholar 

  • Wiklund F, Jonsson BA, Goransson I, Bergh A, Gronberg H (2003) Linkage analysis of prostate cancer susceptibility: confirmation of linkage at 8p22–23. Hum Genet 112:414–418

    PubMed  CAS  Google Scholar 

  • Wilkens EP, Freije D, Xu J, Nusskern DR, Suzuki H, Isaacs SD, Wiley K et al (1999) No evidence for a role of BRCA1 or BRCA2 mutations in Ashkenazi Jewish families with hereditary prostate cancer. Prostate 39:280–284

    PubMed  CAS  Google Scholar 

  • Williams H, Powell IJ, Land SJ, Sakr WA, Hughes MR, Patel NP, Heilbrun LK et al (2004) Vitamin D receptor gene polymorphisms and disease free survival after radical prostatectomy. Prostate 61:267–275

    PubMed  CAS  Google Scholar 

  • Witte JS, Suarez BK, Thiel B, Lin J, Yu A, Banerjee TK, Burmester JK et al (2003) Genome-wide scan of brothers: replication and fine mapping of prostate cancer susceptibility and aggressiveness loci. Prostate 57:298–308

    PubMed  CAS  Google Scholar 

  • Witte JS, Goddard KA, Conti DV, Elston RC, Lin J, Suarez BK, Broman KW et al (2000) Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 67:92–99

    PubMed  CAS  Google Scholar 

  • Xu J (2000) Combined analysis of hereditary prostate cancer linkage to 1q24–25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 66:945–957

    PubMed  CAS  Google Scholar 

  • Xu J, Zheng SL, Chang B, Smith JR, Carpten JD, Stine OC, Isaacs SD et al (2001a) Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet 108:335–345

    PubMed  CAS  Google Scholar 

  • Xu J, Zheng SL, Hawkins GA, Faith DA, Kelly B, Isaacs SD, Wiley KE et al (2001b) Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 69:341–350

    PubMed  CAS  Google Scholar 

  • Xu J, Gillanders EM, Isaacs SD, Chang BL, Wiley KE, Zheng SL, Jones M et al (2003) Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 57:320–325

    PubMed  CAS  Google Scholar 

  • Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Eeles RA et al (2005) A combined genomewide linkage scan of 1, 233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77:219–229

    PubMed  CAS  Google Scholar 

  • Yang G, Addai J, Ittmann M, Wheeler TM, Thompson TC (2000) Elevated caveolin-1 levels in African-American versus white-American prostate cancer. Clin Cancer Res 6:3430–3433

    PubMed  CAS  Google Scholar 

  • Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–9

    Google Scholar 

  • Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, Patacsil M et al (2004) CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 64:8461–8467

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Witte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schnell, A.H., Witte, J.S. (2010). Inherited Susceptibility of Aggressive Prostate Cancer. In: Foulkes, W., Cooney, K. (eds) Male Reproductive Cancers. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0449-2_10

Download citation

Publish with us

Policies and ethics