Present and Future Possibilities for the Deconstruction and Utilization of Lignocellulosic Biomass

  • Hans P. Blaschek
  • Thaddeus Ezeji
  • Nathan D. Price
Part of the Natural Resource Management and Policy book series (NRMP, volume 33)


Current technologies for the deconstruction of lignocellulosic biomass rely on physical−chemical pretreatment processes followed by enzymatic hydrolysis. These technologies, while able to efficiently produce sugars, also allow the formation of degradation products that are inhibitory to microbes such as yeast or bacteria which are used for fermentation. The status of current deconstruction technologies and the role of genomics and the “New Biology” for producing feedstocks and tailor-made microbes with characteristics that make them more amenable to fermentation-based processes are discussed.


Ethanol Production Corn Stover Lignocellulosic Biomass Butanol Production Corn Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103–7118.CrossRefGoogle Scholar
  2. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69 (7): 4144–4150.CrossRefGoogle Scholar
  3. Duarte NC, Palsson Bo, Fu P, et al. (2004) Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics 5(1): 63.CrossRefGoogle Scholar
  4. Duarte NC, Herrgard MJ, Palsson BO, et al. (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14: 1298–1309.CrossRefGoogle Scholar
  5. Duarte NC, Becker SA, Jamshidi N et al. (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104(6): 1777–1782.CrossRefGoogle Scholar
  6. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresource Technol 96(18): 2019–2025.CrossRefGoogle Scholar
  7. Ezeji TC, Qureshi N, Blaschek HP (2004a) Butanol fermentation research: Upstream and downstream manipulations. Chem Rec 4:305–314.CrossRefGoogle Scholar
  8. Ezeji TC, Qureshi N, Blaschek HP (2004b) Acetone-Butanol-Ethanol (ABE) Production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658.CrossRefGoogle Scholar
  9. Ezeji TC, Qureshi N, Blaschek HP (2005) Butanol Production from Agricultural Residues: Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation. The 2nd annual world congress on industrial biotechnology and bio-processing, held on April 20–22, 2005, in Orlando, Florida, Poster No. 36.Google Scholar
  10. Ezeji TC, Qureshi N, Blaschek HP (2007a) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227.CrossRefGoogle Scholar
  11. Ezeji TC, Qureshi N, Blaschek HP (2007b) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol formation. Biotechnol Bioeng 97:1460–1469.CrossRefGoogle Scholar
  12. Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour J 99:5232–5242.CrossRefGoogle Scholar
  13. Feist AM, Henry CS, Reed JL, et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121.CrossRefGoogle Scholar
  14. Francke C, Siezen RJ, Teusink B et al. (2005) Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13(11): 550–558.CrossRefGoogle Scholar
  15. Hahn-Hagerdal B, Wahlbom CF, Gardonyi M, van Zyl WH, Cordero Otero RR, Jonsson LF (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84.Google Scholar
  16. Heinemann M, Kummel A, Ruinatscha R, Panke S (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 92(7): 850–864.CrossRefGoogle Scholar
  17. Ho NWY, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng 65:163–192.Google Scholar
  18. Jin Y-S, Ni Haiying Ni, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69:495–503.CrossRefGoogle Scholar
  19. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technol 96:1993–2006.Google Scholar
  20. Kim TH, Lee YY (2005) Pretreatment and fractionation of corn stover by ammonia recycle percolation (ARP) process. Bioresource Technol 96:2007–2013.CrossRefGoogle Scholar
  21. Koukiekolo R, Cho H-Y, Kosugi A, Inui M, Yukawa H, Doi RH (2003) Degradation of corn fiber by Clostridium cellulovorans cellulases and himicellulases and contribution of scaffolding protein CpbA. Appl Environ Microbiol 71:3504–3511.CrossRefGoogle Scholar
  22. Ladisch M, Dale B, Tyner W, et al. (2008) Cellulose conversion in dry grind ethanol plants. Bioresour Technol 99:5157–5159.CrossRefGoogle Scholar
  23. Li X-L, Dien BS, Cotta MA, Wu YV, Saha BC (2005) Profile of enzyme production by Trichoderma reesei grown on corn fiber fractions. Appl Biochem Biotechnol 121:321–334.CrossRefGoogle Scholar
  24. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatick hydrolysis of the remaining solids, Bioresour Technol 96:1967–1977.CrossRefGoogle Scholar
  25. Mosier N, Wyman C, Dale BE, Elander R, Lee YY, Holtzapple M, Ladisch M (2005a) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686.CrossRefGoogle Scholar
  26. Mosier N, Hendrickson R, Ho N, Dedlak M, Ladisch MR (2005b) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993.CrossRefGoogle Scholar
  27. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR (2005c) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–98.CrossRefGoogle Scholar
  28. Nolling J, Breton G, Omelchenko MV, et al. (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183(16): 4823–4838.CrossRefGoogle Scholar
  29. Palsson B (2004) Two-dimensional annotation of genomes. Nat Biotechnol 22(10): 1218–1219.CrossRefGoogle Scholar
  30. Price ND, Reed JL, Palsson BO, et al. (2004a) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11): 886–897.CrossRefGoogle Scholar
  31. Price ND, Shmulevich I (2007) Biochemical and statistical network models for systems biology. Curr Opin Biotechnol 18(4): 365–370.CrossRefGoogle Scholar
  32. Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9): 2692–2699.CrossRefGoogle Scholar
  33. Reed JL, Vo TD, Schilling CH, Palsson BO (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9): R54.CrossRefGoogle Scholar
  34. Saha BC (2003) Hemicellulose bioconversion. J Indust Microbiol Biotechnol 30: 279–291.CrossRefGoogle Scholar
  35. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77.CrossRefGoogle Scholar
  36. Schell DJ, Riley CJ, Dowe N, et al. (2004) Bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188.CrossRefGoogle Scholar
  37. Sedlack M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol 114:403–416.CrossRefGoogle Scholar
  38. Shi Z, Blaschek HP (2008) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol producing BA101 mutant during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol 74:7709–7714.CrossRefGoogle Scholar
  39. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018.CrossRefGoogle Scholar
  40. Thiele I, Vo TD, Price ND, Palsson BO (2005) Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 187(16): 5818–5830.CrossRefGoogle Scholar
  41. von Braun J (2007) The world food situation: New driving forces and required actions. Food Policy Report. Washington, DC: IFPRI.Google Scholar
  42. Wang B, Feng H, Ezeji T, Blaschek HP (2006) An environmentally friendly pretreatment for enhancing sugar yield and enzymatic digestiblity of lignocellulosic biomass. Corn Utilization & Technology Conference, Dallas, Texas. USA.Google Scholar
  43. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hans P. Blaschek
    • 1
  • Thaddeus Ezeji
    • 2
  • Nathan D. Price
    • 3
  1. 1.Center for Advanced BioEnergy ResearchUniversity of IllinoisUrbana-ChampaignUSA
  2. 2.Department of Animal Sciences and Ohio State Agricultural Research and Development Center (OARDC)The Ohio State UniversityWoosterUSA
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations