On the Accessibility of the Moon

  • Ettore Perozzi
  • Riccardo Marson
  • Paolo Teofilatto
  • Christian Circi
  • Alessio Di Salvo
Conference paper


The large mass fraction of the Moon with respect to the Earth implies an extended sphere of influence which can be exploited in planning exploration missions either directed to our satellite or to other solar system bodies. The dynamical systems approach to mission design has shown the existence of novel trajectories in the Earth-Moon system, which can respond to widely different exploration goals such as low-energy lunar orbit insertion, reaching Mars from the Moon or bringing lunar resources to Earth. Within this framework the general topic of the accessibility of our satellite is discussed and examples of actual mission profiles are given.


Lunar Surface Earth Geostationary Satellite Target Orbit Weak Stability Boundary Ballistic Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belbruno, E.: Capture dynamics and chaotic motions in celestial mechanics. Princeton University Press, Princeton (2004).MATHGoogle Scholar
  2. 2.
    Belbruno, E.A. and Carrico, J.P.: Construction of Weak Stability Boundary ballistic Lunar transfer trajectories. AIAA 2000-4142 (2000).Google Scholar
  3. 3.
    Belbruno, E.A. and Miller, J.: A ballistic lunar capture trajectory for the Japanese spacecraft Hiten. JPL report IOM 312/90.4-1317 (1990).Google Scholar
  4. 4.
    Bellò Mora, M., Graziani, F., Teofilatto, P., Circi, C., Porfilio, M., Hechler, M.: A systematic analysis on WSB transfers to the Moon, Paper IAF-00-A.6.03 (2000).Google Scholar
  5. 5.
    Bellò Mora, M., Castillo, A., Gonzalez, J.A., Janin, G., Graziani, F., Teofilatto, P., Circi, C.: Use of weak stability boundary trajectories for planetary capture, Paper No. IAF-03-A.P.31 (2003)Google Scholar
  6. 6.
    Bernelli Zazzera, F., Topputo, F., Massari, M.: Assessment of mission design including utilization of libration points and weak stability boundaries AO 4532 03/4130 Final Report, ESTEC (2004)Google Scholar
  7. 7.
    Biesbroek, R. and Janin, G.: Ways to the Moon?ESA Bull. 103 (2000).Google Scholar
  8. 8.
    Bollt, E.M., and D. Meiss, J.D.: Targeting chaotic orbits to the Moon through recurrence. Phys Lett A 204 (1995)Google Scholar
  9. 9.
    Carusi, A., Kresàk, L., Perozzi, E., Valsecchi, G.B.: Long-Term Evolution of Short-Period Comets. Adam Hilger Ltd. Bristol and Boston (1985).Google Scholar
  10. 10.
    Circi, C.: Lunar Base for Mars Missions, J Guid Contr Dynam 28, 2 372-374 (2005).CrossRefGoogle Scholar
  11. 11.
    Circi, C. and Graziani, F.: Basi lunari per satelliti geostazionari. Aerotecnica Missili e Spazio, 86, 1 (2007).Google Scholar
  12. 12.
    Circi, C. and Teofilatto, P.: On the dynamics of weak stability boundary lunar transfers, Celest Mech Dyn Astr, 79(1), 41-72 (2000).CrossRefADSGoogle Scholar
  13. 13.
    Circi, C. and Teofilatto, P.: Weak stability boundary trajectories for the deployment of lunar spacecraft constellations, Celest Mech Dyn Astr, 95, 371-390 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Compagnone, F. and Perozzi, E. (Editors): Moon Base: a Challenge for Humanity, Donzelli Editore, Roma (2007).Google Scholar
  15. 15.
    Conley, C.C. : Low Energy Transit Orbit in the Restricted Three-Body Problem. SIAM J Appl Math, 16, 4 (1968).Google Scholar
  16. 16.
    Farquhar, R.W.: The control and use of libration-point satellites. NASA TR R-346 (1970).Google Scholar
  17. 17.
    Farquhar, R.W. and Kamel, A.A.: Quasi-Periodic Orbits about the Translunar Libration Point. Celest Mech 7, 458 (1973)..MATHCrossRefADSGoogle Scholar
  18. 18.
    Gomez, G., Jorba, A., Masdemont, J., R., Simo, C.: Study of the transfer from the Earth to a halo orbit around the equilibrium point L 1, Celest Mech 4, 56 (1993)Google Scholar
  19. 19.
    Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J.J., Ross, S.D.: Connecting Orbits and Invariant Manifolds in the Spatial Restricted Three Body Problem, Nonlinearity, 17, 1571–1606 (2004)MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Howell, K. C.: Three dimensional periodic halo orbits. Celest Mech 32 (1984).Google Scholar
  21. 21.
    Howell, K. C., Marchand, B.G., Lo, M.W.: Temporary Capture of Jupiter Family Comets from the Perspective of Dynamical Systems. J Astronaut Sci 49, 4 (2001).MathSciNetGoogle Scholar
  22. 22.
    Keaton, P.W.: , A Moon Base / Mars Base Transportation Depot. In ‘Lunar Bases and Space Activities of the Century’, WW. Mendell Editor, LPI (1985).Google Scholar
  23. 23.
    Koon, W.S., Lo, M.W. Marsden, J.E., Ross, S.D.: The Genesis trajectory and heteroclinic connections, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, AAS99-451 (1999).Google Scholar
  24. 24.
    Leiva, A.M. and Briozzo, C.B.: Extension of fast periodic transfer orbits from the Earth–Moon RTBP to the Sun–Earth–Moon Quasi-Bicircular Problem. Celest Mech Dyn Astr 101 (2008)Google Scholar
  25. 25.
    Lo, M.W. and Chung, M. J.: Lunar Sample Return via the Interplanetary Superhighway. Paper AIAA 2002-4718, (2002).Google Scholar
  26. 26.
    Lo, M.W. and Ross, S.D.: The lunar L1 gateway: portal to the stars and beyond. In proc. AIAA Space 2001 Conference, Albuquerque (2001)Google Scholar
  27. 27.
    Marsden, J.E. and Ross, S.D.: New Methods In Celestial Mechanics and Mission Design. Bull Amer Math Soc (New Series) 43, 1 (2005)CrossRefGoogle Scholar
  28. 28.
    McLaughlin, W.I.: Walter Hohmann’s Roads In Space. J SMA, 2, 1–14 (2001).Google Scholar
  29. 29.
    Parker, J.S.: Low Energy Ballistic Lunar Transfers. Ph.D. Thesis, Department of Aerospace Engineering Sciences, University of Colorado at Boulder (2007).Google Scholar
  30. 30.
    Perozzi, E, and Di Salvo, A.: Novel spaceways for reaching the Moon: an assessment for exploration. Celest Mech Dyn Astr 102, 207-218 (2008).MATHCrossRefADSGoogle Scholar
  31. 31.
    Poincaré, H.:Les Méthodes Nouvelles de la Mechanique Celeste, Gauthier Villars, Paris (1893)Google Scholar
  32. 32.
    Richardson, D.L.: A Note on a Lagrangian Formulation for Motion around the Collinear Points. Celest Mech 22 (1980).Google Scholar
  33. 33.
    Roy, A.E. Orbital Motion, Adam Hilger, Bristol (1982).Google Scholar
  34. 34.
    Rubbia, C.: Neutrons in a Highly Diffusive Medium: a New Propulsion Tool for Deep Space Exploration? In ‘ Space Exploration and Resources Exploitation’, ESA WPP-151 (1999).Google Scholar
  35. 35.
    Thronson, H.A., Lester, D.F., Dissel, A.F. Folta, D.C., Stevens, J., Budinoff, J.: Does the NASA constellation architecture offer opportunities to achieve Space science goals in space? IAC-08-A5.3.6 (2008).Google Scholar
  36. 36.
    Vadali, S.R., Nah, R., Braden, E., Johnson Jr, I.L.: Fuel-Optimal Planar Earth-Mars Trajectories Using Low-Thrust Exhaust-Modulated Propulsion, J Guid Contr Dynam 23, 3 (2000)CrossRefGoogle Scholar
  37. 37.
    Vadali, S.R., Nah, R., Braden, E.: Fuel-Optimal, Low-Thrust, Three-Dimensional Earth-Mars Trajectories, J Guid Contr Dynam 24, 6 (2001).Google Scholar
  38. 38.
    Valsecchi, G.B., Perozzi, E., Roy, A.E., Steves, B.A.: Periodic Orbits close to that of the Moon. Astron. Astroph. 271 (1993).Google Scholar
  39. 39.
    Van Susante, P. J. and Heiss, K. P.: 2005. A Condominium of Observatories on the Moon. J Wash Acad Sci, Summer issue (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ettore Perozzi
    • 1
  • Riccardo Marson
    • 1
  • Paolo Teofilatto
    • 2
  • Christian Circi
    • 2
  • Alessio Di Salvo
    • 3
  1. 1.TelespazioRomaItaly
  2. 2.Scuola di Ingegneria AerospazialeUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Rheinmetall ItaliaRomaItaly

Personalised recommendations