Glioblastoma pp 365-397 | Cite as

Immunotherapy for Glioblastoma

  • Azizul Haque
  • Mitzi Nagarkatti
  • Prakash Nagarkatti
  • Naren L. Banik
  • Swapan K. Ray


The most common and deadliest brain tumor is glioblastoma, which escapes immune recognition and kills the patients with a year of diagnosis. Glioblastomas, like other malignancies, are highly capable of overcoming host immune defenses through a variety of mechanisms some of which are quite clear. Currently, there is a growing interest in developing immunotherapeutics for treatment of glioblastomas; however, very little is known about glioblastoma-specific immune responses. A better understanding of the molecular interactions between the tumor and the host immune system may allow the development of novel integrated approaches based on the simultaneous control of tumor escape pathways and the activation of anti-tumor immune responses. An appropriate combination therapy that may induce long-lasting immune responses against glioblastoma should be attempted. The primary goal of immunotherapy for glioblastoma should be to overcome tolerance and to re-educate the immune system, when the tumor burden is reduced following surgery, radiotherapy and chemotherapy. This article describes the latest developments in the glioblastoma immunology and immunotherapy.


Glioblastoma Combination therapy Immune responses Immunotherapy 



This work was supported in part by the grants to A.H. from the Leukemia and Lymphoma Society (#3024) and MUSC Hollings Cancer Center, also by the P01 grant (AT-3961 to M.N. and P.N.), and by the R01 grants (AI-53703, AI-58300, and HL-58641 to M.N.; ES-9098 and DA-16545 to P.N.; NS-41088 and NS-45967 to N.L.B.; and CA-91460 and NS-57811 to S.K.R.) from the National Institutes of Health (Bethesda, MD, USA).


  1. Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E, Holman RM, Shapiro RL, Berman RS, Berner N, Shao Y, Manches O, Pan L, Venhaus RR, Hoffman EW, Jungbluth A, Gnjatic S, Old L, Pavlick AC, Bhardwaj N (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol 181:776–784PubMedGoogle Scholar
  2. Altomonte M, Fonsatti E, Visintin A, Maio M (2003) Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene 22:6564–6569PubMedCrossRefGoogle Scholar
  3. Amato RJ (2007) Heat-shock protein-peptide complex-96 for the treatment of cancer. Expert Opin Biol Ther 7:1267–1273PubMedCrossRefGoogle Scholar
  4. Amria S, Cameron C, Stuart R, Haque A (2008) Defects in HLA class II antigen presentation in B-cell lymphomas. Leuk Lymphoma 49:353–355PubMedCrossRefGoogle Scholar
  5. Anichini A, Mortarini R, Nonaka D, Molla A, Vegetti C, Montaldi E, Wang X, Ferrone S (2006) Association of antigen-processing machinery and HLA antigen phenotype of melanoma cells with survival in American Joint Committee on Cancer stage III and IV melanoma patients. Cancer Res 66:6405–6411PubMedCrossRefGoogle Scholar
  6. Aoki T, Hashimoto N, Matsutani M (2007) Management of glioblastoma. Expert Opin Pharmacother 8:3133–3146PubMedCrossRefGoogle Scholar
  7. Arnon TI, Markel G, Mandelboim O (2006) Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol 16:348–358PubMedCrossRefGoogle Scholar
  8. Banerjee T, Duhadaway JB, Gaspari P, Sutanto-Ward E, Munn DH, Mellor AL, Malachowski WP, Prendergast GC, Muller AJ (2008) A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2, 3-dioxygenase. Oncogene 27:2851–2857PubMedCrossRefGoogle Scholar
  9. Barr TA, Carlring J, Heath AW (2006) Co-stimulatory agonists as immunological adjuvants. Vaccine 24:3399–3407PubMedCrossRefGoogle Scholar
  10. Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543PubMedCrossRefGoogle Scholar
  11. Behrem S, Zarković K, Eskinja N, Jonjić N (2005) Distribution pattern of tenascin-C in glioblastoma: correlation with angiogenesis and tumor cell proliferation. Pathol Oncol Res 11:229–235PubMedCrossRefGoogle Scholar
  12. Benitez JA, Dominguez-Monzon G, Segovia J (2008) Conventional and gene therapy strategies for the treatment of brain tumors. Curr Med Chem 15:729–742PubMedCrossRefGoogle Scholar
  13. Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, Touraine JL, Portoukalian J (2008) Dendritic cells dysfunction in tumour environment. Cancer Lett 272:186–196PubMedCrossRefGoogle Scholar
  14. Berger CL, Xu AL, Hanlon D, Lee C, Schechner J, Glusac E, Christensen I, Snyder E, Holloway V, Tigelaar R, Edelson RL (2001) Induction of human tumor-loaded dendritic cells. Int J Cancer 91:438–447PubMedCrossRefGoogle Scholar
  15. Blum JS, Cresswell P (1988) Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc Natl Acad Sci U S A 85:3975–3979PubMedCrossRefGoogle Scholar
  16. Bonfigli A, Zarivi O, Colafarina S, Cimini AM, Ragnelli AM, Aimola P, Natali PG, Cerù MP, Amicarelli F, Miranda M (2006) Human glioblastoma ADF cells express tyrosinase, L-tyrosine hydroxylase and melanosomes and are sensitive to L-tyrosine and phenylthiourea. J Cell Physiol 207:675–682PubMedCrossRefGoogle Scholar
  17. Busch R, Rinderknecht CH, Roh S, Lee AW, Harding JJ, Burster T, Hornell TM, Mellins ED (2005) Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol Rev 207:242–260PubMedCrossRefGoogle Scholar
  18. Carpentier AF, Meng Y (2006) Recent advances in immunotherapy for human glioma. Curr Opin Oncol 18:631–636PubMedCrossRefGoogle Scholar
  19. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G, Montserrat E, Campo E, Banham AH (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964PubMedCrossRefGoogle Scholar
  20. Chamuleau ME, Ossenkoppele GJ, van de Loosdrecht AA (2006) MHC class II molecules in tumour immunology: prognostic marker and target for immune modulation. Immunobiology 211:619–625PubMedCrossRefGoogle Scholar
  21. Chen X, Jensen PE (2008) MHC class II antigen presentation and immunological abnormalities due to deficiency of MHC class II and its associated genes. Exp Mol Pathol 85:40–44PubMedCrossRefGoogle Scholar
  22. Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10:977–986PubMedGoogle Scholar
  23. Cheng WF, Lee CN, Chang MC, Su YN, Chen CA, Hsieh CY (2005) Antigen-specific CD8+ T lymphocytes generated from a DNA vaccine control tumors through the Fas-FasL pathway. Mol Ther 12:960–968PubMedCrossRefGoogle Scholar
  24. Chi DD, Merchant RE, Rand R, Conrad AJ, Garrison D, Turner R, Morton DL, Hoon DS (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol 150:2143–2152PubMedGoogle Scholar
  25. Chi JH, Panner A, Cachola K, Crane CA, Murray J, Pieper RO, James CD, Parsa AT (2008) Increased expression of the glioma-associated antigen ARF4L after loss of the tumor suppressor PTEN. Laboratory investigation. J Neurosurg 108:299–303PubMedCrossRefGoogle Scholar
  26. Coceani F, Ackerley C, Seidlitz E, Kelsey L (2001) Function of cyclo-oxygenase-1 and cyclo-oxygenase-2 in the ductus arteriosus from foetal lamb: differential development and change by oxygen and endotoxin. Br J Pharmacol 132:241–251PubMedCrossRefGoogle Scholar
  27. Cohen N, Stolarsky-Bennun M, Amir-Kroll H, Margalit R, Nussbaum G, Cohen-Sfady M, Pevsner-Fischer M, Fridkin M, Bercovier H, Eisenbach L, Jung S, Cohen IR (2008) Pneumococcal capsular polysaccharide is immunogenic when present on the surface of macrophages and dendritic cells: TLR4 signaling induced by a conjugate vaccine or by lipopolysaccharide is conducive. J Immunol 180:2409–2418PubMedGoogle Scholar
  28. Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A, Ferrini S, Corte G (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121:1756–1763PubMedCrossRefGoogle Scholar
  29. de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ (2008) Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother 57:1569–1577PubMedCrossRefGoogle Scholar
  30. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J, Sciot R, Wilms G, Demaerel P, Warmuth-Metz M, Soerensen N, Wolff JE, Wagner S, Kaempgen E, Van Gool SW (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104PubMedCrossRefGoogle Scholar
  31. Denzin LK, Fallas JL, Prendes M, Yi W (2005) Right place, right time, right peptide: DO keeps DM focused. Immunol Rev 207:279–292PubMedCrossRefGoogle Scholar
  32. Diener KR, Moldenhauer LM, Lyons AB, Brown MP, Hayball JD (2008) Human Flt-3-ligand-mobilized dendritic cells require additional activation to drive effective immune responses. Exp Hematol 36:51–60PubMedCrossRefGoogle Scholar
  33. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4 + CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105:430–437PubMedCrossRefGoogle Scholar
  34. Facciponte JG, MacDonald IJ, Wang XY, Kim H, Manjili MH, Subjeck JR (2005) Heat shock proteins and scavenger receptors: role in adaptive immune responses. Immunol Invest 34:325–342PubMedCrossRefGoogle Scholar
  35. Fernandez NC, Flament C, Crépineau F, Angevin E, Vivier E, Zitvogel L (2002) Dendritic cells (DC) promote natural killer (NK) cell functions: dynamics of the human DC/NK cell cross talk. Eur Cytokine Netw 13:17–27PubMedGoogle Scholar
  36. Flieger D, Renoth S, Beier I, Sauerbruch T, Schmidt-Wolf I (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 204:55–63PubMedCrossRefGoogle Scholar
  37. Fukuyama T, Ichiki Y, Yamada S, Shigematsu Y, Baba T, Nagata Y, Mizukami M, Sugaya M, Takenoyama M, Hanagiri T, Sugio K, Yasumoto K (2007) Cytokine production of lung cancer cell lines: Correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Sci 98:1048–1054PubMedCrossRefGoogle Scholar
  38. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240PubMedCrossRefGoogle Scholar
  39. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912PubMedCrossRefGoogle Scholar
  40. Germain C, Campigna E, Salhi I, Morisseau S, Navarro-Teulon I, Mach JP, Pèlegrin A, Robert B (2008) Redirecting NK cells mediated tumor cell lysis by a new recombinant bifunctional protein. Protein Eng Des Sel 21:665–672PubMedCrossRefGoogle Scholar
  41. Gerner MY, Casey KA, Mescher MF (2008) Defective MHC class II presentation by dendritic cells limits CD4 T cell help for antitumor CD8 T cell responses. J Immunol 181:155–164PubMedGoogle Scholar
  42. Goldstein OG, Hajiaghamohseni LM, Amria S, Sundaram K, Reddy SV, Haque A (2008) Gamma-IFN-inducible-lysosomal thiol reductase modulates acidic proteases and HLA class II antigen processing in melanoma. Cancer Immunol Immunother 57:1461–1470PubMedCrossRefGoogle Scholar
  43. Grauer O, Pöschl P, Lohmeier A, Adema GJ, Bogdahn U (2007) Toll-like receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome T-cell inhibition by glioma-associated TGF-β2. J Neurooncol 82:151–161PubMedCrossRefGoogle Scholar
  44. Grigoriadis N, Tselios T, Deraos S, Orologas A, Deraos G, Matsoukas J, Mavromatis I, Milonas I (2005) Animal models of central nervous system immune-mediated diseases: therapeutic interventions with bioactive peptides and mimetics. Curr Med Chem 12:1513–1519PubMedCrossRefGoogle Scholar
  45. Grünewald J, Tsao ML, Perera R, Dong L, Niessen F, Wen BG, Kubitz DM, Smider VV, Ruf W, Nasoff M, Lerner RA, Schultz PG (2008) Immunochemical termination of self-tolerance. Proc Natl Acad Sci U S A 105:11276–11280PubMedCrossRefGoogle Scholar
  46. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365PubMedCrossRefGoogle Scholar
  47. Haque MA, Ping L, Jackson SK et al (2002) Absence of gamma-interferon-inducible lysosomal thiol reductase in melanomas disrupts T cell recognition of select immunodominant epitopes. J Exp Med 195:1267–1277PubMedCrossRefGoogle Scholar
  48. Haque A, Banik NL, Ray SK (2007a) Emerging role of combination of all-trans retinoic acid and interferon-gamma as chemoimmunotherapy in the management of human glioblastoma. Neurochem Res 32:2203–2209PubMedCrossRefGoogle Scholar
  49. Haque A, Das A, Hajiaghamohseni LM, Younger A, Banik NL, Ray SK (2007b) Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunother 56:615–625PubMedCrossRefGoogle Scholar
  50. Haque A, Hajiaghamohseni LM, Li P, Toomy K, Blum JS (2007c) Invariant chain modulates HLA class II protein recycling and peptide presentation in nonprofessional antigen presenting cells. Cell Immunol 249:20–29PubMedCrossRefGoogle Scholar
  51. Harada S, Kimura T, Fujiki H, Nakagawa H, Ueda Y, Itoh T, Yamagishi H, Sonoda Y (2007) Flt3 ligand promotes myeloid dendritic cell differentiation of human hematopoietic progenitor cells: possible application for cancer immunotherapy. Int J Oncol 30:1461–1468PubMedGoogle Scholar
  52. Harao M, Hirata S, Irie A, Senju S, Nakatsura T, Komori H, Ikuta Y, Yokomine K, Imai K, Inoue M, Harada K, Mori T, Tsunoda T, Nakatsuru S, Daigo Y, Nomori H, Nakamura Y, Baba H, Nishimura Y (2008) HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumor-reactive CTL. Int J Cancer 123:2616–2625PubMedCrossRefGoogle Scholar
  53. Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722PubMedCrossRefGoogle Scholar
  54. Hatfield P, Merrick AE, West E, O’Donnell D, Selby P, Vile R, Melcher AA (2008) Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy. J Immunother 31:620–632PubMedCrossRefGoogle Scholar
  55. He L, Zhang G, He Y, Zhu H, Zhang H, Feng Z (2005) Blockade of B7–H1 with sPD-1 improves immunity against murine hepatocarcinoma. Anticancer Res 25:3309–3313PubMedGoogle Scholar
  56. Held G, Neumann F, Sturm C, Kaestner L, Dauth N, de Bruijn DR, Renner C, Lipp P, Pfreundschuh M (2008) Differential presentation of tumor antigen-derived epitopes by MHC-class I and antigen-positive tumor cells. Int J Cancer 123:1841–1847PubMedCrossRefGoogle Scholar
  57. Höhn H, Pilch H, Günzel S, Neukirch C, Freitag K, Necker A, Maeurer MJ (2000) Human papillomavirus type 33 E7 peptides presented by HLA-DR*0402 to tumor-infiltrating T cells in cervical cancer. J Virol 74:6632–6636PubMedCrossRefGoogle Scholar
  58. Houtenbos I, Westers TM, Dijkhuis A, de Gruijl TD, Ossenkoppele GJ, van de Loosdrecht Arjan A (2007) Leukemia-specific T-cell reactivity induced by leukemic dendritic cells is augmented by 4-1BB targeting. Clin Cancer Res 13:307–315PubMedCrossRefGoogle Scholar
  59. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279PubMedCrossRefGoogle Scholar
  60. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8:261–279PubMedCrossRefGoogle Scholar
  61. Ilkovitch D, Ostrand-Rosenberg S (2004) MHC class II and CD80 tumor cell-based vaccines are potent activators of type 1 CD4+ T lymphocytes provided they do not coexpress invariant chain. Cancer Immunol Immunother 53:525–532PubMedCrossRefGoogle Scholar
  62. Ito F, Li Q, Shreiner AB, Okuyama R, Jure-Kunkel MN, Teitz-Tennenbaum S, Chang AE (2004) Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 64:8411–8419PubMedCrossRefGoogle Scholar
  63. Jackson AM, Mulcahy LA, Zhu XW, O’Donnell D, Patel PM (2008) Tumour-mediated disruption of dendritic cell function: inhibiting the MEK1/2–p44/42 axis restores IL-12 production and Th1-generation. Int J Cancer 123:623–632PubMedCrossRefGoogle Scholar
  64. Janardhanan R, Banik NL, Ray SK (2008) N-(4-Hydroxyphenyl) retinamide induced differentiation with repression of telomerase and cell cycle to increase interferon-gamma sensitivity for apoptosis in human glioblastoma cells. Cancer Lett 261:26–36PubMedCrossRefGoogle Scholar
  65. Janicki CN, Jenkinson SR, Williams NA, Morgan DJ (2008) Loss of CTL function among high-avidity tumor-specific CD8+ T cells following tumor infiltration. Cancer Res 68:2993–3000PubMedCrossRefGoogle Scholar
  66. Janson PC, Marits P, Thörn M, Ohlsson R, Winqvist O (2008) CpG methylation of the IFN-γ gene as a mechanism to induce immunosupression in tumor-infiltrating lymphocytes. J Immunol 181:2878–2886PubMedGoogle Scholar
  67. Jarboe JS, Johnson KR, Choi Y, Lonser RR, Park JK (2007) Expression of interleukin-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res 67:7983–7986PubMedCrossRefGoogle Scholar
  68. Jarnicki AG, Lysaght J, Todryk S, Mills KH (2006) Suppression of antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177:896–904PubMedGoogle Scholar
  69. Johnson BD, Gershan JA, Natalia N, Zujewski H, Weber JJ, Yan X, Orentas RJ (2005) Neuroblastoma cells transiently transfected to simultaneously express the co-stimulatory molecules CD54, CD80, CD86, and CD137L generate antitumor immunity in mice. J Immunother 28:449–460PubMedCrossRefGoogle Scholar
  70. Joseph J, Knobler RL, D’Imperio C, Lublin FD (1988) Down-regulation of interferon-gamma-induced class II expression on human glioma cells by recombinant interferon-beta: effects of dosage treatment schedule. J Neuroimmunol 20:39–44PubMedCrossRefGoogle Scholar
  71. Kilmartin B, Reen DJ (2004) HSP60 induces self-tolerance to repeated HSP60 stimulation and cross-tolerance to other pro-inflammatory stimuli. Eur J Immunol 34:2041–2051PubMedCrossRefGoogle Scholar
  72. Kim D, Hoory T, Monie A, Ting JP, Hung CF, Wu TC (2008) Enhancement of DNA vaccine potency through coadministration of CIITA DNA with DNA vaccines via gene gun. J Immunol 180:7019–7027PubMedGoogle Scholar
  73. Kobayashi H, Nagato T, Sato K, Aoki N, Kimura S, Murakami M, Iizuka H, Azumi M, Kakizaki H, Tateno M, Celis E (2007) Recognition of prostate and melanoma tumor cells by six-transmembrane epithelial antigen of prostate-specific helper T lymphocytes in a human leukocyte antigen class II-restricted manner. Cancer Res 67:5498–5504PubMedCrossRefGoogle Scholar
  74. Kosmaczewska A, Ciszak L, Potoczek S, Frydecka I (2008) The significance of Treg cells in defective tumor immunity. Arch Immunol Ther Exp (Warsz) 56:181–191CrossRefGoogle Scholar
  75. Koyama Y, Mizobata T, Yamamoto N, Hashimoto H, Matsuda T, Baba A (1999) Endothelins stimulate expression of cyclooxygenase 2 in rat cultured astrocytes. J Neurochem 73:1004–1011PubMedCrossRefGoogle Scholar
  76. Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L (2008) Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. J Immunol 181:3089–3098PubMedGoogle Scholar
  77. Kumar R, Kamdar D, Madden L, Hills C, Crooks D, O’Brien D, Greenman J (2006) Th1/Th2 cytokine imbalance in meningioma, anaplastic astrocytoma and glioblastoma multiforme patients. Oncol Rep 15:1513–1516PubMedGoogle Scholar
  78. Lacreusette A, Lartigue A, Nguyen JM, Barbieux I, Pandolfino MC, Paris F, Khammari A, Dréno B, Jacques Y, Blanchard F, Godard A (2008) Relationship between responsiveness of cancer cells to Oncostatin M and/or IL-6 and survival of stage III melanoma patients treated with tumour-infiltrating lymphocytes. J. Pathol. 216:451–459PubMedCrossRefGoogle Scholar
  79. Lapointe R, Bellemare-Pelletier A, Housseau F, Thibodeau J, Hwu P (2003) CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res 63:2836–2843PubMedGoogle Scholar
  80. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, Ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2008) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol. Immunother 58:449–459PubMedCrossRefGoogle Scholar
  81. Lefranc F, Sadeghi N, Camby I, Metens T, Dewitte O, Kiss R (2006) Present and potential future issues in glioblastoma treatment. Expert Rev Anticancer Ther 6:719–732PubMedCrossRefGoogle Scholar
  82. Leplina OY, Stupak VV, Kozlov YP, Pendyurin IV, Nikonov SD, Tikhonova MA, Sycheva NV, Ostanin AA, Chernykh ER (2007) Use of interferon-alpha-induced dendritic cells in the therapy of patients with malignant brain gliomas. Bull Exp Biol Med 143:528–534PubMedCrossRefGoogle Scholar
  83. Li Z, Pradera F, Kammertoens T, Li B, Liu S, Qin Z (2007) Cross-talk between T cells and innate immune cells is crucial for IFN-γ-dependent tumor rejection. J Immunol 179:1568–1576PubMedGoogle Scholar
  84. Li D, Li Y, Wu X, Li Q, Yu J, Gen J, Zhang XL (2008) Knockdown of Mgat5 inhibits breast cancer cell growth with activation of CD4+ T cells and macrophages. J Immunol 180:3158–3165PubMedGoogle Scholar
  85. Lim DS, Kim JH, Lee DS, Yoon CH, Bae YS (2007) DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer Immunol Immunother 56:1817–1829PubMedCrossRefGoogle Scholar
  86. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS (2004a) HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64:4980–4986PubMedCrossRefGoogle Scholar
  87. Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL, Ying H (2004b) AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 27:220–226PubMedCrossRefGoogle Scholar
  88. Liu S, Lizée G, Lou Y, Liu C, Overwijk WW, Wang G, Hwu P (2007) IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. Int Immunol 19:1213–1221PubMedCrossRefGoogle Scholar
  89. Lu B, Finn OJ (2008) T-cell death and cancer immune tolerance. Cell Death Differ 15:70–79PubMedCrossRefGoogle Scholar
  90. Luptrawan A, Liu G, Yu JS (2008) Dendritic cell immunotherapy for malignant gliomas. Rev Recent Clin Trials 3:10–21PubMedCrossRefGoogle Scholar
  91. Lutsiak ME, Tagaya Y, Adams AJ, Schlom J, Sabzevari H (2008) Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J Immunol 180:5871–5881PubMedGoogle Scholar
  92. Macchiarulo A, Camaioni E, Nuti R, Pellicciari R (2009) Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids 37:219–229Google Scholar
  93. MacKenzie CR, González RG, Kniep E, Roch S, Däubener W (1999) Cytokine mediated regulation of interferon-gamma-induced IDO activation. Adv Exp Med Biol 467:533–539PubMedGoogle Scholar
  94. Makrigiannis AP, Anderson SK (2003) Regulation of natural killer cell function. Cancer Biol Ther 2:610–616PubMedGoogle Scholar
  95. Margolin K (2008) Cytokine therapy in cancer. Expert Opin Biol Ther 8:1495–1505PubMedCrossRefGoogle Scholar
  96. Matloubian M, Concepcion RJ, Ahmed R (1994) CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 68:8056–8063PubMedGoogle Scholar
  97. Mehling M, Simon P, Mittelbronn M, Meyermann R, Ferrone S, Weller M, Wiendl H (2007) WHO grade associated downregulation of MHC class I antigen-processing machinery components in human astrocytomas: does it reflect a potential immune escape mechanism? Acta Neuropathol 114:111–119PubMedCrossRefGoogle Scholar
  98. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383PubMedCrossRefGoogle Scholar
  99. Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D (2008) Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis. Anticancer Res 28(1A):109–118PubMedGoogle Scholar
  100. Merogi AJ, Marrogi AJ, Ramesh R, Robinson WR, Fermin CD, Freeman SM (1997) Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 28:321–331PubMedCrossRefGoogle Scholar
  101. Mizukami S, Kajiwara C, Ishikawa H, Katayama I, Yui K, Udono H (2008) Both CD4+ and CD8+ T cell epitopes fused to heat shock cognate protein 70 (hsc70) can function to eradicate tumors. Cancer Sci 99:1008–1015PubMedCrossRefGoogle Scholar
  102. Moeller M, Kershaw MH, Cameron R, Westwood JA, Trapani JA, Smyth MJ, Darcy PK (2007) Sustained antigen-specific antitumor recall response mediated by gene-modified CD4+ T helper-1 and CD8+ T cells. Cancer Res 67:11428–11437PubMedCrossRefGoogle Scholar
  103. Monsurrò V, Nielsen MB, Perez-Diez A, Dudley ME, Wang E, Rosenberg SA, Marincola FM (2001) Kinetics of TCR use in response to repeated epitope-specific immunization. J Immunol 166:5817–5825PubMedGoogle Scholar
  104. Moore LD, Isayeva T, Siegal GP, Ponnazhagan S (2008) Silencing of transforming growth factor-β1 in situ by RNA interference for breast cancer: implications for proliferation and migration in vitro and metastasis in vivo. Clin Cancer Res 14:4961–4970PubMedCrossRefGoogle Scholar
  105. Murofushi Y, Nagano S, Kamizono J, Takahashi T, Fujiwara H, Komiya S, Matsuishi T, Kosai K (2006) Cell cycle-specific changes in hTERT promoter activity in normal and cancerous cells in adenoviral gene therapy: a promising implication of telomerase-dependent targeted cancer gene therapy. Int J Oncol 29:681–688PubMedGoogle Scholar
  106. Murshid A, Gong J, Calderwood SK (2008) Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev Vaccines 7:1019–1030PubMedCrossRefGoogle Scholar
  107. Myers L, Lee SW, Rossi RJ, Lefrancois L, Kwon BS, Mittler RS, Croft M, Vella AT (2006) Combined CD137 (4–1BB) and adjuvant therapy generates a developing pool of peptide-specific CD8 memory T cells. Int Immunol 18:325–333PubMedCrossRefGoogle Scholar
  108. Naganuma H, Sasaki A, Satoh E, Nagasaka M, Nakano S, Isoe S, Nukui H (1998) Down-regulation of transforming growth factor-β and interleukin-10 secretion from malignant glioma cells by cytokines and anticancer drugs. J Neurooncol 39:227–236PubMedCrossRefGoogle Scholar
  109. Nakano Y, Kuroda E, Kito T, Yokota A, Yamashita U (2006) Induction of macrophagic prostaglandin E2 synthesis by glioma cells. J Neurosurg 104:574–582PubMedCrossRefGoogle Scholar
  110. Nanni P, Nicoletti G, Palladini A, Croci S, Murgo A, Antognoli A, Landuzzi L, Fabbi M, Ferrini S, Musiani P, Iezzi M, De Giovanni C, Lollini PL (2007) Antimetastatic activity of a preventive cancer vaccine. Cancer Res 67:11037–11044 Erratum in: Cancer Res. 2007;67(24):12034PubMedCrossRefGoogle Scholar
  111. Nieder C, Astner ST, Mehta MP, Grosu AL, Molls M (2008) Improvement, clinical course, and quality of life after palliative radiotherapy for recurrent glioblastoma. Am J Clin Oncol 31:300–305PubMedCrossRefGoogle Scholar
  112. Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M, Nakajima Y (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157PubMedCrossRefGoogle Scholar
  113. O I, Blaszczyk-Thurin M, Shen CT, Ertl HC (2003) DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma. Cancer Gene Ther 10:678–688PubMedCrossRefGoogle Scholar
  114. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453PubMedCrossRefGoogle Scholar
  115. Okada H, Lieberman FS, Walter KA, Lunsford LD, Kondziolka DS, Bejjani GK, Hamilton RL, Torres-Trejo A, Kalinski P, Cai Q, Mabold JL, Edington HD, Butterfield LH, Whiteside TL, Potter DM, Schold SC Jr, Pollack IF (2007) Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 5:67PubMedCrossRefGoogle Scholar
  116. Ou X, Cai S, Liu P, Zeng J, He Y, Wu X, Du J (2008) Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2, 3-dioxygenase inhibitor, 1-MT. J Cancer Res Clin Oncol 134:525–533PubMedCrossRefGoogle Scholar
  117. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228PubMedCrossRefGoogle Scholar
  118. Papaetis GS, Karapanagiotou LM, Pandha H, Syrigos KN (2008) Targeted therapy for advanced renal cell cancer: cytokines and beyond. Curr Pharm Des 14:2229–2251PubMedCrossRefGoogle Scholar
  119. Parekh K, Ramachandran S, Cooper J, Bigner D, Patterson A, Mohanakumar T (2005) Tenascin-C, over expressed in lung cancer down regulates effector functions of tumor infiltrating lymphocytes. Lung Cancer 47:17–29PubMedCrossRefGoogle Scholar
  120. Pedersen AE, Ronchese F (2007) CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion. J Immune Based Ther Vaccines 5:9PubMedCrossRefGoogle Scholar
  121. Pichichero ME (2008) Improving vaccine delivery using novel adjuvant systems. Hum Vaccin 4:262–270PubMedGoogle Scholar
  122. Platsoucas CD, Fincke JE, Pappas J, Jung WJ, Heckel M, Schwarting R, Magira E, Monos D, Freedman RS (2003) Immune responses to human tumors: development of tumor vaccines. Anticancer Res 23:1969–1996PubMedGoogle Scholar
  123. Ponsaerts P, Van den Bosch G, Cools N, Van Driessche A, Nijs G, Lenjou M, Lardon F, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF (2002) Messenger RNA electroporation of human monocytes, followed by rapid in vitro differentiation, leads to highly stimulatory antigen-loaded mature dendritic cells. J Immunol 169:1669–1675PubMedGoogle Scholar
  124. Popov A, Schultze JL (2008) IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med 86:145–160PubMedCrossRefGoogle Scholar
  125. Prins RM, Incardona F, Lau R, Lee P, Claus S, Zhang W, Black KL, Wheeler CJ (2004) Characterization of defective CD4-CD8- T cells in murine tumors generated independent of antigen specificity. J Immunol 172:1602–1611PubMedGoogle Scholar
  126. Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, Yang MY, Lin MS, Shelly S, Witte ON, Ribas A, Liau LM (2008) Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol Immunother 57:1279–1289PubMedCrossRefGoogle Scholar
  127. Qi JM, Rojas L, Ostrand-Rosenberg S (2000) Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J Immunol 165:5451–5461PubMedGoogle Scholar
  128. Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100PubMedGoogle Scholar
  129. Rabinovich GA, Liu FT, Hirashima M, Anderson A (2007) An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 66:143–158PubMedCrossRefGoogle Scholar
  130. Rakhmilevich AL, Buhtoiarov IN, Malkovsky M, Sondel PM (2008) CD40 ligation in vivo can induce T cell independent antitumor effects even against immunogenic tumors. Cancer Immunol Immunother 57:1151–1160PubMedCrossRefGoogle Scholar
  131. Reschner A, Hubert P, Delvenne P, Boniver J, Jacobs N (2008) Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol 152:219–226PubMedCrossRefGoogle Scholar
  132. Robins HI, Chang S, Butowski N, Mehta M (2007) Therapeutic advances for glioblastoma multiforme: current status and future prospects. Curr Oncol Rep 9:66–70PubMedCrossRefGoogle Scholar
  133. Rocha N, Neefjes J (2008) MHC class II molecules on the move for successful antigen presentation. EMBO J 27:1–5PubMedCrossRefGoogle Scholar
  134. Roth P, Mittelbronn M, Wick W, Meyermann R, Tatagiba M, Weller M (2007) Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Cancer Res 67:3540–3544PubMedCrossRefGoogle Scholar
  135. Rouas-Freiss N, Moreau P, Menier C, LeMaoult J, Carosella ED (2007) Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol 17:413–421PubMedCrossRefGoogle Scholar
  136. Roussel E, Gingras MC, Grimm EA, Bruner JM, Moser RP (1996) Predominance of a type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas. Clin Exp Immunol 105:344–352PubMedCrossRefGoogle Scholar
  137. Rubio MT, Saito TI, Kattleman K, Zhao G et al (2005) Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-γ-producing CD8+ T cells. J Immunol 175:665–676PubMedGoogle Scholar
  138. Rutten CE, van Luxemburg-Heijs SA, Griffioen M, Marijt EW, Jedema I, Heemskerk MH, Posthuma EF, Willemze R, Falkenburg JH (2008) HLA-DP as specific target for cellular immunotherapy in HLA class II-expressing B-cell leukemia. Leukemia 22:1387–1394PubMedCrossRefGoogle Scholar
  139. Ruybal P, Gravisaco MJ, Barcala V, Escalada A, Di Sciullo P, Waldner C, Mongini C (2008) Complete rejection of a T-cell lymphoma due to synergism of T-cell receptor costimulatory molecules, CD80, CD40L, and CD40. Vaccine 26:697–705PubMedCrossRefGoogle Scholar
  140. Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y, Quillien V (2007) Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy. J Neurooncol 81:139–148PubMedCrossRefGoogle Scholar
  141. Salatino M, Croci DO, Bianco GA, Ilarregui JM, Toscano MA, Rabinovich GA (2008) Galectin-1 as a potential therapeutic target in autoimmune disorders and cancer. Expert Opin Biol Ther 8:45–57PubMedCrossRefGoogle Scholar
  142. Salgaller ML, Liau LM (2006) Current status of clinical trials for glioblastoma. Rev Recent Clin Trials 1:265–281PubMedCrossRefGoogle Scholar
  143. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, Broggi G, Boiardi A (2003) Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 62:297–303PubMedCrossRefGoogle Scholar
  144. Samaras V, Piperi C, Korkolopoulou P, Zisakis A, Levidou G, Themistocleous MS, Boviatsis EI, Sakas DE, Lea RW, Kalofoutis A, Patsouris E (2007) Application of the ELISPOT method for comparative analysis of interleukin (IL)-6 and IL-10 secretion in peripheral blood of patients with astroglial tumors. Mol Cell Biochem 304:343–351PubMedCrossRefGoogle Scholar
  145. Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong VW (2006) Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res 66:11771–11780PubMedCrossRefGoogle Scholar
  146. Satoh E, Mabuchi T, Satoh H, Asahara T, Nukui H (2006) Naganuma, H. Reduced expression of the transporter associated with antigen processing 1 molecule in malignant glioma cells, and its restoration by interferon-gamma and -beta. J Neurosurg 104:264–271PubMedCrossRefGoogle Scholar
  147. Saussez S, Decaestecker C, Lorfevre F, Cucu DR, Mortuaire G, Chevalier D, Wacreniez A, Kaltner H, André S, Toubeau G, Camby I, Gabius HJ, Kiss R (2007) High level of galectin-1 expression is a negative prognostic predictor of recurrence in laryngeal squamous cell carcinomas. Int J Oncol 30:1109–1117PubMedGoogle Scholar
  148. Scarcella DL, Chow CW, Gonzales MF, Economou C, Brasseur F, Ashley DM (1999) Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res 5:335–341PubMedGoogle Scholar
  149. Schwartzbaum JA, Ahlbom A, Lönn S, Malmer B, Wigertz A, Auvinen A, Brookes AJ, Collatz Christensen H, Henriksson R, Johansen C, Salminen T, Schoemaker MJ, Swerdlow AJ, Debinski W, Feychting M (2007) An international case-control study of interleukin-4Ralpha, interleukin-13, and cyclooxygenase-2 polymorphisms and glioblastoma risk. Cancer Epidemiol Biomarkers Prev 16:2448–2454PubMedCrossRefGoogle Scholar
  150. Segal NH, Parsons DW, Peggs KS, Velculescu V, Kinzler KW, Vogelstein B, Allison JP (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 68:889–892PubMedCrossRefGoogle Scholar
  151. Seo N, Hayakawa S, Takigawa M, Tokura Y (2001) Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunology 103:449–457PubMedCrossRefGoogle Scholar
  152. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449PubMedCrossRefGoogle Scholar
  153. Shafer-Weaver K, Anderson M, Malyguine A, Hurwitz AA (2007) T cell tolerance to tumors and cancer immunotherapy. Adv Exp Med Biol 601:357–368PubMedCrossRefGoogle Scholar
  154. Shrikant P, Lee SJ, Kalvakolanu I, Ransohoff RM, Benveniste EN (1996) Stimulus-specific inhibition of intracellular adhesion molecule-1 gene expression by TGF-β. J Immunol 157:892–900PubMedGoogle Scholar
  155. Sivori S, Parolini S, Marcenaro E, Castriconi R, Pende D, Millo R, Moretta A (2000) Involvement of natural cytotoxicity receptors in human natural killer cell-mediated lysis of neuroblastoma and glioblastoma cell lines. J Neuroimmunol 107:220–225PubMedCrossRefGoogle Scholar
  156. Smith C, Martinez M, Cooper L, Rist M, Zhong J, Khanna R (2008) Generating functional CD8+ T cell memory response under transient CD4+ T cell deficiency: implications for vaccination of immunocompromised individuals. Eur J Immunol 38:1857–1866PubMedCrossRefGoogle Scholar
  157. Sonabend AM, Dana K, Lesniak MS (2007) Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma. Expert Rev Anticancer Ther 7(12 Suppl):S45–S50PubMedCrossRefGoogle Scholar
  158. Søndergaard H, Frederiksen KS, Thygesen P, Galsgaard ED, Skak K, Kristjansen PE, Odum N, Kragh M (2007) Interleukin 21 therapy increases the density of tumor infiltrating CD8+ T cells and inhibits the growth of syngeneic tumors. Cancer Immunol Immunother 56:1417–1428PubMedCrossRefGoogle Scholar
  159. Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205:1701–1714PubMedCrossRefGoogle Scholar
  160. Stern LJ, Potolicchio I, Santambrogio L (2006) MHC class II compartment subtypes: structure and function. Curr Opin Immunol 18:64–69PubMedCrossRefGoogle Scholar
  161. Strbo N, Podack ER (2008) Secreted heat shock protein gp96-Ig: an innovative vaccine approach. Am J Reprod Immunol 59:407–416PubMedCrossRefGoogle Scholar
  162. Strik HM, Schmidt K, Lingor P, Tönges L, Kugler W, Nitsche M, Rabinovich GA, Bähr M (2007) Galectin-1 expression in human glioma cells: modulation by ionizing radiation and effects on tumor cell proliferation and migration. Oncol Rep 18:483–488PubMedGoogle Scholar
  163. Stüve O, Youssef S, Weber MS, Nessler S, von Büdingen HC, Hemmer B, Prod’homme T, Sobel RA, Steinman L, Zamvil SS (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 116:1037–1044PubMedCrossRefGoogle Scholar
  164. Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D (2006) ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood 108:1313–1319CrossRefGoogle Scholar
  165. Tang F, Zhao LT, Jiang Y, de Ba N, Cui LX, He W (2008) Activity of recombinant human interleukin-15 against tumor recurrence and metastasis in mice. Cell Mol Immunol 5:189–196PubMedCrossRefGoogle Scholar
  166. Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N (2008) Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol 27:93–110PubMedCrossRefGoogle Scholar
  167. Thompson JA, Dissanayake SK, Ksander BR, Knutson KL, Disis ML, Ostrand-Rosenberg S (2006) Tumor cells transduced with the MHC class II Transactivator and CD80 activate tumor-specific CD4+ T cells whether or not they are silenced for invariant chain. Cancer Res 66:1147–1154PubMedCrossRefGoogle Scholar
  168. Thompson JA, Srivastava MK, Bosch JJ, Clements VK, Ksander BR, Ostrand-Rosenberg S (2008) The absence of invariant chain in MHC II cancer vaccines enhances the activation of tumor-reactive type 1 CD4+ T lymphocytes. Cancer Immunol Immunother 57:389–398PubMedCrossRefGoogle Scholar
  169. Ullrich E, Ménard C, Flament C, Terme M, Mignot G, Bonmort M, Plumas J, Chaperot L, Chaput N, Zitvogel L (2008) Dendritic cells and innate defense against tumor cells. Cytokine Growth Factor Rev 19:79–92PubMedCrossRefGoogle Scholar
  170. Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, Silva LS, Villani L, Tagliabue E, Ménard S, Costa A, Fagnoni FF (2007) Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res 67:11991–11999PubMedCrossRefGoogle Scholar
  171. Vasir B, Wu Z, Crawford K, Rosenblatt J, Zarwan C, Bissonnette A, Kufe D, Avigan D (2008) Fusions of dendritic cells with breast carcinoma stimulate the expansion of regulatory T cells while concomitant exposure to IL-12, CpG oligodeoxynucleotides, and anti-CD3/CD28 promotes the expansion of activated tumor reactive cells. J Immunol 181:808–8021PubMedGoogle Scholar
  172. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL (2006) CD25 and indoleamine 2, 3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237CrossRefGoogle Scholar
  173. Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, von Hofe E, Kallinteris NL, Baxevanis CN (2007) Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 121:2031–2041PubMedCrossRefGoogle Scholar
  174. Wagner P, Koch M, Nummer D, Palm S, Galindo L, Autenrieth D, Schmitz-Winnenthal FH, Schirrmacher V, Büchler MW, Beckhove P, Weitz J (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317PubMedCrossRefGoogle Scholar
  175. Waldner MJ, Neurath MF (2008) Cytokines in colitis associated cancer: potential drug targets? Inflamm Allergy Drug Targets 7:187–194PubMedCrossRefGoogle Scholar
  176. Wallace A, Kapoor V, Sun J, Mrass P, Weninger W, Heitjan DF, June C, Kaiser LR, Ling LE, Albelda SM (2008) Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin Cancer Res 14:3966–3974PubMedCrossRefGoogle Scholar
  177. Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F, Merad M, Shengelia T, Yao K, Nussenzweig M (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676–683PubMedCrossRefGoogle Scholar
  178. Weber WP, Feder-Mengus C, Chiarugi A, Rosenthal R, Reschner A, Schumacher R, Zajac P, Misteli H, Frey DM, Oertli D, Heberer M, Spagnoli GC (2006) Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur J Immunol 36:296–304PubMedCrossRefGoogle Scholar
  179. Wei S, Shreiner AB, Takeshita N, Chen L, Zou W, Chang AE (2008) Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7–H1/PD-1 axis and transforming growth factor-β. Cancer Res 68:5432–5438PubMedCrossRefGoogle Scholar
  180. Weiner GJ (2007) Monoclonal antibody mechanisms of action in cancer. Immunol Res 39:271–278PubMedCrossRefGoogle Scholar
  181. Wells JW, Cowled CJ, Farzaneh F, Noble A (2008) Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol 181:3422–3431PubMedGoogle Scholar
  182. Welters MJ, Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, Offringa R, van der Burg SH (2007) Multiple CD4 and CD8 T-cell activation parameters predict vaccine efficacy in vivo mediated by individual DC-activating agonists. Vaccine 25:1379–1389 Erratum in: Vaccine 2007; 25(41):7280PubMedCrossRefGoogle Scholar
  183. Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, Goldfinger D, Ng H, Irvin D, Yu JS (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964PubMedCrossRefGoogle Scholar
  184. Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Bornemann A, Meyermann R, Weiss EH, Melms A, Weller M (2002) A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immunol 168:4772–4780PubMedGoogle Scholar
  185. Wiendl H, Mitsdoerffer M, Weller M (2003) Hide-and-seek in the brain: a role for HLA-G mediating immune privilege for glioma cells. Semin Cancer Biol 13:343–351PubMedCrossRefGoogle Scholar
  186. Wykosky J, Gibo DM, Stanton C, Debinski W (2008) Interleukin-13 receptor α2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res 14:199–208PubMedCrossRefGoogle Scholar
  187. Xie D, Zeng YX, Wang HJ, Wen JM, Tao Y, Sham JS, Guan XY (2006) Expression of cytoplasmic and nuclear Survivin in primary and secondary human glioblastoma. Br J Cancer 94:108–114PubMedCrossRefGoogle Scholar
  188. Xu Y, Darcy PK, Kershaw MH (2007) Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, erbB2. Cancer Gene Ther 14:773–780PubMedCrossRefGoogle Scholar
  189. Yamanaka R (2008) Cell- and peptide-based immunotherapeutic approaches for glioma. Trends Mol Med 14:228–235PubMedCrossRefGoogle Scholar
  190. Yang T, Wall EM, Milne K, Theiss P, Watson P, Nelson BH (2007) CD8+ T cells induce complete regression of advanced ovarian cancers by an interleukin (IL)-2/IL-15 dependent mechanism. Clin Cancer Res 13:7172–7180PubMedCrossRefGoogle Scholar
  191. Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjørnbeth BA, Taskén K (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57:813–821PubMedCrossRefGoogle Scholar
  192. Zha Y, Blank C, Gajewski TF (2004) Negative regulation of T-cell function by PD-1. Crit Rev Immunol 24:229–237PubMedCrossRefGoogle Scholar
  193. Zhang Y, Renkvist N, Sun Z, Schuler-Thurner B, Glaichenhaus N, Schuler G, Boon T, van der Bruggen P, Colau D (2005) A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. Eur J Immunol 35:1066–1075PubMedCrossRefGoogle Scholar
  194. Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C, Wepsic HT, Okada H, Jadus MR (2007) Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 13((2 Pt 1)):566–575PubMedCrossRefGoogle Scholar
  195. Zhang JG, Kruse CA, Driggers L, Hoa N, Wisoff J, Allen JC, Zagzag D, Newcomb EW, Jadus MR (2008) Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol 88:65–76PubMedCrossRefGoogle Scholar
  196. Zheng R, Cohen PA, Paustian CA, Johnson TD, Lee WT, Shu S, Koski GK (2008) Paired Toll-like receptor agonists enhance vaccine therapy through induction of interleukin-12. Cancer Res 68:4045–4049PubMedCrossRefGoogle Scholar
  197. Zuber P, Kuppner MC, De Tribolet N (1988) Transforming growth factor-β2 down-regulates HLA-DR antigen expression on human malignant glioma cells. Eur J Immunol 18:1623–1626PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  • Azizul Haque
  • Mitzi Nagarkatti
  • Prakash Nagarkatti
  • Naren L. Banik
  • Swapan K. Ray
    • 1
  1. 1.Department of Pathology, Microbiology, and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations