Skip to main content

From Sputnik to the Moon: Astrophysics and Cosmology from Space

  • Conference paper
  • First Online:
Space Manifold Dynamics

Abstract

The launch of the Sputnik in October 1957 signed the beginning of space era. Just after few years Bruno Rossi opened the era of astrophysics observations. The Italian community has played, since then, an important role in the space community. After the success of many satellite missions, such as BeppoSAX, XMM-Newton, INTEGRAL, now the next frontier could be pioneering the scientific activities on the Moon. The absence of atmospheric emission and telecommunication interferences joined to the possibility of locating scientific instrumentation of relevant size and adaptive in time makes the Moon an ideal astronomical site for many branches of the modern astrophysics and cosmology and for dedicated fundamental physics experiments. Accurate measurements of the cosmic microwave background (CMB) radiation and of the radio sky at extremely long wavelengths could take a great advantage from the opportunity of observations from the Moon. In this context, we discuss here some aspects of particular interest: the CMB anisotropy in polarization and total intensity (at very small scales), the CMB spectrum. Some guidelines for future experiments from the Moon are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lambda.gsfc.nasa.gov/product/map/current/

  2. 2.

    http://www.rssd.esa.int/planck

  3. 3.

    http://www.b-pol.org/index.php

  4. 4.

    It could be also present at smaller scales towards active and primeval galaxies (e.g. [42, 16]).

  5. 5.

    Improvements in absolute spectrum measurements have been recently achieved with the NASA ARCADE balloon-borne experiment [19, 31] (see http://arcade.gsfc.nasa.gov/) and announced during the conclusion of the writing of this contribution; they suggest a signal excess at 3.3 GHz [20, 50, 32].

  6. 6.

    In particular, this would permit the determination of the frequency location of the minimum of the distortion [13], so independently proving the product of the baryon density with the square of the Hubble constant.

References

  1. Benoit A., et al., 2003, A&A, 399, L19

    Article  ADS  Google Scholar 

  2. Burigana C., De Zotti G., Danese L., 1995, A&A, 303, 323

    ADS  Google Scholar 

  3. Burigana C., De Zotti G., Feretti L., 2004, New Astron. Rev., 48, 1107

    Article  ADS  Google Scholar 

  4. Burigana C., Finelli, F., Salvaterra R., Popa L.A., Mandolesi N., 2004, Recent Res. Devel. Astron. Astrophys., 2, 59, Research Signpost

    Google Scholar 

  5. Burigana C., La Porta L., Reich W., Reich P., Gonzalez-Nuevo J., Massardi M., De Zotti G., 2006a, in Proc. of “CMB and Physics of the Early Universe”, 20–22 April, 2006, Ischia, Italy, Editorial board: G. De Zotti et al., PoS(CMB2006)016 (http://pos.sissa.it//archive/conferences/027/016/CMB2006_016.pdf), astro-ph/0607469

  6. Burigana C., Popa L.A., Finelli F., Salvaterra R., De Zotti G., Mandolesi N., 2006b, in Proc. of JENAM 2004 meeting “The many scales in the Universe”, 13–17 September, 2004, Granada, Spain, Eds. J.C. del Toro et al., Springer, Dordrecht, The Netherlands, astro-ph/0411415

    Google Scholar 

  7. Burigana C., Salvaterra R., 2003, MNRAS, 342, 543

    Article  ADS  Google Scholar 

  8. Burigana C., Salvaterra R., Zizzo A., 2004, in Proc. of “Plasma in the Laboratory and in the Universe: New Insights and New Challenges”, 16–19 September 2003, Como, Italy, AIP Conference Proceedings, Vol. 703, p. 397, Eds. G. Bertin et al., Melville, NY

    Google Scholar 

  9. Burigana C., Popa L.A., Salvaterra R., Schneider R., Choudhury T.R., Ferrara A., 2008, MNRAS, 385, 404

    Article  ADS  Google Scholar 

  10. Carretti E., Bernardi G., Cortiglioni S., 2006, MNRAS, 373, L93

    ADS  Google Scholar 

  11. Currie D.G., et al., 2006, A Lunar Laser Ranging Array for the 21ST Century, Submitted Proposal, see Cantone C., et al., 2006, LNF-06/28 (IR), November 1, 2006

    Google Scholar 

  12. Danese L., Burigana C., 1993, in Proceedings of “Present and Future of the Cosmic Microwave Background”, 28 June–1 July, 1993, Santander, Spain, Lecture in Physics, Vol. 429, p. 28, Eds. J.L. Sanz et al., Springer Verlag, Heidelberg, FRG

    Google Scholar 

  13. Danese L., De Zotti G., 1980, A&A, 84, 364

    ADS  Google Scholar 

  14. de Bernardis P., et al., 2000, Nature, 404, 955

    Article  ADS  Google Scholar 

  15. de Bernardis P., Bucher M., Burigana C., Piccirillo L., for the B-Pol Collaboratio., 2003, Experimental Astronomy, 23, 5

    Google Scholar 

  16. De Zotti G., Burigana C., Cavaliere A., Danese L., Granato G.L., Lapi A., Platania P., Silva L., 2004, in Proceedings. of “Plasma in the Laboratory and in the Universe: New Insights and New Challenges”, 16–19 September 2003, Como, Italy, AIP Conference Proceedings, Vol. 703, p. 375, Eds. G. Bertin et al., Melville, NY

    Google Scholar 

  17. Fabbri R., Pollock M.D., 1983, Phys. Lett. B, 125, 445

    Article  ADS  Google Scholar 

  18. Fixsen D.J., et al., 1996, ApJ, 473, 576

    Article  ADS  Google Scholar 

  19. Fixsen D.J., et al., 2004, ApJ, 612, 86

    Article  ADS  Google Scholar 

  20. Fixsen D.J., et al., 2009, ApJ, submitted, astro-ph/0901.0555v1

    Google Scholar 

  21. Fixsen D.J., Mather J.C., 2002, ApJ, 581, 817

    Article  ADS  Google Scholar 

  22. Grainge K., et al., 2003, MNRAS, 341, L23

    Article  ADS  Google Scholar 

  23. Grishchuk L.P., 1975, Sov. Phys., JEPT, 40, 409

    ADS  Google Scholar 

  24. Halverson N.W., et al., 2002, ApJ, 568, 38

    Article  ADS  Google Scholar 

  25. Hanany S., et al., 2000, ApJ, 545, L5

    Article  ADS  Google Scholar 

  26. Hinshaw G., et al., 2007, ApJS, 170, 288

    Article  ADS  Google Scholar 

  27. Jarosik N., et al., 2007, ApJS, 170, 263

    Article  ADS  Google Scholar 

  28. Kaiser N., 1983, MNRAS, 202, 1169

    ADS  Google Scholar 

  29. Kamionkowski M., Kosowski A., Stebbins A., 1997, Phys. Rev. D, 55, 7368

    Article  ADS  Google Scholar 

  30. Knox L., Song Y.-S., 2002, PRL, 89, 011303

    Article  ADS  Google Scholar 

  31. Kogut A., et al., 2004, ApJS, 154, 493

    Article  ADS  Google Scholar 

  32. Kogut A., et al., 2009, ApJ, submitted, astro-ph/0901.0562v1

    Google Scholar 

  33. Kovac J., et al. 2002, Nature, 420, 772

    Article  ADS  Google Scholar 

  34. La Porta L., Burigana C., Reich W., Reich P., 2006, A&A, 455, L9

    Article  ADS  Google Scholar 

  35. Ma C.-P., Fry J.N., 2002, PRL, 88, 211301

    Article  ADS  Google Scholar 

  36. Mandolesi N., et al, 1998, Planck LFI, A Proposal Submitted to the ESA

    Google Scholar 

  37. Mason B.S., et al., 2003, ApJ, 591, 540

    Article  ADS  Google Scholar 

  38. Mather J.C., et al., 1999, ApJ, 512, 511

    Article  ADS  Google Scholar 

  39. Naselsky P., Chiang L.-Y., 2004, MNRAS, 347, 795

    Article  ADS  Google Scholar 

  40. Page L., et al., 2007, ApJS, 170, 335

    Article  ADS  Google Scholar 

  41. Planck Collaboration, 2006, The Scientific Programme of Planck, astro-ph/0604069

    Google Scholar 

  42. Platania P., Burigana C., De Zotti G., Lazzaro E., Bersanelli M., 2002, MNRAS, 337, 242

    Article  ADS  Google Scholar 

  43. Popa L.A., Burigana C., Mandolesi N., 2005, New Astron., 11, 173

    Article  ADS  Google Scholar 

  44. Puget J.L., et al, 1998, HFI for the Planck Mission,A Proposal Submitted to the ESA

    Google Scholar 

  45. Rephaeli Y., 1995, ARA&A, 33, 541

    Article  ADS  Google Scholar 

  46. Rubakov V.A., Sazhin M.V., Veryaskin A.V., 1982, Phys. Lett. B, 115, 198

    ADS  Google Scholar 

  47. Sachs R.K., Wolfe A.M., 1967, ApJ, 147, 73

    Article  ADS  Google Scholar 

  48. Salvaterra R., Burigana C., 2000, Int. Rep. ITeSRE/CNR 270/2000, astro-ph/0206350

    Google Scholar 

  49. Salvaterra R., Burigana C., 2002, MNRAS, 336, 592

    Article  ADS  Google Scholar 

  50. Seiffert M., et al., 2009, astro-ph/0901.0559v1

    Google Scholar 

  51. Seljak U., Zaldarriaga, M., 1997, PRL, 78, 2054

    Article  ADS  Google Scholar 

  52. Silk J., 1968, ApJ, 151, 459

    Article  ADS  Google Scholar 

  53. Smoot G.F., et al., 1992, ApJ, 361, L1

    Article  ADS  Google Scholar 

  54. Spergel D.N., et al., 2007, ApJS, 170, 377

    Article  ADS  Google Scholar 

  55. Starobinksy A.A., 1979, JEPT Lett., 30, 682

    ADS  Google Scholar 

  56. Sunyaev R.A., Zeldovich Ya.B., 1970, Ap&SS, 7, 20

    ADS  Google Scholar 

  57. Sunyaev R.A., Zeldovich Ya.B., 1972, Comm. Astrophys. Space Phys., 4, 173

    ADS  Google Scholar 

  58. Tauber J.A., 2003, Adv. Space Res., 34, 491

    Article  ADS  Google Scholar 

  59. Zeldovich Ya.B., Sunyaev R.A., 1969, Ap&SS, 4, 301

    Article  ADS  Google Scholar 

  60. Zeldovich Ya.B., Illarionov A.F., Sunyaev R.A., 1972, Zh. Eksp. Teor. Fiz., 62. 1216 (Sov. Phys. JEPT, 35, 643)

    ADS  Google Scholar 

Download references

Acknowledgment

It is a pleasure to thank S. Dell’Agnello, F. Finelli, L. La Porta, G. Morgante, L.A. Popa, P. Procopio, R. Ragazzoni, R. Salvaterra, and F. Villa for collaborations and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Burigana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Burigana, C., Mandolesi, N., Valenziano, L. (2010). From Sputnik to the Moon: Astrophysics and Cosmology from Space. In: Perozzi, E., Ferraz-Mello, S. (eds) Space Manifold Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0348-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0348-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0347-1

  • Online ISBN: 978-1-4419-0348-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics