Far in Space and Yet in Synchrony: Neuronal Mechanisms for Zero-Lag Long-Range Synchronization

  • Raul Vicente
  • Leonardo L. Gollo
  • Claudio R. Mirasso
  • Ingo Fischer
  • Gordon Pipa
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 3)


Distant neuronal populations are observed to synchronize their activity patterns at zero-lag during certain stages of cognitive acts. This chapter provides an overview of the problem of large-scale synchrony and some of the solutions that have been proposed for attaining long-range coherence in the nervous system despite long conduction delays. We also review in detail the synchronizing properties of a canonical neuronal microcircuit that naturally enhances the isochronous discharge of remote neuronal resources. The basic idea behind this mechanism is that when two neuronal populations relay their activities onto a third mediating population, the redistribution of the dynamics performed by the latter leads to a self-organized and lag-free synchronization among the pools of neurons being relayed. Exploring the physiological relevance of this mechanism, we discuss the role of associative thalamic nuclei and their bidirectional interaction with the neocortex as a relevant physiological structure in which the network module under study is densely embedded. These results are further supported by the recently proposed role of thalamocortical interactions as a substrate for the trans-areal cortical coordination.


Network Motif Conduction Delay Relay Cell Synaptic Coupling Neuronal Synchrony 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Wolf Singer, Carl van Vreeswijk, Christopher J. Honey, and Nancy Kopell for fruitful discussions. This work was partially supported by the Hertie Foundation, the European Commission Project GABA (FP6-NEST contract 043309), and the Spanish MCyT and Feder under Project FISICO (FIS-2004-00953). R.V. and G.P. are also with the Frankfurt Institute for Advanced Studies (FIAS).


  1. 1.
    Nicolelis M, Ribeiro S (2002) Multielectrode recordings: the next steps. Curr. Opin. Neurobio. 12:602–606CrossRefGoogle Scholar
  2. 2.
    Singer W, Engel AK, Kreiter AK, Munk MHJ, Neuenschwander S, Roelfsema PR (1997) Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1:252–260PubMedCrossRefGoogle Scholar
  3. 3.
    Singer W (1999) Neuronal Synchrony: A Versatile Code for the Definition of Relations. Neuron 24:49–65PubMedCrossRefGoogle Scholar
  4. 4.
    Varela FJ, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2:299–230CrossRefGoogle Scholar
  5. 5.
    Milner PM (1974) A model for visual shape recognition. Psychol. Rev. 81:521–535PubMedCrossRefGoogle Scholar
  6. 6.
    von der Malsburg, C (1981) The correlation theory of brain function. Intern. Rep. 81-2, Dept. of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Gottingen, GermanyGoogle Scholar
  7. 7.
    Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRefGoogle Scholar
  8. 8.
    Gray CM (1999) The temporal correlation hypothesis of visual feature integration. Neuron 24:31–47PubMedCrossRefGoogle Scholar
  9. 9.
    Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20:6193–6209PubMedGoogle Scholar
  10. 10.
    Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neuronal information. Nat. Rev. Neurosci. 2:539–550PubMedCrossRefGoogle Scholar
  11. 11.
    Castelo-Branco M, Goebel R, Neuenschwander S, Singer W (2000) Neuronal synchrony correlates with surface segregation rules. Nature 405:685–689PubMedCrossRefGoogle Scholar
  12. 12.
    Fries P, Roelfsema PR, Engel AK, Konig P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. 94:12699–12704PubMedCrossRefGoogle Scholar
  13. 13.
    Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563PubMedCrossRefGoogle Scholar
  14. 14.
    Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc. Natl. Acad. Sci. 95:7092–7096PubMedCrossRefGoogle Scholar
  15. 15.
    Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161PubMedCrossRefGoogle Scholar
  16. 16.
    Rodriguez E et al. (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433PubMedCrossRefGoogle Scholar
  17. 17.
    Mima T, Oluwatimilehin T, Hiraoka T, Hallett M (2001) Transient Interhemispheric Neuronal Synchrony Correlates with Object Recognition. J. Neurosci. 21:3942–3948PubMedGoogle Scholar
  18. 18.
    Uhlhaas PJ et al. (2006) Dysfunctional long-range coordination of neural activity during Gestalt perception in schizofrenia. J. Neurosci. 26:8168–8175PubMedCrossRefGoogle Scholar
  19. 19.
    Soteropoulus DS, Baker S (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J. Neurophysiol. 95:1194–1206CrossRefGoogle Scholar
  20. 20.
    Witham CL, Wang M, Baker S (2007) Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex. Eur. J. Neurosci. 26:2677–2686PubMedCrossRefGoogle Scholar
  21. 21.
    Swadlow HA, Rosene DL, Waxman SG (1978) Characteristics of interhemispheric impulse conduction between the prelunate gyri of the rhesus monkey. Exp. Brain Res. 33:455–467PubMedCrossRefGoogle Scholar
  22. 22.
    Swadlow HA (1985) Physiological properties of individual cerebral axons studied in vivo for as long as one year. J. Neurophysiol. 54:1346–1362PubMedGoogle Scholar
  23. 23.
    Swadlow HA (1994) Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs. J. Neurophysiol. 71:437–453PubMedGoogle Scholar
  24. 24.
    Miller R (2000) Time and the brain. Harwood Press, SwitzerlandCrossRefGoogle Scholar
  25. 25.
    Wen Q, Chkolvskii DB (2005) Seggregation of the brain into Gray and White matter: a design minimiying conduction delays. PLoS Comput. Biol. 1:e78PubMedCrossRefGoogle Scholar
  26. 26.
    Ringo JL, Doty RW, Demeter S, Simard, PY (1994) Time is the essence: A conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4:331–343PubMedCrossRefGoogle Scholar
  27. 27.
    Miller R (1996) Axonal conduction time and human cerebal laterality: a psychobiological theory, 1st edn. Harwood Academics Publisher, AmsterdamGoogle Scholar
  28. 28.
    Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G (2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. 105:17157–17162PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer I, Vicente R, Buldu JM, Peil M, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2006) Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97:123902PubMedCrossRefGoogle Scholar
  30. 30.
    Vicente R, Pipa G, Fischer I, Mirasso CR (2007) Zero-lag long range synchronization of neurons is enhanced by dynamical relaying. Lect. Notes Comp. Sci. 4688:904–913CrossRefGoogle Scholar
  31. 31.
    D’Huys O, Vicente R, Erneux T, Danckaert J, Fischer I (2008) Synchronization properties of network motifs: Influence of coupling delay and symmetry. Chaos 18:037116PubMedCrossRefGoogle Scholar
  32. 32.
    Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Phil. Trans. R. Soc. Lond. B 357:1659–1673CrossRefGoogle Scholar
  33. 33.
    Shipp S (2003) The functional logic of cortico-pulvinar connections. Phil. Trans. R. Soc. Lond. B 358:1605–1624CrossRefGoogle Scholar
  34. 34.
    Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. 104:10240–10245PubMedCrossRefGoogle Scholar
  35. 35.
    Soleng AF, Raastad M, Andersen P (1998) Conduction latency along CA3 hippocampal axons from the rat. Hippocampus 13:953–961CrossRefGoogle Scholar
  36. 36.
    Swadlow HA, Waxman SG (1975) Observations on impulse conduction along central axons. Proc. Natl. Acad. Sci. 72:5156–5159PubMedCrossRefGoogle Scholar
  37. 37.
    Katz B, Miledi R (1965) The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. Series B, Biol. Sci. 161:483–495CrossRefGoogle Scholar
  38. 38.
    Shepherd GM (2004) The synaptic organization of the brain. Oxford University PressGoogle Scholar
  39. 39.
    Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83:15–25PubMedCrossRefGoogle Scholar
  40. 40.
    Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Behav. Evol. 598:143–153Google Scholar
  41. 41.
    Dickson CT, Biella G, de Curtis M (2003) Slow periodic events and their transition to gamma oscillations in the entorhinal cortex of the isolated guinea pig brain. J. Neurophysiol. 900:39–46CrossRefGoogle Scholar
  42. 42.
    Rizzuto DS, Madsen JR, Bromfield EB, Schulze-Bonhage A, Seelig D, Aschenbrenner-Scheibe R, Kahana MJ (2003) Reset of human neocortical oscillations during a working memory task. Proc. Natl. Acad. Sci. 100:7931–7936PubMedCrossRefGoogle Scholar
  43. 43.
    Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci. 30:343–349PubMedCrossRefGoogle Scholar
  44. 44.
    Whittington MA, Doheny HC, Traub RD, LeBeau FEN, Buhl EH (2001) Differential expression of synaptic and nonsynaptic mechanisms underlying stimulus-induced gamma oscillations in vitro. J. Neurosci. 21:1727–1738PubMedGoogle Scholar
  45. 45.
    Buzsaki G (2006) Rhythms of the brain. Oxford University PressGoogle Scholar
  46. 46.
    Bennet MVL, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511CrossRefGoogle Scholar
  47. 47.
    Caspar DLD, Goddenough DA, Makowski L, Phillips WC (1977) Gap junction structures. J. Cell Biol. 74:605–628PubMedCrossRefGoogle Scholar
  48. 48.
    Draghun A, Traub RD, Schmitz D, Jefferys JGR (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192CrossRefGoogle Scholar
  49. 49.
    Traub RD, Kopell N, Bibbig A, Buhl EH, Lebeau FEN, Whittington MA (2001) Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. J. Neurosci. 21:9478–9486PubMedGoogle Scholar
  50. 50.
    Kopell N, Ermentrout GB (2004) Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. 101:15482–15487PubMedCrossRefGoogle Scholar
  51. 51.
    Traub RD, Whittington MA, Stanford IM, Jefferys JGR (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621–624PubMedCrossRefGoogle Scholar
  52. 52.
    Bibbig A, Traub RD, Whittington MA (2002) Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. J. Neurophysiol. 88:1634–1654PubMedGoogle Scholar
  53. 53.
    Lowel S, Singer W (1992) Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. Science 255:209–212PubMedCrossRefGoogle Scholar
  54. 54.
    Knoblauch A, Sommer FT (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing 52–54:301–306CrossRefGoogle Scholar
  55. 55.
    Izhikevich E (2006) Polychronization: computation with spikes. Neural Comput. 18:245–282PubMedCrossRefGoogle Scholar
  56. 56.
    Swindale NV (2003) Neural synchrony, axonal path lengths, and general anesthesia: a hipothesis. Neuroscientist 9:440–445PubMedCrossRefGoogle Scholar
  57. 57.
    Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol. 2:e369Google Scholar
  58. 58.
    Sporns O, Chialvo D, Kaiser M, Hiltetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn. Sci. 8:418–425PubMedCrossRefGoogle Scholar
  59. 59.
    Ermentrout, JB (1996) Type I membranes, phase resetting curves, and synchrony. Neural Comp. 8:979–1001CrossRefGoogle Scholar
  60. 60.
    Reyes AD, Fetz EE (1993) Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69:1661–1672PubMedGoogle Scholar
  61. 61.
    Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27:419–451PubMedCrossRefGoogle Scholar
  62. 62.
    Pare D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 78:1450–1460Google Scholar
  63. 63.
    Arieli A, Sterkin A, Grinvald A, Aersten A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871PubMedCrossRefGoogle Scholar
  64. 64.
    Llinas R, Pare D (1997) Coherent oscillations in specific and nonspecific thalamocortical networks and their role in cognition. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus. Pergamon, New York.Google Scholar
  65. 65.
    Llinas R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for conciousness. Phil. Trans. R. Soc. Lond. B 353:1841–1849CrossRefGoogle Scholar
  66. 66.
    Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinas R (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc. Natl. Acad. Sci. 88:11037–11041PubMedCrossRefGoogle Scholar
  67. 67.
    Sherman SM, Guillery, RW (2002) The role of the thalamus in the flow of information to the cortex. Phil. Trans. R. Soc. Lond. B 357:1695–1708CrossRefGoogle Scholar
  68. 68.
    Salami M, Itami C, Tsumoto T, Kimura F (2003) Change of conduction velocity by regional myelination yields to constant latency irrespective of distance between thalamus to cortex. Proc. Natl. Acad. Sci. 100:6174–6179PubMedCrossRefGoogle Scholar
  69. 69.
    Engel AK, Kreiter AK, Koenig P, Singer W (1991) Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci. 88:6048–6052PubMedCrossRefGoogle Scholar
  70. 70.
    Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274:771–774PubMedCrossRefGoogle Scholar
  71. 71.
    Fries P (2005) Neuronal communication through neuronal coherence. Trends Cogn. Sci. 9:474–480PubMedCrossRefGoogle Scholar
  72. 72.
    Hodgkin AL, Huxley AF (1952) A quantitative description of the membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544PubMedGoogle Scholar
  73. 73.
    Brunel N (2000) Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. J. Comput. Neurosci. 8:183–208PubMedCrossRefGoogle Scholar
  74. 74.
    Brette R, et al (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23:349–398PubMedCrossRefGoogle Scholar
  75. 75.
    Pikovsky A, Rosenblum M, Kurths J (2002) Synchronization: A universal Concept in Nonlinear Science. Cambridge University PressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Raul Vicente
    • 1
  • Leonardo L. Gollo
  • Claudio R. Mirasso
  • Ingo Fischer
  • Gordon Pipa
  1. 1.Department of NeurophysiologyMax-Planck Institute for Brain ResearchFrankfurtGermany

Personalised recommendations