Skip to main content

Laboratory Measurements of Ultrasonic Wave Velocities of Crustal Rocks at High Pressures and Temperatures: Petrological Structure of Izu-Bonin-Mariana Arc Crust

  • Chapter

Abstract

To construct petrological model for island arc crusts having relatively higher geothermal gradient, we developed experim ental techniques capable for simultaneous measurement of P- and S-wave velocities of an encapsulated rock specimen up to 1 GPa and 1000°C. In this paper we introduce our experimental methods and discuss petrological models of the Izu-Bonin-Mariana (IBM) island arc architecture. The models are constructed on the basis of our velocity measurement data at high temperatures and pressures and the seismic velocity profiles of the IBM arc crust previously reported (Suyehiro et al. 1996; Takahashi et al. 1998). These seismic velocity profiles clearly defined a stratified four-layered crustal structure for the IBM arc crust. Our ultrasonic laboratory measurements reveal that the IBM crust consists of a 5 km thick basaltic upper crust under lain by a 5 km thick tonalitic middle crust (Vp=6.2–6.3 km/s) while the lower crust consist of a 3 km thick hornblende-bearing gabbro (Vp=6.7–6.8 km/s) succeeded below by a 8 km thick pyroxenite or gabbroic rocks (Vp=7.1–7.3 km/s). The more recent seismic experiments of the IBM arc further highlighted the relatively low-velocity (Vp=7.4–7.7 km/s) domains located within the upper mantle immediately below the lower crust (Vp=7.1–7.3 km/s) (Kodaira et al. 2007a, 2007b). Seismic reflectors were observed within and near the base of these low-velocity domains. Our data suggest that the low-velocity domains probably represent mixtures of various garnet-pyroxenerich ultramafic rocks of crustal origin (restites after lower crustal anatexis and/or cumulates after magmatic differentiation) and mantle peridotites components.

Keywords

  • Continental Crust
  • Lower Crust
  • Elastic Wave Velocity
  • Ultrasonic Wave Velocity
  • Lower Crustal Rock

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki K (1971) Petrology of mafic inclusions from Ichino-megata, Japan, Contributions to Mineralogy and Petrology 30: 314–331

    CrossRef  Google Scholar 

  • Aizawa Y, Ito K, Tatsumi Y (2001) Experimental determination of compressional wave velocity of olivine aggregate up to 1000°C at 1 GPa. Tectonophysics 339: 473–479

    CrossRef  Google Scholar 

  • Anderson OL, Schreiber E, Liebermann RC, Soga N (1968) Some elastic constant data on minerals relevant to geophysics. Rev Geophys 6: 491–524

    CrossRef  Google Scholar 

  • Arai T (1987) Tectonics of Tanzawa mountains: constraints from metamorphic petrology. J Geological Society Japan 93: 185–200

    Google Scholar 

  • Arculus RJ (1981) Island arc magmatism in relation to the evolution of the crust and mantle. Tectonophysics 75: 113–133

    CrossRef  Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks at 2–10 kbar. J Geophys Res 66: 2199–2224

    CrossRef  Google Scholar 

  • Christensen NI, Fountain DM (1975) Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Bull Geolo Soc Am 86: 227–236

    CrossRef  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: A global view. J Geophys Res 100: 9761–9788

    CrossRef  Google Scholar 

  • Condie KC (1997) Plate Tectonics and Crustal Evolution, Butter-worth-Heinemann, Oxford

    Google Scholar 

  • Davidson JP, Arculus RJ (2005) The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown M, Ruchmer T (eds) Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge

    Google Scholar 

  • Eggler DH, Mysen BO, Hoering TC (1974) Gas species in sealed capsules in solid-media, high pressure apparatus. Year Book 73: 228–232, Carnegie Inst, Washington DC

    Google Scholar 

  • Fliedner MM, Klemperer SL (1999) Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J Geophys Res 104: 10667–10694

    CrossRef  Google Scholar 

  • Fliedner MM, Klemperer SL (2000) Crustal structure transition from oceanic arc to continental arc, eastern Aleutial Islands and Alaska Peninsula. Earth Planet Sci Lett 179: 567–579

    CrossRef  Google Scholar 

  • Furukawa Y (1993) Magmatic processes under arc and formation of the volcanic front. J Geophys Res 98: 8309–8319

    CrossRef  Google Scholar 

  • Groos AF, Heege JP (1973) The high-low quartz transition up to 10 kbars pressure. J Geology 81: 717–724

    CrossRef  Google Scholar 

  • Gwanmesia GD, Rigden SM, Jackson I, Liebermann RC (1990) Pressure dependence of elastic wave velocity for β-Mg2SiO4 and the composition of the earth’s mantle. Science 250: 794–797

    CrossRef  Google Scholar 

  • Higo Y, Inoue T, Li B, Irifune T, Liebermann RC (2006) The effect of iron on the elastic properties of ringwoodite at high pressure. Phys Earth Planet Inter 159: 276–285

    CrossRef  Google Scholar 

  • Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27: 31–34

    CrossRef  Google Scholar 

  • Irifune T, Higo Y, Inoue T, Kono Y, Ohfuji H, Funakoshi K (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451: 814–817

    CrossRef  Google Scholar 

  • Ishikawa M, Kanao M (2002) Structure and collision tectonics of Pan-African orogenic belt-Scientific significance of the geotransect for a supercontinent: Gondwanaland. Bulletin of the Earthquake Research Institute, Tokyo University 77: 287–302 (in Japanese with English abstract)

    Google Scholar 

  • Ishikawa M, Shingai E, Arima M (2008) Elastic properties of high-grade metamorphosed igneous rocks from Enderby Land and eastern Dronning Maud Land, Antarctica: evidence for biotite-bearing mafic lower crust. In: Satish-Kumar et al. (eds) Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection. Geological Society London, Special Publications. 308: 183–194.

    Google Scholar 

  • Ito K, Tatsumi Y (1995) Measurement of elastic wave velocities in granulite and amphibolite having identical H2O-free bulk compositions up to 850°C at 1 GPa. Earth Planet Sci Lett 133: 255–264

    CrossRef  Google Scholar 

  • Jackson I, Niesler H (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In: Manghnani M, Syono Y (eds) High Pressure Research: Application to Earth and Planetary Sciences. Terra Scientific Publishing Co and American Geophysical Union, Tokyo and Washington DC

    Google Scholar 

  • Kanao M, Ishikawa M (2004) Origins of the lower crustal reflectivity in the Lutzow-Holm Complex, Enderby Land, East Antarctica. Earth Planets Space 56: 151–162

    Google Scholar 

  • Katsune G, Ishikawa M, Arima M (2007) Laboratory measurements of elastic wave velocities in the Tanzawa hornblende gabbro at high pressure and temperatures. Abstract of the Geological Society of Japan 114: 264 (in Japanese)

    Google Scholar 

  • Kawate S, Arima M (1998) Petrogenesis of the Tanzawa plutonic complex, central Japan: exposed felsic middle crust of the Izu-Bonin-Mariana arc. Island Arc 7: 342–358

    CrossRef  Google Scholar 

  • Kern H, Liu B, Popp T (1997) Relationship between anisotropy of P and S-wave velocities and anisotropy of attenuation in serpentinite and amphibolite. J Geophys Res 102: 3051–3065

    CrossRef  Google Scholar 

  • Kitamura K, Ishikawa M (1998) Rock velocities at atmospheric pressure and room temperature in Tanzawa plutonic rocks from central Japan. In: Motoyoshi Y, Shiraishi K (eds) Origin and Evolution of Continents. Memoirs of National Institute of Polar Research Spec Issue 53

    Google Scholar 

  • Kitamura K, Ishikawa M, Arima M, Shiraishi K (2001) Laboratory measurements of P-wave velocity of granulites from Lützow-Holm Complex, East Antarctica: Preliminary report. Polar Geoscience 14: 180–194

    Google Scholar 

  • Kitamura K, Ishikawa M, Arima M (2003) Petrological model of the northern Izu-Bonin-Mariana arc crust: constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics 371: 213–221

    CrossRef  Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Ito A, Tamura Y, Tatsumi Y, Kaneda Y (2007a) Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res 112: B05104, doi: 10.1029/2006JB004593

    CrossRef  Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007b) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35: 1031–1034

    CrossRef  Google Scholar 

  • Kono Y, Ishikawa M, Nakajima T, Khan S R, Arima M (2003) Strong decrease in ultrasonic Vp in lower crustal rocks at high temperature. Eos Trans. AGU 84 (46) Fall Meet Suppl Abstract F1441

    Google Scholar 

  • Kono Y, Ishikawa M, Arima M (2004) Discontinuous change in temperature derivative of Vp in lower crustal rocks. Geophys Res Lett 31: L22601, doi: 10.1029/2004GL020964

    CrossRef  Google Scholar 

  • Kono Y, Ishikawa M, Arima M (2006) Laboratory measurements of P-and S-wave velocities in polycrystalline plagioclase and gabbronorite up to 700°C and 1 GPa: Implications for the low velocity anomaly in the lower crust. Geophys Res Lett 33: L15314, doi: 10.1029/2006GL026526

    CrossRef  Google Scholar 

  • Kono Y, Ishikawa M, Arima M (2007) Effect of H2O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1 GPa and up to 1000°C. Physics of the Earth and Planetary Interiors doi: 10.1016/j.pepi. 2007.02.005

    Google Scholar 

  • Kono Y, Miyake A, Ishikawa M, Arima M (2008) Temperature derivatives of elastic wave velocities in plagioclase (An51±1) above and below the order-disorder transition temperature. Am Mineralogist 93: 558–564

    CrossRef  Google Scholar 

  • Kono Y, Ishikawa M, Harigane Y, Michibayashi K, Arima M (2008) P-and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet (submitted)

    Google Scholar 

  • Kojo S, Arima M, Ishikawa M (2007) Elastic wave velocities and Poisson’s ratios of amphibolite up to 900°C at 1.0 GPa: Effect of dehydration melting on Poisson’s ratio of mid-to lower crustal rock. EOS Trans. 88 (52) MR31C-0530, 2

    Google Scholar 

  • Kozai Y, Arima M (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420°C and 1 GPa with controlled oxygen partial pressure. Am Mineralogist 90: 1759–1766

    CrossRef  Google Scholar 

  • Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74: 5961–5972

    CrossRef  Google Scholar 

  • Kung J, Li B, Uchida T, Wang Y, Neuville D, Liebermann RC (2004) In situ measurements of sound velocities and densities across the orthopyroxene->high-pressure clinopyroxene transition in MgSiO3 at high pressure. Phys Earth Planet Interiors 147: 27–44

    CrossRef  Google Scholar 

  • Li B, Rigden SM, Liebermann RC (1996) Elasticity of stishovite at high pressure. Phys Earth Planet Inter 96: 113–127

    CrossRef  Google Scholar 

  • Li B, Kung J, Liebermann RC (2004) Modern techniques in measuring elasticity of earth materials at high pressure and high temperature using ultrasonics in conjunction with synchrotron X-radiation. Phys Earth Planet Interiors 143–144: 559–574

    CrossRef  Google Scholar 

  • Liebermann RC, Schreiber E (1968) Elastic Constants of Polycrystalline Hematite as a Function of Pressure to 3 Kilobars. J Geophys Res 73: 6585–6590

    CrossRef  Google Scholar 

  • Martin H (1986) Effects of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 139: 753–756

    CrossRef  Google Scholar 

  • Matsushima S (1981) Compressional and shear wave velocities of igneous rocks and volcanic glasses to 900°C and 20 kbar. Tectonophysics 75: 257–271

    CrossRef  Google Scholar 

  • McSkimin HJ (1950) Ultrasonic measurement techniques applicable to small solid specimens. J Acoust Soc Am 22: 413–418

    CrossRef  Google Scholar 

  • Miller DJ, Christensen NI (1994) Sersmic signature and geochemistry of an island arc: A multidisciplinary study of the Kohistan accreted terrane, northern Pakistan. J Geophys Res 99: 11623–611642

    CrossRef  Google Scholar 

  • Mueller HJ, Massonne H-J (2001) Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy 26: 325–332

    CrossRef  Google Scholar 

  • Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implication for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7: 359–373

    CrossRef  Google Scholar 

  • Nishimoto S, Ishikawa M, Arima M, Yoshida T (2005) Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, nort-east Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics 396: 245–259

    CrossRef  Google Scholar 

  • Nishimoto S, Ishikawa M, Arima M, Yoshida T, Nakajima J (2008) Simultaneous high P-T measurements of ultrasonic compressional and shear wave velocities in Ichino-megata mafic xenoliths: Their bearings on seismic velocity perturbations in lower crust of northeast Japan arc. J Geophys Res doi: 10.1029/2008JB005587, in press

    Google Scholar 

  • Osanai Y, Owada M, Kawasaki, T (1992) Tertiary deep crustal ultrameta-morphism in the Hidaka metamorphic belt, northern Japan. J Metamor Geology 10: 401–414

    CrossRef  Google Scholar 

  • Rudnick LR (1992) Xenoliths-samples of the lower continental crust. In: Fountain DM, Arculus R, Kay RW (eds) Continental Lower Crust, Elsevier, Amsterdam

    Google Scholar 

  • Rudnick LR (1995) Making continental crust. Nature 378: 571–578

    CrossRef  Google Scholar 

  • Rollinson H (2005) Crustal genaration in the Arachean. In: Brown M, Ruchmer T (eds) Evolution and Differentiation of the Continental Crust, Cambridge University Press, Cambridge

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: A lower crustal perspective. Review of Geophysics 33: 267–309

    CrossRef  Google Scholar 

  • Saito K, Otomo I, Takai T (1991) K-Ar dating of the Tanzawa tonalitic body and some restrictions on the collision tectonics in the South Fossa Magna, central Japan. J Geomagn Geoelectr 43: 921–935

    CrossRef  Google Scholar 

  • Searle MP, Khan MA Fraser JE, Gough SJ, Jan MQ (1999) The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 18: 929–949

    CrossRef  Google Scholar 

  • Shingai E, Ishikawa M, Arima M (2001) P-wave velocity in ultrahigh temperature granulites from the Archean Napier Complex, East Antarctica. Polar Geoscience 14: 165–179

    Google Scholar 

  • Soh W, Pickering TK, Taira A, Tokuyama H (1991) Basin evolution in the arc-arc Izu Collision Zone, Mio-Pliocene Miura Group, central Japan. J Geol Soc Lond 148: 317–330

    CrossRef  Google Scholar 

  • Spetzler HA, Chen G, Whitehead S, Getting IC (1993) A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals. In: Liebermann RC, Sondergeld CH (eds) Experimental Techniques in Mineral and Rock Physics. Pure Applied Geo Phy 141: 341–377

    Google Scholar 

  • Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating and low-Q upper mantle beneath an oceanic island arc. Science 272: 390–392

    CrossRef  Google Scholar 

  • Taira A, Pickering TK, Windley BF, Soh W (1992) Accretion of Japanese Island arcs and implications for the origin of Archean greenstone belts. Tectonics 11: 1224–1244

    CrossRef  Google Scholar 

  • Taira A, Saito S, Aoike K, Morita S, Tokuyama H, Suyehiro K, Takahashi N, Shinohara M, Kiyokawa S, Naka J, Klaus A (1998) Nature and growth rate of the Northern Izu-Bonin (Ogasawara) arc crust and their implication for continental crust formation. Island Arc 7: 395–407

    CrossRef  Google Scholar 

  • Takahashi N, Suyehiro K, Shinohara M (1998) Implications from the seismic crustal structure of the northern Izu-Bonin arc. Island Arc 7: 383–394

    CrossRef  Google Scholar 

  • Takahashi N, Kodaira S, Klemperer S, Tatsumi Y, Kaneda Y, Suyehiro K (2007) Structure and evolution of Izu-Ogasawara (Bonin) — Mariana oceanic island arc crust. Geology 35: 203–206

    CrossRef  Google Scholar 

  • Takahashi N, Kodaira S, Tatsumi Y, Kaneda Y, Suyehiro K (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc-back-arc system. J Geophys Res 113: B01104, doi: 10.1029/2007 JB005020

    CrossRef  Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction Zone Magmatism. Blackwell Sci, Boston

    Google Scholar 

  • Tatsumi Y (2005) The subduction factory: How it operates in the evolving earth. GSA Today 15: 4–10

    CrossRef  Google Scholar 

  • Tatsumi Y, Kogiso T (2003) The subduction factory: Its role in the evolution of the earth’s crust and mantle. In: Larter RD, Leat PT (eds) Geological Soc of London, Special Publication, Geologeal Society London

    Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res 113: B02203, doi: 10.1029/2007JB005121

    CrossRef  Google Scholar 

  • Taylor RN (1967) The origin and growth of continents. Tectonophysics 4: 17–34

    CrossRef  Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution, Blackwell, Boston

    Google Scholar 

  • Webb SL (1989) The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys Che Miner 16: 684–692

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochimica Cosmochimica et Acta 59: 1217–1232

    CrossRef  Google Scholar 

  • Yamazaki T (1992) Heat flow in the Izu-Ogasawara (Bonin)-Mariana Arc. Bulletin of Geological Survey Japan 43: 207–235

    Google Scholar 

  • Yamamoto H, Yoshino T (1998) Superposition of replacements in the mafic granulites of the Jijal complex of the Kohistan arc, northern Pakistan: dehydration and rehydration within deep arc crust. Lithos 43: 219–234.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Ishikawa, M., Arima, M. (2009). Laboratory Measurements of Ultrasonic Wave Velocities of Crustal Rocks at High Pressures and Temperatures: Petrological Structure of Izu-Bonin-Mariana Arc Crust. In: Gupta, A.K., Dasgupta, S. (eds) Physics and Chemistry of the Earth’s Interior. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0346-4_8

Download citation