Seismic Imaging of the Mantle Discontinuities Beneath India: From Archean Cratons to Himalayan Subduction Zone



We image the mantle discontinuities in the depth from ∼200–800 km beneath India from its southernmost Archean and Proterozoic cratons, Proterozoic mobile belts to the Himalayan subduction zone using P to S converted phases in the 1957 teleseismic waveforms recorded over 54 broadband seismograph locations. These phases are generated from the velocity contrast at the layer boundary. Our results show presence of Lehmann discontinuity at a depth of 220–250 km beneath southern part of India. The 410 discontinuity is sharp and at its normal depth beneath Precambrian terrains and is elevated by ∼10–15 km in the Ganges basin and the Himalaya. This suggests progressive cooling or thickening of the Indian lithosphere towards its northern margin. We observe a complex 660 km discontinuity with a broad double peak beneath the Himalaya and southern India that may be due to presence of non-olivine component in the deep mantle. Apart from the above mentioned global discontinuities a velocity interface is mapped at 475 km depth beneath the Ladakh. The mantle transition zone show ∼10 km thickening beneath the Ganges basin, suggestive of the presence of cold material within. The elevated 410 discontinuity beneath the Ganges basin and the Himalaya is interpreted as the signature of north-east subducting Indian slab and perhaps part of the Tethyan oceanic lithosphere in front of it. The Tethyan subducted slab broke off from the overlying Indian slab and rolled back southward, crossed the mantle transition zone discontinuity and lies presently beneath the Ganges basin. This relict Tethyan slab is possibly responsible for the thickened transition zone beneath the Ganges basin and the complex 660 km discontinuity beneath the Himalaya.


Dharwar Craton Mantle Transition Zone Ganges Basin Eastern Dharwar Craton Vindhyan Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agee C (1993) Petrology of the mantle transition zone. Ann Rev Earth Planet Sci 21: 19–41CrossRefGoogle Scholar
  2. Ai Y, Zheng T, Xu W, He Y, Dong D (2003) A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett 212: 63–71CrossRefGoogle Scholar
  3. Argand E (1924) La Tectonique de l’ Asie Int Geol Cong Rep Sess 13: 170–372Google Scholar
  4. Barazangi M, Ni J (1982) Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan Plateau: possible evidence for underthrusting of Indian lithosphere beneath Tibet. Geology 10: 179–185CrossRefGoogle Scholar
  5. Bina C, Helffrich G (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J Geophys Res 99: 15853–15860CrossRefGoogle Scholar
  6. Bird P (1978) Initiation of intracontinental subduction in the Himalaya. J Geophys Res 83: 4975–4987CrossRefGoogle Scholar
  7. Collier JD, Helffrich G (2001) The thermal influence of the subducting slab beneath South America from 410 and 660 km discontinuity observation. Geophys J Int 147: 319–329CrossRefGoogle Scholar
  8. Deuss A, Woodhouse JH (2002) A systematic search for mantle discontinuities using SS-precursors. Geophys Res Lett 29. doi: 10.1029/2002GL014768Google Scholar
  9. Dueker KG, Sheehan AF (1997) Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track. J Geophy Res 102: 8313–8327CrossRefGoogle Scholar
  10. Efron B, Tibshirani R (1991) Statistical data analysis in the computer age. Science 253: 390–395CrossRefGoogle Scholar
  11. Gilbert HJ, Sheehan AF, Dueker KG, Molnar P (2003) Receiver functions in western United States, with implications for upper mantle structure and dynamics. J Geophys Res 108. doi: 10.1029/2001JB001194Google Scholar
  12. Goodwin AM (1996) Principles of Precambrian geology, Academic PressGoogle Scholar
  13. Gu Y, Dziewonski AM, Agee CB (1998) Global de-correlation of the topography of the transition zone discontinuities. Earth Planet Sci Lett 157: 57–67CrossRefGoogle Scholar
  14. Gu Y, Dziewonski AM, Ekstrom G (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys Res Lett 28: 4655–4658CrossRefGoogle Scholar
  15. Gaherty JB, Jordan TH (1995) Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471CrossRefGoogle Scholar
  16. Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Priestley K, Chadha RK, Gaur VK (2003) Nature of the south Indian crust: implications for Precambrian crustal evolution. Geophys Res Lett 30: 1419. doi:101029/2002/GL 016770CrossRefGoogle Scholar
  17. Gurrola H, Minster JB, Owens TJ (1994) The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities. Geophys J Int 117: 427–440CrossRefGoogle Scholar
  18. Hales AL, Muirhead KJ, Rynn JMW (1991) A compressional wave velocity distribution for the upper mantle. Tectonophysics 63: 309–348CrossRefGoogle Scholar
  19. Houseman GA, McKenzie DP, Molnar P (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of the continental convergent belts. J Geophys Res 86: 6115–6132CrossRefGoogle Scholar
  20. Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite in Mg2SiO4. Earth Planet Sci Lett 160: 107–113CrossRefGoogle Scholar
  21. Jagadeesh S, Rai SS (2008) Thickness, composition and evolution of the Indian Precambrian crust. Precambrian Res 162: 4–15CrossRefGoogle Scholar
  22. Karato S (1992) On the Lehmann discontinuity. Geophys Res Lett 19: 2255–2258CrossRefGoogle Scholar
  23. Kennet B, Engdahl E (1991) Travel times for global earth location and phase identification. Geophys J Int 105: 429–465CrossRefGoogle Scholar
  24. Kind R, Yuan X, Saul J, Nelson D, Sobolev SV, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, Jiang M (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298: 1219–1221CrossRefGoogle Scholar
  25. Kiselev S, Oresin S, Vinnik L, Gupta S, Rai SS, Singh A, Kumar RM (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173: 1106–1118CrossRefGoogle Scholar
  26. Kumar MR, Mohan G (2005) Mantle discontinuities beneath the Deccan volcanic province. Earth Planet Sci Lett 237: 252–263CrossRefGoogle Scholar
  27. Koulakov I, Soboloev SV (2006) A tomographic image of Indian lithosphere break-off beneath the Pamir-Hindukush region. Geophys J Int 164: 425–440CrossRefGoogle Scholar
  28. Langston CA (1979) Structure under mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84: 4749–4762CrossRefGoogle Scholar
  29. Lawrence JF, Shearer PM (2006) A global study of transition zone thickness using receiver functions. J Geophys Res 111. doi: 10.1029/2005JB003973Google Scholar
  30. Lebedev S, Chevrot S, van der Hilst RD (2003) Correlation between the shear-speed structure and thickness of the mantle transition zone. Phys Earth Planet Int 136: 25–40CrossRefGoogle Scholar
  31. Lehmann I (1959) Velocity of longitudinal waves in the upper part of the earth’s mantle. Ann Geophys 15: 93–113Google Scholar
  32. Lehmann I (1961) S and the structure of the upper mantle. Geophys J R Ast Soc 4: 124–138Google Scholar
  33. Li A, Fisher KM, Wysession ME, Clarke TJ (1998) Mantle discontinuties and temperature under the North America. Nature 395: 160–163CrossRefGoogle Scholar
  34. Li C, van der Hilst RD, Toksoz MN (2006) Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys Earth Planet Int 154: 180–195CrossRefGoogle Scholar
  35. Liggoria JP, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seism Soc Am 89: 1395–1400Google Scholar
  36. Masse RP (1973) Compressional wave velocity distribution beneath central and eastern North America. Bull Seis Soc Am 63: 911–935Google Scholar
  37. Mitra S, Priestley K, Gaur VK, Rai SS (2006) Shear-Wave structure of the south Indian Lithosphere from Rayleigh wave phase velocity measurements. Bull Seism Soc Am 96: 1551–1559CrossRefGoogle Scholar
  38. Molnar P (1988) A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram and their tectonic implications. Phil Trans R Soc Lond Ser A 326: 33–88CrossRefGoogle Scholar
  39. Niu F, Lavender A, Cooper CM, Lee CA, Lenardic A, James DE (2004) Seismic constraints on the depth and composition of the mantle keel beneath the Kaapvaal craton. Earth Planet Sci Lett 224: 337–346CrossRefGoogle Scholar
  40. Owens TJ, Nyblade A, Gurrola H, Langston CA (2000) Mantle Transition Zone structure beneath Tanzania, East Africa. Geophys Res Lett 27: 827–830CrossRefGoogle Scholar
  41. Priestley K, Dabayle E, McKenzie D, Pilidou S (2006) Upper mantle structure of eastern Asia from multimode surface waveform tomography. J Geophys Res 111. doi: 10.1029/2005JB004082Google Scholar
  42. Rai, SS, Priestley K, Prakasam KS, Srinagesh D, Gaur VK Du Z (2003) Crustal Shear velocity structure of the south Indian shield. J Geophys Res 108: 2088. doi: 1029/2002JB001776CrossRefGoogle Scholar
  43. Rai SS, Priestley K, Gaur VK, Mitra S, Singh MP, Searle MP (2006) Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys Res Lett 33: L15308. doi: 10.1029/2006GL026076CrossRefGoogle Scholar
  44. Revenaugh J, Jordan TH (1991) Mantle layering from ScS reverberations: 3. The upper mantle. J Geophys Res 96: 19781–19810CrossRefGoogle Scholar
  45. Replumaz A, Karson H, van der Hilst RD, Besse J, Tapponier P (2004) 4-D evolution of SE Asia’s mantle from geological reconstruction and seismic tomography. Earth Planet Sci Lett 221: 103–115CrossRefGoogle Scholar
  46. Ringwood AE (1994) Role of transition zone and 660 km discontinuity in the mantle dynamics. Phys Earth Planet Int 86: 5–24CrossRefGoogle Scholar
  47. Ritzwoller MH, Shapiro NM, Barmin MP, Levshin AL (2002) Global surface wave diffraction tomography. J Geophys Res 107. doi: 10.1029/2002JB001777Google Scholar
  48. Saul J, Kumar MR, Sarkar D (2000) Lithospheric and upper mantle structure of the Indian shield, from teleseismic receiver function. Geophys res Lett 27: 2357–2360CrossRefGoogle Scholar
  49. Simmons NA, Gurrola H (2000) Multiple seismic discontinuties near the base of the transition zone in the earth’s mantle. Nature 405: 559–562CrossRefGoogle Scholar
  50. Vacher P, Mocquet A, Sotin C (1998) Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km discontinuity. Phys Earth Planet Int 106: 275–298CrossRefGoogle Scholar
  51. Van der Hilst DR (2004) Changing views on the earth’s mantle. Science 306: 817–818CrossRefGoogle Scholar
  52. van der Voo R, Spakman W, Bijwaard H (1999) Tethyan subducted slab under India. Earth Planet Sci Lett 171: 7–20CrossRefGoogle Scholar
  53. Wajeman N (1988) detection of underside reflections at mantle discontinuties by stacking broadband data. Geophys Res Lett 15: 669–672CrossRefGoogle Scholar
  54. Wittlinger G, Vergne J, Tapponier P, Farra V, Poupinet G, Jiang M, Su H, Herquel G, Paul A (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221: 117–130CrossRefGoogle Scholar
  55. Yuen DA, Reuteler DM, Balachander S, Steinbach V, Smedsmo JJ (1994) various influences on three-dimensional mantle convection with phase transition. Phys Earth Planet Inter 86: 185–203CrossRefGoogle Scholar
  56. Zhang Z, Lay T (1993) Investigation of upper mantle discontinuities near northwestern Pacific subduction zones using precursors to sSH. J Geophys Res 98: 4389–4405CrossRefGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  1. 1.National Geophysical Research InstituteHyderabadIndia
  2. 2.Indian Institute of AstrophysicsBangaloreIndia

Personalised recommendations