Glioblastoma pp 283-298 | Cite as

Molecular Mechanisms of Taxol for Induction of Cell Death in Glioblastomas

Chapter

Abstract

Glioblastomas are the most frequent and devastating brain tumors in adults. Molecular and cytogenetic studies of glioblastomas have revealed a wide variety of deregulated genes that are associated with cell cycles, DNA repair, apoptosis, cell migration, invasion, and angiogenesis with little translational success. Understanding the molecular mechanisms of these deregulated genes can provide a rationale for targeting specific pathways of repair, signaling, and angiogenesis. Taxol, one of the most potent anti-neoplastic drugs, strongly binds to the N-terminal region of β-tubulin to prevent tumor cell division and induce cell death. The effects of taxol may vary depending on cell type and drug concentration. At lower concentrations ranging from 10 to 100 nM, taxol induces phosphorylation of Bcl-2, which in turn triggers mitochondrial release of cytochrome c, cleavage of pro-caspases and poly(ADP-ribose) polymerase (PARP), leading to apoptotic death. Phosphorylation of Bcl-2 also inhibits the ability of Bcl-2 to increase intracellular free [Ca2+], which triggers calpain-mediated apoptosis. At higher concentrations, taxol induces cell death due to stabilization of microtubules and mitochondrial collapse, leading to cell cycle arrest at G2/M phase. Disruption of the mitotic spindle activates a number of signaling pathways, with consequences that may protect the cell. The cells arrested in mitosis exhibit no signal for apoptosis but have an increased expression of survivin, an inhibitor of apoptosis. A thorough understanding of the molecular signaling events associated with taxol-mediated cell cycle arrest is essential, particularly in regard to its potential in combination therapy, where multiple therapeutic agents are used to enhance the efficacy of treatment in controlling cancer cells. In this chapter, we present an overview of the latest research on the molecular signaling mechanisms of taxol, events leading to apoptosis, potential of taxol in combination chemotherapy, and emerging gene therapy.

Keywords

Apoptosis Combination therapy Gene therapy Glioblastomas Taxol 

References

  1. Barnholtz-Sloan JS, Sloan AE, Schwartz AG (2003) Racial differences in survival after diagnosis with primary malignant brain tumor. Cancer 98:603–609CrossRefPubMedGoogle Scholar
  2. Baum SG, Wittner M, Nadler JP, Horwitz SB, Dennis JE, Schiff PB, Tanowitz HB (1981) Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci USA 78:4571–4575CrossRefPubMedGoogle Scholar
  3. Bellavance MA, Blanchette M, Fortin D (2008) Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS J 10:166–177CrossRefPubMedGoogle Scholar
  4. Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FAE, Giaccone G (2004) Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 64:27–30CrossRefPubMedGoogle Scholar
  5. Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 98:71–108CrossRefPubMedGoogle Scholar
  6. Combs SE, Widmer V, Thilmann C, Hof H, Debus J, Schulz-Ertner D (2005) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173CrossRefPubMedGoogle Scholar
  7. Connelly JM, Malkin MG (2007) Environmental risk factors for brain tumors. Curr Neurol Neurosci Rep 7:208–214CrossRefPubMedGoogle Scholar
  8. Day TW, Najafi F, Wu CH, Safa AR (2006) Cellular FLICE-like inhibitory protein (c-FLIP): a novel target for Taxol-induced apoptosis. Biochem Pharmacol 71:1551–1561CrossRefPubMedGoogle Scholar
  9. Díaz JF, Andreu JM (1993) Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry 32:2747–2755CrossRefPubMedGoogle Scholar
  10. Díaz JF, Pantos E, Bordas J, Andreu JM (1994) Solution structure of GDP-tubulin double rings to 3 nm resolution and comparison with microtubules. J Mol Biol 238:214–225CrossRefPubMedGoogle Scholar
  11. Díaz JF, Strobe R, Engelborghs Y, Souto AA, Andreu JM (2000) Molecular recognition of taxol by microtubules: Kinetics and thermodynamics of binding of fluorescent taxol derivatives to an exposed site. J Biol Chem 275:26265–26276CrossRefPubMedGoogle Scholar
  12. Ding AH, Porteu F, Sanchez E, Nathan CF (1990) Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science 248:370–372CrossRefPubMedGoogle Scholar
  13. Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24:1266–1272CrossRefPubMedGoogle Scholar
  14. Dziadyk JM, Sui M, Zhu X, Fan W (2004) Paclitaxel-induced apoptosis may occur without a prior G2/M-phase arrest. Anticancer Res 24:27–36PubMedGoogle Scholar
  15. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O-6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMedGoogle Scholar
  16. Fan W (1999) Possible mechanisms of paclitaxel-induced apoptosis. Biochem Pharmacol 57:1215–1221CrossRefPubMedGoogle Scholar
  17. Figueroa-Masot XA, Hetman M, Higgins MJ, Kokot N, Xia Z (2001) Taxol induces apoptosis in cortical neurons by a mechanism independent of Bcl-2 phosphorylation. J Neurosci 21:4657–4667PubMedGoogle Scholar
  18. Fisher JL, Schwartzbaum JA, Wrensch M, Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890CrossRefPubMedGoogle Scholar
  19. Ganesh T, Yang C, Norris A, Glass T, Bane S, Ravindra R et al (2007) Evaluation of the tubulin-bound paclitaxel conformation: synthesis, biology, and SAR studies of C-4 to C-3′ bridged paclitaxel analogues. J Med Chem 50:713–725CrossRefPubMedGoogle Scholar
  20. George J, Gondi CS, Dinh DH, Gujrati M, Rao JS (2007) Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res 13:3507–3517CrossRefPubMedGoogle Scholar
  21. George J, Banik NL, Ray SK (2009) Combination of taxol and Bcl-2 siRNA induces apoptosis in human glioblastoma cells, and inhibits invasion, angiogenesis and tumor growth. J Cell Mol Med (in press), DOI: 10.1111/j.1582-4934-2008.00539.xGoogle Scholar
  22. George J, Banik NL, Ray SK (2009) Bcl-2 siRNA augments taxol mediated apoptotic death in human glioblastoma U138MG and U251MG cells. Neurochem Res 34:66–78CrossRefPubMedGoogle Scholar
  23. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129:11653–11661CrossRefPubMedGoogle Scholar
  24. Holton RA, Kim HB, Somoza C, Liang F, Biediger RJ, Boatman PD et al (1994a) First total synthesis of taxol. 2. Completion of the C and D rings. J Am Chem Soc 116:1599–1600CrossRefGoogle Scholar
  25. Holton RA, Somoza C, Kim HB, Liang F, Biediger RJ, Boatman PD et al (1994b) First total synthesis of taxol. 1. Functionalization of the B ring. J Am Chem Soc 116:1597–1598CrossRefGoogle Scholar
  26. Hribaschek A, Meyer F, Schneider-Stock R, Pross M, Ridwelski K, Lippert H (2007) Comparison of intraperitoneal with intravenous administration of taxol in experimental peritoneal carcinomatosis. Chemotherapy 53:410–417CrossRefPubMedGoogle Scholar
  27. Huisman C, Ferreira CG, Broker LE, Rodriguez JA, Smit EF, Postmus PE et al (2002) Paclitaxel triggers cell death primarily via caspase-independent routes in the non-small cell lung cancer cell line NCI-H460. Clin Cancer Res 8:596–606PubMedGoogle Scholar
  28. Huncharek M, Kupelnick B, Wheeler L (2003) Dietary cured meat and the risk of adult glioma: a meta-analysis of nine observational studies. J Environ Pathol Toxicol Oncol 22:129–137CrossRefPubMedGoogle Scholar
  29. Impens, F., Van Damme, P., Demol, H., Van Damme, J., Vandekerckhove, J., and Gevaert, K. 2008. Mechanistic insight into taxol-induced cell death. Oncogene 2008 (in press)Google Scholar
  30. Janssen K, Pohlmann S, Janicke RU, Schulze-Osthoff K, Fischer U (2007) Apaf-1 and caspase-9 deficiency prevents apoptosis in a Bax-controlled pathway and promotes clonogenic survival during taxol treatment. Blood 110:3662–3672CrossRefPubMedGoogle Scholar
  31. Karabatsou K, Bernstein M (2008) Cure following gene therapy for recurrent glioblastoma multiforme? Acta Neurochir (Wien) 150:611–612CrossRefGoogle Scholar
  32. Konduri SD, Srivenugopal KS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Foster DC, Kisiel W, Ali-Osman F, Kondraganti S, Lakka SS, Rao JS (2003) Promoter methylation and silencing of the tissue factor pathway inhibitor-2 (TFPI-2), a gene encoding an inhibitor of matrix metalloproteinases in human glioma cells. Oncogene 22:4509–4516CrossRefPubMedGoogle Scholar
  33. Lei XY, Zhong M, Feng LF, Zhu BY, Tang SS, Liao DF (2007) siRNA-mediated Bcl-2 and Bcl-xl gene silencing sensitizes human hepatoblastoma cells to chemotherapeutic drugs. Clin Exp Pharmacol Physiol 34:450–456CrossRefPubMedGoogle Scholar
  34. Leung SY, Jackson J, Miyake H, Burt H, Gleave ME (2000) Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate 44:156–163CrossRefPubMedGoogle Scholar
  35. Lewis R, Rempala G, Dell LD, Mundt KA (2003) Vinyl chloride and liver and brain cancer at a polymer production plant in Louisville, Kentucky. J Occup Environ Med 45:533–537CrossRefPubMedGoogle Scholar
  36. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157CrossRefPubMedGoogle Scholar
  37. Lü X, de la Peña L, Barker C, Camphausen K, Tofilon PJ (2006) Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res 66:1052–1061CrossRefPubMedGoogle Scholar
  38. Manfredi JJ, Horwitz SB (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther 25:83–125CrossRefPubMedGoogle Scholar
  39. Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G, Esteller M (2007) CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28:1264–1268CrossRefPubMedGoogle Scholar
  40. Menéndez M, Rivas G, Díaz JF, Andreu JM (1998) Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site. J. Biol. Chem. 273:167–176CrossRefPubMedGoogle Scholar
  41. Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van Den Berg CL (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23:596–604CrossRefPubMedGoogle Scholar
  42. Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 124:163–171CrossRefPubMedGoogle Scholar
  43. Nimmanapalli R, Perkins CL, Orlando M, O’Bryan E, Nguyen D, Bhalla KN (2001) Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 61:759–763PubMedGoogle Scholar
  44. Ohta T, Watanabe T, Katayama Y, Yoshino A, Yachi K, Ogino A, Komine C, Fukushima T (2006) Aberrant promoter hypermethylation profile of cell cycle regulatory genes in malignant astrocytomas. Oncol Rep 16:957–963PubMedGoogle Scholar
  45. Pineiro D, Martin ME, Guerra N, Salinas M, Gonzalez VM (2007) Calpain inhibition stimulates caspase-dependent apoptosis induced by taxol in NIH3T3 cells. Exp Cell Res 313:369–379CrossRefPubMedGoogle Scholar
  46. Pulkkanen KJ, Yla-Herttuala S (2005) Gene therapy for malignant glioma: current clinical status. Mol Ther 12:585–598CrossRefPubMedGoogle Scholar
  47. Sasai K, Akagi T, Aoyanagi E, Tabu K, Kaneko S, Tanaka S (2007) O6-methylguanine-DNA methyltransferase is downregulated in transformed astrocyte cells: implications for anti-glioma therapies. Mol Cancer 6:36CrossRefPubMedGoogle Scholar
  48. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565CrossRefPubMedGoogle Scholar
  49. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667CrossRefPubMedGoogle Scholar
  50. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503CrossRefPubMedGoogle Scholar
  51. Symmons MF, Martin SR, Bayley PM (1996) Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime. J Cell Sci 109:2755–2766PubMedGoogle Scholar
  52. Takebayashi T, Varsier N, Kikuchi Y, Wake K, Taki M, Watanabe S, Akiba S, Yamaguchi N (2008) Mobile phone use, exposure to radiofrequency electromagnetic field, and brain tumour: a case-control study. Br J Cancer 98:652–659CrossRefPubMedGoogle Scholar
  53. Thomson AB, Critchley HO, Wallace WH (2002) Fertility and progeny. Eur J Cancer 38:1634–1644CrossRefPubMedGoogle Scholar
  54. Trickler, W.J., Nagvekar, A.A., and Dash, A.K. 2008. A novel nanoparticle formulation for sustained paclitaxel delivery. AAPS PharmSci. Tech. 2008 (in press).Google Scholar
  55. Tsai M, Lu Z, Wang J, Yeh TK, Wientjes MG, Au JL (2007) Effects of carrier on disposition and antitumor activity of intraperitoneal paclitaxel. Pharm Res 24:1691–1701CrossRefPubMedGoogle Scholar
  56. Vivat-Hannah V, You D, Rizzo C, Daris JP, Lapointe P, Zusi FC, Marinier A, Lorenzi MV, Gottardis MM (2001) Synergistic cytotoxicity exhibited by combination treatment of selective retinoid ligands with taxol (Paclitaxel). Cancer Res 61:8703–8711PubMedGoogle Scholar
  57. Wacheck V, Losert D, Günsberg P, Vornlocher HP, Hadwiger P, Geick A, Pehamberger H, Müller M, Jansen B (2003) Small interfering RNA targeting bcl-2 sensitizes malignant melanoma. Oligonucleotides 13:393–400CrossRefPubMedGoogle Scholar
  58. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327CrossRefPubMedGoogle Scholar
  59. Waring P, Kos FJ, Müllbacher A (1991) Apoptosis or programmed cell death. Med Res Rev 11:219–236PubMedGoogle Scholar
  60. Wilson L, Bamburg JR, Mizel SB, Grisham LM, Creswell KM (1974) Interaction of drugs with microtubule proteins. Fed Proc 33:158–166PubMedGoogle Scholar
  61. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci USA 103:10166–10173CrossRefPubMedGoogle Scholar
  62. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T, Ahmad I (2005) Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J Pharm Biopharm 59:177–187CrossRefPubMedGoogle Scholar
  63. Zheng T, Cantor KP, Zhang Y, Chiu BC, Lynch CF (2001) Risk of brain glioma not associated with cigarette smoking or use of other tobacco products in Iowa. Cancer Epidemiol Biomarkers Prev 10:413–414PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of Pathology, Microbiology, and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations