Advertisement

Invariant Manifolds, Lagrangian Trajectories and Space Mission Design

  • Miguel Belló
  • Gerard Gómez
  • Josep J. Masdemont
Conference paper

Abstract

The last 30 years have produced an explosion in the capabilities of designing and managing libration point missions. The starting point was the ground-breaking mission of the third International Sun-Earth Explorer spacecraft (ISEE–3). The ISEE-3 was launched August 12, 1978 to pursue studies of the Earth–Sun interactions, in a first step of what now is known as Space Weather. After a direct transfer of the ISEE-3 to the vicinity of the Sun-Earth Lagrange point, it was inserted into a nearly-periodic halo orbit, in order to monitor the solar wind about 1 h before it reached the Earth’s magneto-sphere as well as the ISEE–1 and 2 spacecraft (which where in an elliptical orbit around the Earth).

Keywords

Periodic Orbit Unstable Manifold Stable Manifold Libration Point Halo Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.M. Alessi, G. Gómez, and J.J. Masdemont: ‘Leaving the Moon by Means of Invariant manifolds of Libration Point Orbits’. To appear in Communications in Nonlinear Science and Numerical Simulations, 2008.Google Scholar
  2. 2.
    H. Baoyin and C.R. McInnes: ‘Trajectories to and from the Lagrange Points and the Primary Body Surfaces’. Journal Guidance, Control and Dynamics, 29:998–1003, 2006.CrossRefGoogle Scholar
  3. 3.
    E. Belbruno: ‘Lunar Capture Orbits, a Method for constructing Earth-Moon Trajectories and the Lunar GAS Mission’. AIAA paper No. 87-1054, 1987.Google Scholar
  4. 4.
    E. Belbruno and J.K. Miler: ‘A Ballistic Lunar Capture Trajectory for the Japanese Spacecraft Hiten’. JPL, IOM 312/90.4–1371, 1990.Google Scholar
  5. 5.
    E. Belbruno: ‘The Dynamical Mechanism of Ballistic Lunar Capture Transfers in the Four Body Problem from the Perspective of Invariant Manifolds and Hill’s Regions’. CRM, Preprint n. 270, Barcelona, 1994.Google Scholar
  6. 6.
    E. Belbruno R. Humble, and J. Coil: ‘Ballistic Capture Lunar Transfer Determination for the US Air Force Academy Blue Moon Mission’. AIAA/AAS Astrodynamics Specialist Conference. Paper No. 97-171, 1997.Google Scholar
  7. 7.
    E. Belbruno: ‘Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories’. AIAA/AAS Astrodynamics Specialist Conference. Paper No. 2000-4142, 2000.Google Scholar
  8. 8.
    E. Belbruno: ‘Analytic Estimation of Weak Stability Boundaries and Low Energy Transfers’. Contemporary Mathematics. 292 17–45, 2002.MathSciNetGoogle Scholar
  9. 9.
    E. Belbruno: Capture Dynamics and Chaotic Motions in Celestial Mechanics. Princeton University Press, 2004.Google Scholar
  10. 10.
    M. Belló-Mora, F. Graziani, P. Teofilatto, C. Circi, M. Porfilio, and M. Hechler: ‘A Systematic Analysis on Weak Stability Boundary Transfers to the Moon’. International Astronautical Federation, 2000.Google Scholar
  11. 11.
    J.V. Breakwell, A.A. Kamel, and M.J. Ratner: ‘Station-Keeping for a Translunar Communications Station’. Celestial Mechanics, 10(3):357–373, 1974.CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    B. Bussey and P. Spudis: The Clementine Atlas of the Moon. Cambridge University Press, 2004.Google Scholar
  13. 13.
    E. Canalias, J. Cobos, and J.J. Masdemont: ‘Impulsive Transfers Between Lissajous Libration Point Orbits’. Journal of the Astronautical Sciences, 51: 361–390, 2003.MathSciNetGoogle Scholar
  14. 14.
    C. Circi and P. Teofilato: ‘On the Dynamics of Weak Stability Boundary Lunar Transfers’. Celestial Mechanics and Dynamical Astronomy. 79: 41–72, 2001.MATHCrossRefADSGoogle Scholar
  15. 15.
    G. Colombo: ‘The Stabilization of an Artificial Satellite at the Inferior Conjunction Point of the Earth–Moon System’. Technical Report 80, Smithsonian Astrophysical Observatory Special Report, 1961.Google Scholar
  16. 16.
    E. Canalias: ‘Contributions to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds’ PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2007.Google Scholar
  17. 17.
    E. Canalias and J.J. Masdemont: ‘Eclipse Avoidance for Lissajous Orbits Using Invariant Manifolds’. IAC–04–A.6.07, http://www.iac-paper.org, 2004.
  18. 18.
    E. Canalias and J.J. Masdemont: ‘Lunar Space Station for Providing Services for Solar Libration Point Missions’ IAC–05–C1.1.07, http://www.iac-paper.org, 2005.
  19. 19.
    E. Canalias and J.J. Masdemont: ‘Rendez-vous in Lissajous Orbits using the Effective Phases Plane’ IAC–06–C1.8.03, http://www.iac-paper.org, 2006.
  20. 20.
    E. Canalias and J.J. Masdemont: ‘Computing Natural Transfers between Sun-Earth and Earth-Moon Lissajous Libration Point Orbits’ Acta Astronautica, 63: 238–248, 2008.CrossRefADSGoogle Scholar
  21. 21.
    P. Di Donato, J.J. Masdemont, P. Paglione, and A.F. Prado: ‘Low Thrust Transfers from the Earth to Halo Orbits around the Libration Points of the Sun-Earth/Moon System’ Proceedings of COBEM 2007, 19th International Congress of Mechanical Engineering, 2007.Google Scholar
  22. 22.
    P. Di Donato: ‘Transfers from the Earth to Libration Point Orbits using Low Thrust with a Constrain in the Thrust Direction.’ Master Thesis. Universitat Politècnica de Catalunya (ETSEIB), and Instituto Tecnológico de Aeronautica (eng aero). http://eprints.upc.es/pfc/handle/2099.1/2980, http://www.bd.bibl.ita.br/TGsDigitais, 2006.
  23. 23.
    N. Eismont, D. Dunham, J. Sho-Chiang, and R.W. Farquhar: ‘Lunar Swingby as a Tool for Halo–Orbit Optimization in Relict–2 Project’. In Third International Symposium on Spacecraft Flight Dynamics, ESA SP–326. European Space Agency, Darmstadt, Germany, 1991.Google Scholar
  24. 24.
    R.W. Farquhar: ‘Far Libration Point of Mercury’. Astronautics & Aeronautics, 5(8):4, 1967.Google Scholar
  25. 25.
    R.W. Farquhar. ‘The Control and Use of Libration Point Satellites’. Technical Report TR R346, Stanford University Report SUDAAR–350 (1968). Reprinted as NASA, 1970.Google Scholar
  26. 26.
    R.W. Farquhar, D.P. Muhonen, C.R. Newman, and H.S. Heuberger: ‘Trajectories and Orbital Maneuvers for the First Libration–Point Satellite’. Journal of Guidance and Control, 3 (6):549–554, 1980.CrossRefGoogle Scholar
  27. 27.
    D. Folta and M. Beckman: ‘Libration Orbit Mission Design: Applications of Numerical and Dynamical Methods’. In Libration Point Orbits and Applications, World Scientific, 2003.Google Scholar
  28. 28.
    G. Gómez, J. Llibre, and J. Masdemont: ‘Homoclinic and Heteroclinic Solutions in the Restricted Three-Body Problem’. Celestial Mechanics, 44:239–259, 1988.MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    G. Gómez, À. Jorba, J.J. Masdemont, and C. Simó: ‘A Dynamical Systems Approach for the Analysis of the SOHO Mission’. In Third International Symposium on Spacecraft Flight Dynamics, pages 449–454. European Space Agency, Darmstadt, Germany, October 1991.Google Scholar
  30. 30.
    G. Gómez, A. Jorba, J. Masdemont, and C. Simó: ‘Study of the Transfer from the Earth to a Halo Orbit Around the Equilibrium Point L 1 ’. Celestial Mechanics, 56 (4):541–562, 1993.MATHCrossRefADSGoogle Scholar
  31. 31.
    G. Gómez, J.J. Masdemont, and C. Simó: ‘Lissajous Orbits Around Halo Orbits’. Advances in the Astronautical Sciences, 95:117–134, 1997.Google Scholar
  32. 32.
    G. Gómez, A. Jorba, J. Masdemont, and C. Simó: ‘Study of the Transfer Between Halo Orbits’. Acta Astronautica, 43 (9–10):493–520, 1998.CrossRefGoogle Scholar
  33. 33.
    G. Gómez, J. Llibre, R. Martínez, and C. Simó: Dynamics and Mission Design Near Libration Point Orbits – Volume 2: Fundamentals: The Case of Triangular Libration Points. World Scientific, 2000.Google Scholar
  34. 34.
    G. Gómez, ÀA. Jorba, J.J. Masdemont, and C. Simó: Dynamics and Mission Design Near Libration Point Orbits – Volume 4: Advanced Methods for Triangular Points. World Scientific, 2000.Google Scholar
  35. 35.
    G. Gómez, ÀA. Jorba, J.J. Masdemont, and C. Simó: Dynamics and Mission Design Near Libration Point Orbits – Volume 3: Advanced Methods for Collinear Points. World Scientific, 2000.Google Scholar
  36. 36.
    G. Gómez, W.S. Koon, M.W. Lo, J.E. Marsden, J.J. Masdemont, and S.D. Ross: ‘Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design’. Advances in The Astronautical Sciences, 109, 1:3–22, 2001.Google Scholar
  37. 37.
    G. Gómez, M. Marcote, and J.J. Masdemont: ‘Trajectory Correction Manoeuvres in the Transfer to Libration Point Orbits’. In Proceedings of the Conference Libration Point Orbits and Applications. World Scientific, G. Gómez et al. Eds. pages 287–310, 2003.Google Scholar
  38. 38.
    G. Gómez, M. Marcote, and J.J. Masdemont: ‘Trajectory Correction Manoeuvres in the Transfer to Libration Point Orbits’. Acta Astronautica, 56:652–669, 2005.CrossRefADSGoogle Scholar
  39. 39.
    G. Gómez and J.J. Masdemont: ‘Refinements of a Station–Keeping Strategy for Libration Point Orbits’. Preprint.Google Scholar
  40. 40.
    M. Hechler: ‘SOHO Mission Analysis \(\textrm{L}_{1}\) Transfer Trajectory’. Technical Report MAO Working Paper No. 202, ESA, 1984.Google Scholar
  41. 41.
    L.A. Hiday and K.C. Howell: ‘Transfers Between Libration–Point Orbits in the Elliptic Restricted Problem’. In AAS/AIAA Spaceflight Mechanics Conference, Paper AAS 92-126., 1992.Google Scholar
  42. 42.
    K.C. Howell and H.J. Pernicka: ‘Stationkeeping Method for Libration Point Trajectories’. Journal of Guidance, Control and Dynamics, 16 (1):151–159, 1993.CrossRefADSGoogle Scholar
  43. 43.
    K.C. Howell and S.C. Gordon: ‘Orbit Determination Error Analysis and a Station–Keeping Strategy for Sun–Earth L 1 Libration Point Orbits’. Journal of the Astronautical Sciences, 42 (2):207–228, April–June 1994.ADSGoogle Scholar
  44. 44.
    K.C. Howell and L.A. Hiday-Johnston: ‘Time-Free Transfers Between Libration-Point Orbits in the Elliptic Restricted Problem’. Acta Astronautica, 32:245–254, 1994.CrossRefGoogle Scholar
  45. 45.
    K.C. Howell and B.T. Barden: ‘Brief Summary of Alternative Targeting Strategies for TCM1, TCM2 and TCM3’. Private communication, 1999.Google Scholar
  46. 46.
    K.C. Howell, B.G. Marchand, and M.W. Lo: ‘Temporary Satellite Capture of Short–Period Jupiter Family Comets from the Perspective of Dynamical Systems’. In AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 00-155, 2000.Google Scholar
  47. 47.
    T.M. Keeter: ‘Station–Keeping Strategies for Libration Point Orbits: Target Point and Floquet Mode Approaches’. Master’s thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, 1994.Google Scholar
  48. 48.
    W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross: ‘Heteroclinic Connections Between Periodic Orbits and Resonance Transitions in Celestial Mechanics’. Chaos, 10 (2):427–469, 2000.MATHCrossRefMathSciNetADSGoogle Scholar
  49. 49.
    W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross: ‘Resonance and capture of Jupiter comets’. Celestial Mechanics and Dynamical Astronomy, 81 (1):27–38, 2001.MATHCrossRefMathSciNetADSGoogle Scholar
  50. 50.
    W.S. Koon, M.W. Lo, J.E. Marsden, and S.D. Ross: ‘Low Energy Transfer to the Moon’. Celestial Mechanics and Dynamical Astronomy. 81 (1):63–73,2001.MATHCrossRefMathSciNetADSGoogle Scholar
  51. 51.
    D.F. Lawden: Optimal Trajectories for Space Navigation. Butterworths & Co. Publishers, London, 1963.Google Scholar
  52. 52.
    M.W. Lo and S. Ross: ‘SURFing the Solar Sytem: Invariant Manifolds and the Dynamics of the Solar System’. Technical Report 312/97, 2-4, JPL IOM, 1997.Google Scholar
  53. 53.
    M.W. Lo, B.G. Williams, W.E. Bollman, D. yHan, Y. Hahn, J.L. Bell, E.A. Hirst, R.A. Corwin, P.E. Hong, K.C. Howell, B.T. Barden, and R.S. Wilson: ‘Genesis Mission Design’. In AIAA Space Flight Mechanics, Paper No. AIAA 98–4468, 1998.Google Scholar
  54. 54.
    J.J. Masdemont: Estudi i Utilització de Varietats Invariants en Problemes de Mecànica Celeste’. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1991.Google Scholar
  55. 55.
    J.J. Masdemont: ‘High Order Expansions of Invariant Manifolds of Libration Point Orbits with Applications to Mission Design’. Dynamical Systems; an International Journal, 20: 59–113, 2005.MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    D.L. Richardson: ‘Analytical Construction of Periodic Orbits About the Collinear Points’. Celestial Mechanics, 22(3):241–253, 1980.MATHCrossRefMathSciNetADSGoogle Scholar
  57. 57.
    R. Servan, W.S. Koon, M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross, and R.S. Wilson: ‘Halo Orbit Mission Correction Maneuvers Using Optimal Control’. 2000.Google Scholar
  58. 58.
    C. Simó, G. Gómez, J. Llibre, and R. Martínez: ‘Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds’. In Second International Symposium on Spacecraft Flight Dynamics, pages 65–70. European Space Agency, Darmstadt, Germany, October 1986.Google Scholar
  59. 59.
    C. Simó, G. Gómez, J. Llibre, R. Martínez, and R. Rodríquez: ‘On the Optimal Station Keeping Control of Halo Orbits’. Acta Astronautica, 15 (6):391–397, 1987.CrossRefGoogle Scholar
  60. 60.
    C. Simó: ‘Dynamical Systems Methods for Space Missions on a Vicinity of Collinear Libration Points’. In C. Simó, editor, Hamiltonian Systems with Three or More Degrees of Freedom, pages 223–241. Kluwer Academic Publishers, 1999.Google Scholar
  61. 61.
    V. Szebehely: Theory of Orbits. Academic Press, 1967.Google Scholar
  62. 62.
    W. Wiesel and W. Shelton: ‘Modal Control of an Unstable Periodic Orbit’. Journal of the Astronautical Sciences, 31 (1):63–76, 1983.ADSGoogle Scholar
  63. 63.
    R.S. Wilson, K.C. Howell, and M.W. Lo: ‘Optimization of Insertion Cost Transfer Trajectories to Libration Point Orbits’. Advances in the Astronautical Sciences, 103:1569–1586, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Miguel Belló
    • 1
  • Gerard Gómez
    • 2
  • Josep J. Masdemont
    • 3
  1. 1.DEIMOS Space SLTres Cantos, MadridSpain
  2. 2.Departament de Matemàtica Aplicada i AnàlisUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament de Matemàtica Aplicada I. ETSEIBUniversitat Politècnica deBarcelonaSpain

Personalised recommendations