Stochastic Synchrony in the Olfactory Bulb

  • Bard Ermentrout
  • Nathaniel Urban
  • Roberto F. Galán
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 3)


Oscillations in the 30–100 Hz range are common in the olfactory bulb (OB) of mammals. The principle neurons (mitral cells) of the OB are believed to be responsible for these rhythms. We suggest that the mitral cells, which prefer to fire in a limited range could be synchronized by receiving correlated statistically random inputs (stochastic synchrony). We explore the mechanisms of stochastic synchrony using a combination of experimental, computational and theoretical methods.


Granule Cell Lyapunov Exponent Olfactory Bulb GABAA Receptor Lateral Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473.PubMedGoogle Scholar
  2. 2.
    Arevian AC, Kapoor V, Urban NN (2008) Activity-dependent gating of lateral inhibition in the mouse olfactory bulb. Nat Neurosci 11:80–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Aroniadou-Anderjaska V, Ennis M, Shipley MT (1999) Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb. J Neurophysiol 82:489–494.PubMedGoogle Scholar
  4. 4.
    Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT (2003) Centre-surround inhibition among olfactory bulb glomeruli. Nature 426:623–629.PubMedCrossRefGoogle Scholar
  5. 5.
    Balu R, Larimer P, Strowbridge BW (2004) Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J Neurophysiol 92:743–753.PubMedCrossRefGoogle Scholar
  6. 6.
    Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 50:19–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Bryant, HL, Segundo, JP (1976) Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. 260:279–314.PubMedGoogle Scholar
  8. 8.
    Buzsaki G (2006) Rhythms of the Brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. 9.
    Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.PubMedCrossRefGoogle Scholar
  10. 10.
    Carlson GC, Shipley MT, Keller A (2000) Long-lasting depolarizations in mitral cells of the rat olfactory bulb. J Neurosci 20:2011–2021.PubMedGoogle Scholar
  11. 11.
    Chow CC, White JA, Ritt J, Kopell N (1998) Frequency control in synchronized networks of inhibitory neurons. J Comput Neurosci 5:407–420.PubMedCrossRefGoogle Scholar
  12. 12.
    Desmaisons D, Vincent JD, Lledo PM (1999) Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J Neurosci 19:10727–10737.PubMedGoogle Scholar
  13. 13.
    Didier A, Carleton A, Bjaalie JG, Vincent JD, Ottersen OP, Storm-Mathisen J, Lledo PM (2001) A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc Natl Acad Sci USA 98:6441–6446.PubMedCrossRefGoogle Scholar
  14. 14.
    Egger V, Svoboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci 23:7551–7558.PubMedGoogle Scholar
  15. 15.
    Egger V, Svoboda K, Mainen ZF (2005) Dendrodendritic synaptic signals in olfactory bulb granule cells: local spine boost and global low-threshold spike. J Neurosci 25:3521–3530.PubMedCrossRefGoogle Scholar
  16. 16.
    Egger V, Urban NN (2006) Dynamic connectivity in the mitral cell-granule cell microcircuit. Sem Cell Develop Biol 17.Google Scholar
  17. 17.
    Ermentrout GB, Galán RF, Urban NN. (2008) Reliability, synchrony and noise. Trends Neurosci 31(8):428–434.PubMedCrossRefGoogle Scholar
  18. 18.
    Friedman D, Strowbridge BW (2003) Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. J Neurophysiol 89:2601–2610.PubMedCrossRefGoogle Scholar
  19. 19.
    Galán, RF, Ermentrout, GB, Urban, NN (2005) Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys Rev Lett 94, 158101.PubMedCrossRefGoogle Scholar
  20. 20.
    Galán, RF, Fourcaud-Trocme, N, Ermentrout, GB, Urban, NN (2006) Correlation-induced synchronization of oscillations in olfactory bulb neurons. J Neurosci 26, 3646–3655.PubMedCrossRefGoogle Scholar
  21. 21.
    Galán, RF, Ermentrout, GB, Urban, NN (2007) Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method. Phys Rev E Stat Nonlin Soft Matter Phys 76, 056110.PubMedCrossRefGoogle Scholar
  22. 22.
    Galán, RF, Ermentrout, GB, Urban, NN (2008) Optimal time scale for spike-time reliability: theory, simulations and experiments. J Neurophysiol 99, 277–283.PubMedCrossRefGoogle Scholar
  23. 23.
    Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.PubMedCrossRefGoogle Scholar
  24. 24.
    Isaacson JS (1999) Glutamate spillover mediates excitatory transmission in the rat olfactory bulb [see comments]. Neuron 23:377–384.PubMedCrossRefGoogle Scholar
  25. 25.
    Isaacson JS, Strowbridge BW (1998) Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20:749–761.PubMedCrossRefGoogle Scholar
  26. 26.
    Jahr CE, Nicoll RA (1980) Dendrodendritic inhibition: demonstration with intracellular recording. Science 207:1473–1475.PubMedCrossRefGoogle Scholar
  27. 27.
    Kapoor V, Urban NN (2006) Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network. J Neurosci 26:11709–11719.PubMedCrossRefGoogle Scholar
  28. 28.
    Kay LM, Laurent G (1999) Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci 2:1003–1009.PubMedCrossRefGoogle Scholar
  29. 29.
    Lagier S, Carleton A, Lledo PM (2004) Interplay between local GABAergic interneurons and relay neurons generates gamma oscillations in the rat olfactory bulb. J Neurosci 24:4382–4392.PubMedCrossRefGoogle Scholar
  30. 30.
    Lowe GD, Woodward M, Rumley A, Morrison CE, Nieuwenhuizen W (2003) Associations of plasma fibrinogen assays, C-reactive protein and interleukin-6 with previous myocardial infarction. J Thromb Haemost 1:2312–2316.PubMedCrossRefGoogle Scholar
  31. 31.
    Mainen, ZF, Sejnowski, TJ (1995) Reliability of spike timing in neocortical neurons. Science 268:1503–1506.PubMedCrossRefGoogle Scholar
  32. 32.
    Marella, S, Ermentrout, GB (2008) Class-II neurons display a higher degree of stochastic synchronization than class-I neurons. Phys Rev E Stat Nonlin Soft Matter Phys 77, 041918.PubMedCrossRefGoogle Scholar
  33. 33.
    Margrie TW, Sakmann B, Urban NN (2001a) Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. Proc Natl Acad Sci USA 98:319–324.PubMedCrossRefGoogle Scholar
  34. 34.
    Mori K, Nowycky MC, Shepherd GM (1981) Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb. J Physiol (Lond) 314:281–294.Google Scholar
  35. 35.
    Mori K, Takagi SF (1978) An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. J Physiol (Lond) 279:569–588.Google Scholar
  36. 36.
    Nagai, K et al. (2005) Synchrony of neural oscillators induced by random telegraphic currents. Phys Rev E Stat Nonlin Soft Matter Phys 71, 036217.PubMedCrossRefGoogle Scholar
  37. 37.
    Nakao H, Arai K, Kawamura Y (2007) Noise-Induced Synchronization and Clustering in Ensembles of Uncoupled Limit-Cycle Oscillators, Phys. Rev. Lett. 98, 184101.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakao H, Arai K-S, Nagai K, Tsubo Y, Kuramoto Y (2005) Synchrony of limit-cycle oscillators induced by random external impulses. Phys Rev E 72.Google Scholar
  39. 39.
    Neville KR, Haberly LB (2003) Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol 90:3921–3930.PubMedCrossRefGoogle Scholar
  40. 40.
    Nickell WT, Shipley MT, Behbehani MM (1996) Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices. Brain Res Bull 39:57–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Nusser Z, Kay LM, Laurent G, Homanics GE, Mody I (2001) Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network. J Neurophysiol 86:2823–2833.PubMedGoogle Scholar
  42. 42.
    Powell KR, Koppelman LF, Holtzman SG (1999) Differential involvement of dopamine in mediating the discriminative stimulus effects of low and high doses of caffeine in rats. Behav Pharmacol 10:707–716.PubMedCrossRefGoogle Scholar
  43. 43.
    Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14:44–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Ravel N, Chabaud P, Martin C, Gaveau V, Hugues E, Tallon-Baudry C, Bertrand O, Gervais R (2003) Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb. Eur J Neurosci 17:350–358.PubMedCrossRefGoogle Scholar
  45. 45.
    Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593–599.PubMedCrossRefGoogle Scholar
  46. 46.
    Schaefer AT, Angelo K, Spors H, Margrie TW (2006) Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision. PLoS Biol 4:e163.PubMedCrossRefGoogle Scholar
  47. 47.
    Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL (1998) Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J Neurosci 18:6790–6802.PubMedGoogle Scholar
  48. 48.
    Schoppa NE, Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506.PubMedCrossRefGoogle Scholar
  49. 49.
    Schoppa NE, Westbrook GL (2001a) Glomerulus-specific synchronization of mitral cells in the olfactory bulb. Neuron 31:639–651.PubMedCrossRefGoogle Scholar
  50. 50.
    Schoppa NE, Westbrook GL (2001b) NMDA receptors turn to another channel for inhibition. Neuron 31:877–879.PubMedCrossRefGoogle Scholar
  51. 51.
    Schoppa NE, Westbrook GL (2002) AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nat Neurosci 5:1194–1202.PubMedCrossRefGoogle Scholar
  52. 52.
    Segev I (1999) Taming time in the olfactory bulb. Nat Neurosci 2:1041–1043.PubMedCrossRefGoogle Scholar
  53. 53.
    Singer W, Gray C, Engel A, Konig P, Artola A, Brocher S (1990) Formation of cortical cell assemblies. Cold Spring Harb Symp Quant Biol 55:939–952.PubMedGoogle Scholar
  54. 54.
    Smith TC, Jahr CE (2002) Self-inhibition of olfactory bulb neurons. Nat Neurosci 5:760–766.PubMedGoogle Scholar
  55. 55.
    Stopfer M, Jayaraman V, Laurent G. (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004.PubMedCrossRefGoogle Scholar
  56. 56.
    Tateno T, Robinson HP (2007a) Quantifying noise-induced stability of a cortical fast-spiking cell model with Kv3-channel-like current. Biosystems 89(1-3):110–116.PubMedCrossRefGoogle Scholar
  57. 57.
    Tateno T, Robinson HP (2007b) Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys J 92(2):683–695.PubMedCrossRefGoogle Scholar
  58. 58.
    Teramae JN, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93:204103.PubMedCrossRefGoogle Scholar
  59. 59.
    Urban NN (2002) Lateral inhibition in the olfactory bulb and in olfaction. Physiol Behav 77:607–612.PubMedCrossRefGoogle Scholar
  60. 60.
    Urban NN, Sakmann B (2002) Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J Physiol 542:355–367.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413.PubMedGoogle Scholar
  62. 62.
    White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5–16.PubMedCrossRefGoogle Scholar
  63. 63.
    Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bard Ermentrout
    • 1
  • Nathaniel Urban
  • Roberto F. Galán
  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA

Personalised recommendations