Regular and Chaotic Dynamics of Periodic and Quasi-Periodic Motions

  • Alessandra Celletti
Conference paper


We review some basic topics from Dynamical System theory, which are of interest in Space Manifold Dynamics. We start by recalling some notions related to equilibrium points. Floquet theorem leads to the introduction of Lyapunov exponents. Nearly–integrable systems are very common in Celestial Mechanics; their study motivated the development of perturbation theories as well as of KAM and Nekhoroshev’s theorem. The Lindstedt–Poincaré technique allows to look for periodic orbits. Finally, we recall the derivation of the Lagrangian points in the circular and elliptic, planar, restricted three–body problem. Each section is almost self–contained and can be read independently from the others.


Lyapunov Exponent Unstable Manifold Body Problem Center Manifold Lagrangian Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.I. Arnold, Proof of a Theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv. 18, 13–40 (1963)CrossRefGoogle Scholar
  2. 2.
    V.I. Arnold, Small divisor problems in classical and Celestial Mechanics, Russian Math. Surv. 18, 85–191 (1963)CrossRefADSGoogle Scholar
  3. 3.
    V.I. Arnold, Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl. 5, 581–585 (1964)Google Scholar
  4. 4.
    V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer–Verlag, New York (1978) (Russian original, Moscow, 1974)MATHGoogle Scholar
  5. 5.
    V.I. Arnold (editor), Encyclopaedia of Mathematical Sciences, Dynamical Systems III, Springer–Verlag 3 (1988)Google Scholar
  6. 6.
    A. Celletti, Perturbation Theory in Celestial Mechanics, Encyclopedia of Complexity and System Science, R.A. Meyers ed., Springer–Verlag (2009)Google Scholar
  7. 7.
    A. Celletti, L. Chierchia, KAM stability and celestial mechanics, Memoir. Am. Math. Soc. 187, n. 878 (2007)Google Scholar
  8. 8.
    A. Celletti, A. Giorgilli, On the stability of the Lagrangian points in the spatial restricted problem of three bodies, Cel. Mech. Dyn. Astr. 50, 31–58 (1991)MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    J.M.A. Danby, Stability of the triangular points in the elliptic restricted problem of three bodies, Astron. J. 69, 165–172 (1974)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    R.W. Farquhar, The Control and Use of Libration–Point Satellites, Ph.D. Dissertation, Dept. of Aeronautics and Astronautics, Stanford University, Stanford, CA (1968)Google Scholar
  11. 11.
    S. Ferraz–Mello, Canonical Perturbation Theories, Springer–Verlag, Berlin, Heidelberg, New York (2007)Google Scholar
  12. 12.
    A. Giorgilli, C. Skokos, On the stability of the trojan asteroids, Astron. Astroph. 317, 254–261 (1997)ADSGoogle Scholar
  13. 13.
    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three–body problem, J. Diff. Eq. 77, 167–198 (1989)MATHCrossRefGoogle Scholar
  14. 14.
    G. Gomez, A. Jorba, J. Masdemont, C. Simó, Study of the transfer from the Earth to a halo orbit around the equilibrium point L 1, Cel. Mech. Dyn. Astr. 56, 541–562 (1993)MATHCrossRefADSGoogle Scholar
  15. 15.
    G. Gomez, J. Llibre, J. Masdemont, Homoclinic and heteroclinic solutions in the restricted three–body problem, Cel. Mech. 44, 239–259 (1988)MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    M. Guzzo, Z. Knezevic, A. Milani, Probing the Nekhoroshev stability of asteroids, Cel. Mech. Dyn. Astr. 83, 121–140 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    M. Guzzo, A. Morbidelli, Construction of a Nekhoroshev like result for the asteroid belt dynamical system, Cel. Mech. Dyn. Astr. 66, 255–292 (1997)MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    À. Jorba, On Practical Stability Regions for the Motion of a Small Particle Close to the Equilateral Points of the Real Earth–Moon System, Proc. Hamiltonian Systems and Celestial Mechanics, J. Delgado, E.A. Lacomba, E. Perez–Chavela, J. Llibre eds., World Scientific Publishing, Singapore (1998)Google Scholar
  19. 19.
    À. Jorba, C. Simó, On quasi–periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal. 27, 1704–1737 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    À. Jorba, J. Villanueva, On the persistence of lower dimensional invariant tori under quasi–periodic perturbations, J. Nonlinear Sci. 7, 427–473 (1997)MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    A.N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk SSR 98, 527–530 (1954)MATHMathSciNetGoogle Scholar
  22. 22.
    R. de la Llave, A. Gonzàlez, À. Jorba, J. Villanueva, KAM theory without action-angle variables, Nonlinearity 18, n. 2, 855–895 (2005)MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Ch. Lhotka, C. Efthymiopoulos, R. Dvorak, Nekhoroshev stability at L 4 or L 5 in the elliptic restricted three body problem - application to Trojan asteroids, MNRAS 384, 1165–1177 (2008)CrossRefADSGoogle Scholar
  24. 24.
    J. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1–20 (1962)Google Scholar
  25. 25.
    N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly–integrable Hamiltonian systems, Russ. Math. Surv. 32, 1–65 (1977)MATHCrossRefGoogle Scholar
  26. 26.
    H. Poincaré, Les méthodes nouvelles de la méchanique céleste, Gauthier Villars, Paris (1899)Google Scholar
  27. 27.
    C.L. Siegel, J.K. Moser, Lectures on Celestial Mechanics, Springer–Verlag, Berlin, Heidelberg, New York (1971)Google Scholar
  28. 28.
    K. Tsiganis, H. Varvoglis, R. Dvorak, Chaotic diffusion and effective stability of Jupiter Trojans, Cel. Mech. Dyn. Astr. 92, 71–87 (2005)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly

Personalised recommendations