Skip to main content

The Feed-Forward Chain as a Filter-Amplifier Motif

  • Chapter
  • First Online:
Book cover Coherent Behavior in Neuronal Networks

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 3))

Abstract

Hudspeth, Magnasco, and collaborators have suggested that the auditory system works by tuning a collection of hair cells near Hopf bifurcation, but each with a different frequency. An incoming sound signal to the cochlea then resonates most strongly with one of these hair cells, which then informs the auditory neuronal system of the frequency of the incoming signal. In this chapter, we discuss two mathematical issues. First, we describe how periodic forcing of systems near a point of Hopf bifurcation is generally more complicated than the description given in these auditory system models. Second, we discuss how the periodic forcing of coupling identical systems whose internal dynamics is each tuned near a point of Hopf bifurcation leads naturally to successive amplification of the incoming signal. We call this coupled system a feed-forward chain and suggest that it is a mathematical candidate for a motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC, Boca Raton, 2006.

    Google Scholar 

  2. M. Bear, B. Connors, and M. Paradiso. Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins, Philadelphia PA, 2006.

    Google Scholar 

  3. N.N. Bogoliubov and Y.A. Mitropolsky. Asymptotic Methods in the Theory of Non-linear Oscillations. Hindustan Publ. Corp., Delhi, 1961.

    Google Scholar 

  4. H.W. Broer and G. Vector. Generic Hopf-Neimark-Sacker bifurcations in feed-forward systems. Nonlinearity 21 (2008) 1547–1578.

    Google Scholar 

  5. S. Camalet, T. Duke, F. Jülicher, and J. Prost. Auditory sensitivity provided by self-tuned oscillations of hair cells. Proc. Natl. Acad. Sci. 97 (2000) 3183–3188.

    Google Scholar 

  6. Y. Choe, M.O. Magnasco, and A.J. Hudspeth. A model for amplification of hair-bundle motion by cyclical binding of Ca 2 +to mechanoelectrical-transduction channels. Proc. Natl. Acad. Sci. USA 95 (1998) 15321–15326.

    Google Scholar 

  7. V.M. Eguíluz, M. Ospeck, Y. Choe, A.J. Hudspeth, and M.O. Magnasco. Essential nonlinearities in hearing. Phys. Rev. Lett., 84 (2000) 5232–5235.

    Article  PubMed  Google Scholar 

  8. T. Elmhirst and M. Golubitsky. Nilpotent Hopf bifurcations in coupled cell systems. J. Appl. Dynam. Sys. 5 (2006) 205–251.

    Google Scholar 

  9. C. D. Geisler and C. Sang. A cochlear model using feed-forward outer-hair-cell forces. Hearing Res. 86 (1995) 132–146.

    Google Scholar 

  10. D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations, fourth ed. Oxford University Press, Oxford, 2007.

    Google Scholar 

  11. M. Golubitsky and R. Lauterbach. Bifurcations from Synchrony in Homogeneous Networks: Linear Theory. SIAM J. Appl. Dynam. Sys. 8 (1) (2009) 40–75.

    Google Scholar 

  12. M. Golubitsky, M. Nicol, and I. Stewart. Some curious phenomena in coupled cell networks. J. Nonlinear Sci. 14 (2) (2004) 207–236.

    Google Scholar 

  13. M. Golubitsky and D.G. Schaeffer. Singularities and Groups in Bifurcation Theory: Vol. I. Appl. Math. Sci. 51, Springer-Verlag, New York, 1984.

    Google Scholar 

  14. M. Golubitsky and I. Stewart. The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space. Birkhäuser, Basel 2002.

    Google Scholar 

  15. M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math. Soc. 43 No. 3 (2006) 305–364.

    Google Scholar 

  16. M. Golubitsky, I. Stewart, and A. Török. Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dynam. Sys. 4 (1) (2005) 78–100.

    Google Scholar 

  17. A.J. Hudspeth. Mechanical amplification of stimuli by hair cells, Curr. Opin. Neurobiol. 7 (1997) 480–486.

    Google Scholar 

  18. A.J. Hudspeth and R.S. Lewis. Kinetic-analysis of voltage-dependent and ion-dependent conductances in saccular hair-cells of the bull frog, rana catesbeiana. J. Physiol. 400 (1988) 237–274.

    Google Scholar 

  19. A.J. Hudspeth and R.S. Lewis. A model for electrical resonance and frequency tuning in saccular hair cells of the bull frog, rana catesbeiana. J. Physiol. 400 (1988) 275–297.

    Google Scholar 

  20. T.S.A. Jaffer, H. Kunov, and W. Wong. A model cochlear partition involving longitudinal elasticity. J. Acoust. Soc. Am. 112 No. 2 (2002) 576–589.

    Google Scholar 

  21. F. Jülicher, D. Andor, and T. Duke. Physical basis of two-tone interference in hearing. Proc. Natl. Acad. Sci. 98 (2001) 9080–9085.

    Google Scholar 

  22. J. Keener and J. Sneyd. Mathematical Physiology Interdisciplinary. Applied Mathematics 8, Springer-Verlag, New York, 1998.

    Google Scholar 

  23. A. Kern and R. Stoop. Essential role of couplings between hearing nonlinearities. Phys. Rev. Lett. 91 No. 12 (2003) 128101.

    Google Scholar 

  24. M.C.A. Leite and M. Golubitsky. Homogeneous three-cell networks. Nonlinearity 19 (2006) 2313–2363. DOI: 10.1088/0951-7715/19/10/04

    Google Scholar 

  25. M. Magnasco. A wave traveling over a Hopf instability shapes the Cochlea tuning curve. Phys. Rev. E 90 No. 5 (2003) 058101-1.

    Google Scholar 

  26. N.J. McCullen, T. Mullin, and M. Golubitsky. Sensitive signal detection using a feed-forward oscillator network. Phys. Rev. Lett. 98 (2007) 254101.

    Google Scholar 

  27. K.A. Montgomery, M. Silber, and S.A. Solla. Amplification in the auditory periphery: The effect of coupled tuning mechanisms. Phys. Rev. E 75 (2007) 051924.

    Google Scholar 

  28. M. Ospeck, V. M. Eguíluz, and M. O. Magnasco. Evidence of a Hopf bifurcation in frog hair cells. Biophys. J. 80 (2001) 2597–2607.

    Google Scholar 

  29. L. Robles and M. A. Ruggero. Mechanics of the mammalian cochlea. Physiol. Rev. 81 (3) (2001) 1305–1352.

    Google Scholar 

  30. L. Robles, M. A. Ruggero and N. C. Rich. Two-tone distortion in the basilar membrane of the cochlea. Nature 349 (1991) 413.

    Google Scholar 

  31. I. Stewart, M. Golubitsky, and M. Pivato. Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J. Appl. Dynam. Sys. 2 No. 4 (2003) 609–646.

    Google Scholar 

  32. R. Stoop and A. Kern. Two-tone suppression and combination tone generation as computations performed by the Hopf cochlea. Phys. Rev. Lett. 93 (2004) 268103.

    Google Scholar 

  33. Q. Wang and L.S. Young. Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun. Math. Phys. 240 No. 3 (2003) 509–529.

    Google Scholar 

  34. Y. Zhang. PhD Thesis, Ohio State University.

    Google Scholar 

Download references

Acknowledgments

We thank Gemunu Gunaratne, Krešimir Josić, Edgar Knobloch, Mary Silber, Jean-Jacques Slotine, and Ian Stewart for helpful conversations. This research was supported in part by NSF Grant DMS-0604429 and ARP Grant 003652-0009-2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Golubitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Golubitsky, M., Shiau, L., Postlethwaite, C., Zhang, Y. (2009). The Feed-Forward Chain as a Filter-Amplifier Motif. In: Josic, K., Rubin, J., Matias, M., Romo, R. (eds) Coherent Behavior in Neuronal Networks. Springer Series in Computational Neuroscience, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0389-1_6

Download citation

Publish with us

Policies and ethics