Advertisement

Organizing Observations: Data Models

  • Alex A. T. Bui
  • Ricky K. Taira
Chapter

Abstract

Thus far, discussion has focused on issues related to collecting and analyzing clinical data. Yet central to the challenge of informatics is the organization of all of this information to enable a continuum of healthcare and research applications: the type of attributes supported in characterizing an entity within a data model and the scope of relationships defined between these objects determine the ease with which we can retrieve information and ultimately drive how we come to perceive and work with the data. This chapter overviews several data models that have been proposed over the years to address representational issues inherent to medical information. Three categories of data models are covered: spatial models, which are concerned with representing physical and anatomical relations between objects; temporal models that embody a chronology and/or other time-based sequences/patterns; and clinically-oriented models, which systematically arrange information around a healthcare abstraction or process. Notably, these models no longer serve the sole purpose of being data structures, but are also foundations upon which rudimentary logical reasoning and inference can occur. Finally, as translational informatics begins to move toward the use of large clinical datasets, the context under which such data are captured is important to consider; this chapter thus concludes by introducing the idea of a the phenomenon-centric data model (PCDM) that explicitly embeds the principles of scientific investigation and hypotheses with clinical observations.

Keywords

Geographic Information System Dynamic Time Warping Virtual Reality Modeling Language Temporal Abstraction Stream Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aberle DR, Dionisio JD, McNitt-Gray MF, Taira RK, Cardenas AF, Goldin JG, Brown K, Figlin RA, Chu WW (1996) Integrated multimedia timeline of medical images and data for thoracic oncology patients. RadioGraphics, 16(3):669-681.Google Scholar
  2. 2.
    Adlassnig KP, Combi C, Das AK, Keravnou ET, Pozzi G (2006) Temporal representation and reasoning in medicine: Research directions and challenges. Artif Intell Med, 38(2):101-113.CrossRefGoogle Scholar
  3. 3.
    Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843.MATHCrossRefGoogle Scholar
  4. 4.
    Anselma L, Terenziani P, Montani S, Bottrighi A (2006) Towards a comprehensive treat-ment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif Intell Med, 38(2):171-195.CrossRefGoogle Scholar
  5. 5.
    Augusto JC (2005) Temporal reasoning for decision support in medicine. Artif Intell Med, 33(1):1-24.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Baldock RA, Burger A (2008) Anatomical ontologies: Linking names to places in biology. Anatomy Ontologies for Bioinformatics. Springer, pp 197-211.Google Scholar
  7. 7.
    Bean CA (1997) Formative evaluation of a frame-based model of locative relationships in human anatomy. Proc AMIA Annu Fall Symp, pp 625-629.Google Scholar
  8. 8.
    Berg M (1998) Medical work and the computer-based patient record: A sociological per-spective. Methods Inf Med, 37(3):294-301.Google Scholar
  9. 9.
    Berndt D, Clifford J (1994) Using dynamic time warping to find patterns in time series. AAAI-94 Workshop on Knowledge Discovery in Databases, pp 229-248.Google Scholar
  10. 10.
    Bittner T, Donnelly M, Goldberg LJ, Neuhaus F (2008) Modeling principles and method-ologies - Spatial representation and reasoning. Anatomy Ontologies for Bioinformatics, pp 307-326.Google Scholar
  11. 11.
    Bober M (2001) MPEG-7 visual shape descriptors. IEEE Trans Circuits Systems Video Technology, 11(6):716-719.CrossRefGoogle Scholar
  12. 12.
    Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, Patel VL, Greenes RA, Shortliffe EH (2004) GLIF3: A representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform, 37(3):147-161.CrossRefGoogle Scholar
  13. 13.
    Brandt S (1999) Use of shape features in content-based image retrieval. Department of Engineering Physics and Mathematics, MS Thesis. Helsinki University of Technology.Google Scholar
  14. 14.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, et al. (2001) Minimum information about a microarray experiment (MIAME) - Toward standards for microarray data. Nat Genet, 29(4):365-371.CrossRefGoogle Scholar
  15. 15.
    Bui AA (2000) A multimedia data model with generalized stream constructs. Computer Science Department, PhD Dissertation. University of California, Los Angeles.Google Scholar
  16. 16.
    Bui AA, Aberle DR, Kangarloo H (2007) TimeLine: Visualizing integrated patient records. IEEE Trans Inf Technol Biomed, 11(4):462-473.CrossRefGoogle Scholar
  17. 17.
    Campos J, Hornsby K (2004) Temporal constraints between cyclic geographic events. Proc GeoInfo 2004, Campos do Jordao, Brazil, pp 109-125.Google Scholar
  18. 18.
    Cardenas AF, Ieong IT, Barker R, Taira RK, Breant CM (1993) The knowledge-based object-oriented PICQUERY+ language. IEEE Trans Knowledge and Data Engineering, 5(4):644-657.CrossRefGoogle Scholar
  19. 19.
    Chakravarty S, Shahar Y (2000) CAPSUL: A constraint-based specification of repeating patterns in time-oriented data. Annals of Mathematics and Artificial Intelligence, 30(1):3-22.MATHCrossRefGoogle Scholar
  20. 20.
    Chan EPF, R. Z (1996) QL/G - A query language for geometric data bases. Proc 1st Intl Conf GIS in Urban Regional and Environment Planning, Samos, Greece, pp 271-286.Google Scholar
  21. 21.
    Chang NS, Fu KS (1979) Query-by-pictorial-example. Proc IEEE 3rd Intl Computer Soft-ware and Applications Conference (COMPSAC 79), pp 325-330.Google Scholar
  22. 22.
    Chang SK, Jungert E (eds) (1996) Symbolic Projection for Image Information Retrieval and Spatial Reasoning. Academic Press.Google Scholar
  23. 23.
    Chang SK, Shi QY, Yan CW (1987) Iconic indexing by 2-D strings. IEEE Trans Pattern Analysis and Machine Intelligence, 9(3):413-428.CrossRefGoogle Scholar
  24. 24.
    Chen P (1976) The entity-relationship model - Toward a unified view of data. ACM Trans Database Syst, 1(1):9-36.CrossRefGoogle Scholar
  25. 25.
    Chu WW, Hsu C-C, Cardenas AF, Taira RK (1998) Knowledge-based image retrieval with spatial and temporal constructs. IEEE Trans Knowledge and Data Engineering, 10:872-888.CrossRefGoogle Scholar
  26. 26.
    Chu WW, Ieong IT, Taira RK, Breant CM (1992) A temporal evolutionary object-oriented data model and its query language for medical image management. Proc 18th Intl Conf Very Large Data Bases. Morgan Kauffman, pp 53-64.Google Scholar
  27. 27.
    Clementini E, Di Felice P (2000) Spatial operators. ACM SIGMOD Record, 29(3):31-38.CrossRefGoogle Scholar
  28. 28.
    Clinical Data Interchange Standards Consortium (2008) CDISC home page. http://www.cdisc.org . Accessed January 3, 2009.
  29. 29.
    Coburn JC, Upal MA, Crisco JJ (2007) Coordinate systems for the carpal bones of the wrist. J Biomechanics, 40(1):203-209.CrossRefGoogle Scholar
  30. 30.
    Cohn A (1996) Calculi for qualitative spatial reasoning. Artificial Intelligence and Sym-bolic Mathematical Computation, pp 124-143.Google Scholar
  31. 31.
    Combi C, Gozzi M, Oliboni B, Juarez JM, Marin R (2009) Temporal similarity measures for querying clinical workflows. Artif Intell Med, In Press, Corrected Proof.Google Scholar
  32. 32.
    Combi C, Montanari A, Pozzi G (2007) The T4SQL temporal query language. Proc 16th ACM Conf Information and Knowledge Management. ACM, Lisbon, Portugal, pp 193-202.Google Scholar
  33. 33.
    Combi C, Oliboni B, Rossato R (2005) Merging multimedia presentations and semistruc-tured temporal data: A graph-based model and its application to clinical information. Artif Intell Med, 34(2):89-112.CrossRefGoogle Scholar
  34. 34.
    Combi C, Pozzi G (2001) HMAP - A temporal data model managing intervals with differ-ent granularities and indeterminacy from natural language sentences. The VLDB Journal, 9(4):294-311.MATHGoogle Scholar
  35. 35.
    Combi C, Shahar Y (1997) Temporal reasoning and temporal data maintenance in medi-cine: Issues and challenges. Computers in Biology and Medicine, 27(5):353-368.CrossRefGoogle Scholar
  36. 36.
    Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Analysis and Machine Intelligence, 23(6):681-685.CrossRefGoogle Scholar
  37. 37.
    Cousins SB, Kahn MG (1991) The visual display of temporal information. Artif Intell Med, 3:341-357.CrossRefGoogle Scholar
  38. 38.
    Das AK, Musen MA (1994) A temporal query system for protocol-directed decision support. Methods Inf Med, 33(4):358-370.Google Scholar
  39. 39.
    Das AK, Musen MA (2001) A formal method to resolve temporal mismatches in clinical databases. Proc AMIA Symp:130-134.Google Scholar
  40. 40.
    Davidson D (2007) Time in anatomy. Anatomy Ontologies for Bioinformatics: Principles and Practice. Springer, pp 213-247.Google Scholar
  41. 41.
    De Clercq E, Van Casteren V, Jonckheer P, Burggraeve P, Lafontaine MF, Degroote K, France FR (2007) Are problem-oriented medical records (POMR) suitable for use in GPs' daily practice? Stud Health Technol Inform, 129(1):68-72.Google Scholar
  42. 42.
    Del Bimbo A, Rella L, Vicario E (1995) Visual specification of branching time temporal logic. Proc 11th Intl IEEE Symp on Visual Languages. IEEE Computer Society, pp 61-68.Google Scholar
  43. 43.
    Della Croce U, Cappozzo A, Kerrigan D (1999) Pelvis and lower limb anatomical land-mark calibration precision and its propagation to bone geometry and joint angles. Medical and Biological Engineering and Computing, 37(1):155-161.CrossRefGoogle Scholar
  44. 44.
    Deshpande AM, Brandt C, Nadkarni PM (2003) Temporal query of attribute-value patient data: Utilizing the constraints of clinical studies. International Journal of Medical Informat-ics, 70(1):59-77.CrossRefGoogle Scholar
  45. 45.
    Dionisio JD, Cardenas AF (1998) A unified data model for representing multimedia, time-line, and simulation data. IEEE Trans Knowledge and Data Engineering, 10(5):746-767.CrossRefGoogle Scholar
  46. 46.
    Dionisio JD, Cardenas AF, Lufkin RF, DeSalles A, Black KL, Taira RK, Chu WW (1997) A multimedia database system for thermal ablation therapy of brain tumors. J Digital Imaging, 10:21-26.CrossRefGoogle Scholar
  47. 47.
    Dionisio JDN, Cardenas AF (1996) MQuery: A visual query language for multimedia, timeline and simulation data. J Visual Languages and Computing, 7(4):377-401.CrossRefGoogle Scholar
  48. 48.
    Donnelly WJMD (2005) Viewpoint: Patient-centered medical care requires a patient-centered medical record. Academic Medicine, 80(1):33-38.CrossRefGoogle Scholar
  49. 49.
    Dorda W, Gall W, Duftschmid G (2002) Clinical data retrieval: 25 years of temporal query management at the University of Vienna Medical School. Methods Inf Med, 41(2):89-97.Google Scholar
  50. 50.
    Dutta S (1988) Temporal reasoning in medical expert systems. Proc Symp Engineering of Computer-Based Medical Systems, pp 118-122.Google Scholar
  51. 51.
    Egenhofer MJ (1994) On the equivalence of topological relations. Intl J Geographical Information Systems, 8(6):133-152.Google Scholar
  52. 52.
    Egenhofer MJ (1994) Spatial SQL: A query and presentation language. IEEE Trans Knowledge and Data Engineering, 6(1):86-95.CrossRefGoogle Scholar
  53. 53.
    Egenhofer MJ (1997) Query processing in spatial-query-by-sketch. J Visual Languages and Computing, 8(4):403-424.CrossRefGoogle Scholar
  54. 54.
    Feinstein AR (1973) The problems of the “problem-oriented medical record”. Ann Intern Med, 78(5):751-762.Google Scholar
  55. 55.
    Fletcher RH (1974) Auditing problem-oriented records and traditional records: A controlled comparison of speed, accuracy and identification of errors in medical care. N Engl J Med, 290(15):829-833.CrossRefGoogle Scholar
  56. 56.
    Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D, Petkovic D (1995) Query by image and video content: The QBIC system. Com-puter, 28(9):23-32.Google Scholar
  57. 57.
    Freeman J (1975) The modelling of spatial relations. Computer Graphics and Image Proc-essing, 4(2):156-171.CrossRefGoogle Scholar
  58. 58.
    Georgsson F (2003) Anatomical coordinate system for bilateral registration of mammo-grams. Image Analysis, pp 83-90.Google Scholar
  59. 59.
    Gibbs S, Breiteneder C, Tsichritzis D (1994) Data modeling of time-based media. Proc 1994 ACM SIGMOD Intl Conf Management of Data. ACM, Minneapolis, Minnesota, United States.Google Scholar
  60. 60.
    Guting RH (1994) An introduction to spatial database systems. The VLDB Journal, 3(4):357-399.CrossRefGoogle Scholar
  61. 61.
    Haendel MA, Neuhaus F, Osumi-Sutherland D, Mabee PM, Mejino JL, Mungall CJ, Smith B (2008) CARO - The Common Anatomy Reference Ontology. Anatomy Ontologies for Bioinformatics. Springer, pp 327-349.Google Scholar
  62. 62.
    Herring JR (2006) OpenGIS implementation specification for geographic information - Simple feature access, Part 2: SQL option. Open Geospatial Consortium Inc. http://www.opengeospatial.org/standards/sfs . Accessed December 15, 2008.
  63. 63.
    Hornbrook MC, Hurtado AV, Johnson RE (1985) Health care episodes: Definition, meas-urement and use. Med Care Rev, 42(2):163-218.CrossRefGoogle Scholar
  64. 64.
    Hripcsak G (1994) Writing Arden syntax medical logic modules. Comput Biol Med, 24(5):331-363.CrossRefGoogle Scholar
  65. 65.
    Hripcsak G, Zhou L, Parsons S, Das AK, Johnson SB (2005) Modeling electronic dis-charge summaries as a simple temporal constraint satisfaction problem. J Am Med Inform Assoc, 12(1):55-63.CrossRefGoogle Scholar
  66. 66.
    Juarez JM, Guil F, Palma J, Marin R (2009) Temporal similarity by measuring possibilistic uncertainty in CBR. Fuzzy Sets Syst, 160(2):214-230.MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    Kass M, Witkin A, erzopoulos D (1988) Snakes: Active contour models. Intl J Comp Vision, 1(4):321–331.CrossRefGoogle Scholar
  68. 68.
    Kay S, Purves IN (1996) Medical records and other stories: A narratological framework. Methods Inf Med, 35(2):72-87.Google Scholar
  69. 69.
    Loncaric S (1998) A survey of shape analysis techniques. Pattern Recognition, 31(8):983-1001.CrossRefGoogle Scholar
  70. 70.
    Long W (1996) Temporal reasoning for diagnosis in a causal probabilistic knowledge base. Artif Intell Med, 8(3):193-215.CrossRefGoogle Scholar
  71. 71.
    Marshall S (1989) Review of shape coding techniques. Image and Vision Computing, 7(4):281-294.CrossRefGoogle Scholar
  72. 72.
    Martins SB, Shahar Y, Goren-Bar D, Galperin M, Kaizer H, Basso LV, McNaughton D, Goldstein MK (2008) Evaluation of an architecture for intelligent query and exploration of time-oriented clinical data. Artif Intell Med, 43(1):17-34.CrossRefGoogle Scholar
  73. 73.
    McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: A survey. Medical Image Analysis, 1(2):91-108.CrossRefGoogle Scholar
  74. 74.
    Mejino JL, Jr., Rosse C (1999) Conceptualization of anatomical spatial entities in the Digi-tal Anatomist Foundational Model. Proc AMIA Symp, pp 112-116.Google Scholar
  75. 75.
    Motakis I, Zaniolo C (1997) Formal semantics for composite temporal events in active database rules. Journal of Systems Integration, 7(3):291-325.CrossRefGoogle Scholar
  76. 76.
    Nadkarni PM (1998) CHRONOMERGE: An application for the merging and display of multiple time-stamped data streams. Comput Biomed Res, 31(6):451-464.CrossRefGoogle Scholar
  77. 77.
    Neuhaus F, Smith B (2008) Modeling principles and methodologies - Relations in ana-tomical ontologies. Anatomy Ontologies for Bioinformatics, pp 289-305.Google Scholar
  78. 78.
    Nigrin DJ, Kohane IS (2000) Temporal expressiveness in querying a timestamp-based clinical database. J Am Med Inform Assoc, 7(2):152-163.Google Scholar
  79. 79.
    Nygren E, Henriksson P (1992) Reading the medical record. Part I: Analysis of physicians' ways of reading the medical record. Comput Methods Programs Biomed, vol 39, pp 1-12.CrossRefGoogle Scholar
  80. 80.
    O'Connor MJ, Shankar RD, Parrish DB, Das AK (2008) Knowledge-data integration for temporal reasoning in a clinical trial system. International Journal of Medical Informatics, In Press, Corrected Proof.Google Scholar
  81. 81.
    O'Connor MJ, Tu SW, Musen MA (2002) The Chronus II temporal database mediator. Proc AMIA Symp, pp 567-571.Google Scholar
  82. 82.
    Palma J, Juarez JM, Campos M, Marin R (2006) Fuzzy theory approach for temporal model-based diagnosis: An application to medical domains. Artif Intell Med, 38(2):197-218.CrossRefGoogle Scholar
  83. 83.
    Pani AK, Bhattacharjee GP (2001) Temporal representation and reasoning in artificial intelligence: A review. Mathematical and Computer Modelling, 34(1-2):55-80.MATHCrossRefGoogle Scholar
  84. 84.
    Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR (2003) Deformable m-reps for 3D medical image segmentation. Intl J Comp Vision, 55(2):85-106.CrossRefGoogle Scholar
  85. 85.
    Post A, Harrison J, Jr. (2006) Data acquisition behaviors during inpatient results review: Implications for problem-oriented data displays. Proc AMIA Annu Fall Symp:644-648.Google Scholar
  86. 86.
    Post AR, Harrison JH, Jr. (2007) PROTEMPA: A method for specifying and identifying temporal sequences in retrospective data for patient selection. J Am Med Inform Assoc, 14(5):674-683.CrossRefGoogle Scholar
  87. 87.
    Post AR, Harrison Jr JH (2008) Temporal data mining. Clinics in Laboratory Medicine, 28(1):83-100.CrossRefGoogle Scholar
  88. 88.
    Post AR, Sovarel AN, Harrison JH, Jr. (2007) Abstraction-based temporal data retrieval for a Clinical Data Repository. Proc AMIA Symp, pp 603-607.Google Scholar
  89. 89.
    Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W (eds) Principles of Knowledge Representation and Reason-ing: Proc 3rd Intl Conf. Morgan Kaufmann, pp 165-176.Google Scholar
  90. 90.
    Rector AL, Nowlan WA, Kay S, Goble CA, Howkins TJ (1993) A framework for model-ling the electronic medical record. Methods Inf Med, 32(2):109-119.Google Scholar
  91. 91.
    Renz J (2002) Introduction. Qualitative Spatial Reasoning with Topological Information. Springer-Verlag, pp 1-11.Google Scholar
  92. 92.
    Rosse C, Mejino JL, Jr. (2003) A reference ontology for biomedical informatics: The Foundational Model of Anatomy. J Biomed Inform, 36(6):478-500.CrossRefGoogle Scholar
  93. 93.
    Rosse C, Mejino JL, Modayur BR, Jakobovits R, Hinshaw KP, Brinkley JF (1998) Motiva-tion and organizational principles for anatomical knowledge representation: the digital anatomist symbolic knowledge base. J Am Med Inform Assoc, 5(1):17-40.Google Scholar
  94. 94.
    Roussopoulos N, Faloutsos C, Sellis T (1988) An efficient pictorial database system for PSQL. Software Engineering, IEEE Transactions on, 14(5):639-650.CrossRefGoogle Scholar
  95. 95.
    Salmon P, Rappaport A, Bainbridge M, Hayes G, Williams J (1996) Taking the problem oriented medical record forward. Proc AMIA Annu Fall Symp, pp 463-467.Google Scholar
  96. 96.
    Schneider M (1997) Spatial data types - A survey. In: Schneider M (ed) Spatial Data Types for Database Systems. Springer-Verlag, pp 11-83.CrossRefGoogle Scholar
  97. 97.
    Schneider M (1999) Uncertainty management for spatial data in databases: Fuzzy spatial data types. Advances in Spatial Databases, pp 330-351.Google Scholar
  98. 98.
    Shahar Y (1999) Timing is everything: Temporal reasoning and temporal data maintenance in medicine. Artificial Intelligence in Medicine, pp 30-46.Google Scholar
  99. 99.
    Shahar Y, Combi C (1998) Timing is everything. Time-oriented clinical information sys-tems. West J Med, 168(2):105-113.Google Scholar
  100. 100.
    Shahar Y, Goren-Bar D, Boaz D, Tahan G (2006) Distributed, intelligent, interactive visu-alization and exploration of time-oriented clinical data and their abstractions. Artif Intell Med, 38(2):115-135.CrossRefGoogle Scholar
  101. 101.
    Shahar Y, Musen MA (1996) Knowledge-based temporal abstraction in clinical domains. Artif Intell Med, 8(3):267-298.CrossRefGoogle Scholar
  102. 102.
    Signes J, Fisher Y, Eleftheriadis A (2000) MPEG-4's binary format for scene description. Signal Processing: Image Communication, 15:321-345.CrossRefGoogle Scholar
  103. 103.
    Sistla AP, Yu C, Haddad R (1994) Reasoning about spatial relationships in picture retrieval systems. Proc 20th Very Large Data Base (VLDB) Conf, Santiago, Chile, pp 570-581.Google Scholar
  104. 104.
    Smith B, Ceusters W, Klagges B, Kohler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C (2005) Relations in biomedical ontologies. Genome Biol, 6(5):R46.CrossRefGoogle Scholar
  105. 105.
    Snodgrass RT (ed) (1995) The TSQL2 Temporal Query Language. Kluwer Academic Publishers.MATHGoogle Scholar
  106. 106.
    Sowa JF (2000) Processes. Knowledge Representation: Logical, Philosophical, and Computational Foundations. MIT Press, pp 206-264.Google Scholar
  107. 107.
    Spackman K. (2008) SNOMED CT Style Guide: Body Structures - Anatomy. International Health Terminology Standards Development Organization.Google Scholar
  108. 108.
    Tiffe S (2002) Defining medical concepts by linguistic variables with fuzzy Arden Syntax. Proc AMIA Symp:796-800.Google Scholar
  109. 109.
    Vila L (2005) Formal theories of time and temporal incidence. In: Fisher M, Gabbay D, Vila L (eds) Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier.Google Scholar
  110. 110.
    Viqueira JRR, Lorentzos NA (2007) SQL extension for spatio-temporal data. The VLDB Journal, 16(2):179-200.CrossRefGoogle Scholar
  111. 111.
    Weed LL (1968) Medical records that guide and teach. N Engl J Med, 278(11):593-600.CrossRefGoogle Scholar
  112. 112.
    Weng C, Kahn M, Gennari J (2002) Temporal knowledge representation for scheduling tasks in clinical trial protocols. Proc AMIA Symp, pp 879-883.Google Scholar
  113. 113.
    Wiederhold G (1981) Databases for Health Care. Springer-Verlag New York, Inc..Google Scholar
  114. 114.
    Wingert TD, Kralewski JE, Lindquist TJ, Knutson DJ (1995) Constructing episodes of care from encounter and claims data: Some methodological issues. Inquiry, 32(4):430-443.Google Scholar
  115. 115.
    Winkelman WJ, Leonard KJ (2004) Overcoming structural constraints to patient utilization of electronic medical records: A critical review and proposal for an evaluation framework. J Am Med Inform Assoc, 11(2):151-161.CrossRefGoogle Scholar
  116. 116.
    World Wide Web Consortium (W3C) (2008) Synchronized Multimedia Integration Language (SMIL 3.0). http://www.w3.org/TR/SMIL3/smil30.html#smil-introduction . Accessed December 5, 2008.
  117. 117.
    Zhou L, Hripcsak G (2007) Temporal reasoning with medical data - A review with emphasis on medical natural language processing. J Biomedical Informatics, 40(2):183-202.CrossRefGoogle Scholar
  118. 118.
    Zhou L, Melton GB, Parsons S, Hripcsak G (2006) A temporal constraint structure for extracting temporal information from clinical narrative. J Biomed Inform, 39(4):424-439.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Medical Imaging Informatics Group Department of Radiological SciencesDavid Geffen School of Medicine University of California, Los AngelesLos AngelesUSA

Personalised recommendations