Geophysical and Experimental Petrological Studies of the Earth’s Interior



Seismo-tomographic studies, reveal the presence of two major discontinuities inside the earth: Mohorovicic discontinuity (occurring 35–45 km below the continents and 10–15 km below the ocean) and the other is Guttenberg-Reichert discontinuity, present 2860 km below the surface. These two discontinui ties divide the earth into, a) crust, b) mantle and c) core. There is also a low velocity discontinuity (Conrad, 10–15 km below the continental crust; not globally observed). Drilling of up to 13 km in Kola Peninsula, Russia across Conrad, shows the presence of sub-parallel faults causing intense shearing and re-equilibration to lower grade metamorphic rocks. Phase equilibria studies on olivine, Mg-Fe pyroxenes, diopsides, garnet, (Mg, Fe)O under P-T conditions similar to upper and lower mantle conditions suggest that the discontinuity at 313 km can be correlated with orthopyroxene ⇔ high pressure clinopyroxene (Mg, Fe)SiO3 phase transformation, but those at 410, 520 at 660 km have been attributed to structural changes of olivine ⇔ wadsleyite, wadsleyite ⇔ ringwoodite and akimotite ⇔ perovskite, respectively. The discontinu ity at 720 and 1200 km are considered to be due to conversion of MgSiO3 (majorite) to MgSiO3 (perovskite) and stishovite (rutile structure) to a SiO2 polymorph having PbO2 or CaF2-like structure. The discontinuity at 1700 km may be due to conversion of cubic Ca-perovskite to tetragonal Ca-perovskite structure, and that at 2740 km at the beginning of D″ layer may be due to transformation of perovskite to post-perovskite structure. The ultra low velocity zone (ULVZ) below 2870 km is due to the presence of liquid iron core. Studies at megabar and high temperatures reveal that the solid iron core, has a hexagonal close-packed structure.


Lower Mantle Moho Discontinuity Phys Earth Planet Inter Mantle Transition Zone Majorite Garnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed-Zaid I, Madon M (1995) Electron microscopy of high pressure phases synthesised from natural garnets in a diamond anvil cell: Implications for mineralogy of the lower mantle. Earth Planet Sci Lett 129: 233–247CrossRefGoogle Scholar
  2. Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system. In: Rubie DC, Duffy TS, Ohtani E (eds) New Developments in High-Pressure Mineral Physics and Applications to the Earth’s Interior, ElsevierGoogle Scholar
  3. Akimoto S, Fujisawa H (1966) Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4 at 800°C. Earth Planet Sc Letters 1: 237–240CrossRefGoogle Scholar
  4. Akimoto S, Fujisawa H (1968) Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4. J Geophys Res 73: 1467–1479CrossRefGoogle Scholar
  5. Akimoto S, Syno Y (1969) Coesite-stishoivite transition. J Geophys Res 74: 1653–1659CrossRefGoogle Scholar
  6. Anderson DL (1969) Phase changes in the upper mantle. Science 157: 1165–1173CrossRefGoogle Scholar
  7. Asahara Y, Kubo T, Kondo T (2004) Phase relations of a carbonaceous chondrite at lower mantle conditions. In: Rubie DC, Duffy TS, Ohtani E (eds) New Developments in High-Pressure Mineral Physics and Applications to the Earth’s Interior, ElsevierGoogle Scholar
  8. Bataille K, Lund F (1996) Strong scattering of short period seismic waves by the CMB and the P-diffracted wave. Geophys Research Letters 18: 2413–2416CrossRefGoogle Scholar
  9. Bernal JD (1936) Discussion. Observatory 59: 268Google Scholar
  10. Birch F (1964) Density and composition of the mantle and core. J Geophys Res 69: 4377–4388CrossRefGoogle Scholar
  11. Boehlar R, von Bargen N, Chopelas A (1990) Melting thermal expansion and phase transition of iron at high pressures. J Geophys Res 95: 21731–21736CrossRefGoogle Scholar
  12. Boehler R (1993) Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 363: 534–536CrossRefGoogle Scholar
  13. Boehler R, Ross N (2007) Melting properties of lower mantle components. In: Price D G (ed) Treatise on Geophysics 2: Mineral Physics Past, Present and Future, ElsevierGoogle Scholar
  14. Boettcher AL, Wyllie PJ (1968a) Jadeite stability measured in presence of silicate liquids in the system NaAlSiO 4-SiO2-H2O. Geochim Cosmochim Acta 32: 999–1012CrossRefGoogle Scholar
  15. Boettcher AL, Wyllie PJ (1968b) Melting of granite with excess water to 30 kilobars pressure. J Geol 76: 235–244CrossRefGoogle Scholar
  16. Bolton H (1996) Long Period Travel Times and the structure of the Mantle. PhD Thesis, Univ California, San DiegoGoogle Scholar
  17. Boschi L, Dziewonski AM (1999) High and low resolution images of the Earth’s mantle-Implications of different approaches to tomographic modelling. J Geophys Res 104: 25567–25594CrossRefGoogle Scholar
  18. Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic prophiles. Geophys J Royal Astronom Soc 66: 579–596Google Scholar
  19. Cohen LH, Ito K, Kennedy GC (1967) Melting and phase relations in an anhydrous basalt to 40 kb. Am J Sc 265: 475–518CrossRefGoogle Scholar
  20. Collerson KD, Hapugoda S, Kamber BS, Williams Q (2000) Rocks from the Mantle Transition Zone: Majorite-Bearing Xenoliths from Malaita, Southwest Pacific. Science 288: 1215–1223CrossRefGoogle Scholar
  21. Dwivedi MM, Gupta AK (2008) Electrical conductivity of diopside under 4 and 7 GPa at variable temperatures. Science and Culture 74: 5–6, 195–198Google Scholar
  22. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25: 297–356CrossRefGoogle Scholar
  23. Earle PS, Shearer PM (1997) Observations of high frequency scattered energy associated with the core phase PKKP. Geophys Res Letters 25: 405–408CrossRefGoogle Scholar
  24. Earle PS, Shearer PM (1997) Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary. Science 277: 677–680CrossRefGoogle Scholar
  25. Eaton JP, Christiansen RL, Iyer HM, Pitt AM, Mabey DR, Blank HR, Zietz JRI, Gettings ME (1975) Magma beneath Yellowstone National Park. Science 188: 787–796CrossRefGoogle Scholar
  26. Evans R (2005) Geophysical evidence from the MELT area for compositional control on oceanic plates. Nature 437: 249–252CrossRefGoogle Scholar
  27. Evans RC (1966) An Introduction to Crystal Chemistry, 2nd edn. Cambridge University Press, LondonGoogle Scholar
  28. Fedotov SA, Tokarev PI (1974) Earthquakes, characteristics of the upper mantle under Kamchatka and their connection with volcanism (according to data collected up to 1971). Bull Volcanol 37: 245–257CrossRefGoogle Scholar
  29. Fei Y, Mao HK (1994) In situ determination of the Ni As phase of FeO at high pressure and temperature. Science 266: 1678–1680CrossRefGoogle Scholar
  30. Fisher RL, Raith W (1962) Topograp hy and structure of Peru-Chile Trench. Deep Sea Res 9: 423–443Google Scholar
  31. Flanagan MP, Shearer PM (1998) Global mapping of tomography on transition zone velocity discontinuity by stacking SS precursors. J Geophys Res Solid Earth 103: 2673–2692CrossRefGoogle Scholar
  32. Gaherty JB, Jordon TH (1995) Lehmann discontinuity as the base of an anisotropic layer beneath continents. Science 268: 1468–1471CrossRefGoogle Scholar
  33. Gaherty JB, Yankin W, Jordon TH, Weidner DJ (1999) Testing plausible upper-mantle compositions using time scale models of the 410 km discontinuity. Geophys Res Letters 26: 1641–1644CrossRefGoogle Scholar
  34. Garnero EJ, Helmberger DV (1995) A very slow basal layer underlying large-scale low velocity anomalies in the lower mantle beneath the Pacific: Evidence from core phases. Physics of the Earth and Planetary Interiors 91: 161–176CrossRefGoogle Scholar
  35. Garnero EJ, Helmberger DV (1996) Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the Central-Pacific. Geophys Res Letters 23: 977–980CrossRefGoogle Scholar
  36. Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95: 15751–15769CrossRefGoogle Scholar
  37. Gasparik T (1996) Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib Mineral Petrol 124: 139–153CrossRefGoogle Scholar
  38. Goroshkov GS (1958) On some theoretical problems of volcanology. Bull Volcanol 19: 103–113CrossRefGoogle Scholar
  39. Grand SP (1994) Mantle Shear structure beneath the Americas and surrounding oceans. J Geophys Res 99: 11591–11621CrossRefGoogle Scholar
  40. Grand SP, Van der Hilst RD, Widiyantoro S (1997) Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7: 1–7Google Scholar
  41. Graves RW, Helmberger DV (1988) Upper mantle cross section from Tonga to New Foundland. J Geophys Research Solid Earth and Planets 93: 4701–4711CrossRefGoogle Scholar
  42. Greise P (1968) Versuch einer gleiderung der erdkruste in nordichen Alpenvorland in den ostalapen und in teilen der westalpen mit hilfe characteristicher refractions laubzeit kurven sowie eine geologischedetung. Geophys. Abhand lungen. 1(2), 1–20, Inst Meteor Geophysik. Frei, Univ. BerlinGoogle Scholar
  43. Gu YJ, Dziewnski AM, Ekstrom G (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophys Res Letters 28: 4655–4658CrossRefGoogle Scholar
  44. Gung YC, Panning M, Bomanowicz B (2003) Global anisotropy and the thickness of continents. Nature 422: 707–711CrossRefGoogle Scholar
  45. Gupta AK, Yagi K. (1979) Experimental study of two picrites with reference to the genesis of kimberlite. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: Their Geology and Petrology and Geochemistry. Am Geophysical Union, Washington DCGoogle Scholar
  46. Hess (1965) Mid-oceanic ridges and tectonics of seafloor. In: Whittard WD, Bradshaw R (eds) Submarine geology and Geophysics, Butterworth, LondonGoogle Scholar
  47. Hill MN (1957) Recent exploration of the ocean floor. In: Ahrens L, Press F, Rankama K, Ruscorn S (eds) Physics and Chemistry of the earth. Pergamon Press, LondonGoogle Scholar
  48. Huang X, Yousheng Xu, Karato S (2005) Water content in the transition zone from electrical conductivity of Wadsleyite and Ringwoodite. Nature 434: 746–749CrossRefGoogle Scholar
  49. Ichiki M (2001) Upper mantle conductivity structure of the back-are region beneath north eastern China. Geophys Res Lett 28: 3773–3776CrossRefGoogle Scholar
  50. Ichiki M, Baba K, Obayashi M, Utada H (2006) Water content and geotherm in the upper mantle above the stagnant slab: Interpretation of electrical conductivity and seismic P-wave velocity models. Phys Earth Planet Inter 155: 1–15CrossRefGoogle Scholar
  51. Ita J, Stixrude L (1992) Petrology, elasticity and composition of the mantle transition zone. J Geophys Res 97: 6849–6866CrossRefGoogle Scholar
  52. Ito E, Takahashi E (1987) Ultra-high pressure transformation and the condition of the deep mantle. In: Manghanine MH, Syono Y (eds.) High pressure research in mineral physics. Amer Geophys Union, Washington DCGoogle Scholar
  53. Ito E, Takahashi E (1989) Post spinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res Solid Earth and Planets 94: 10637–10646CrossRefGoogle Scholar
  54. Jarosewitch E (1990) Chemical analysis of meteorites: a compilation of stony and iron meteorite analysis. Meteoritics 25: 323–337Google Scholar
  55. Jeanolz R, Lay T (1993) The core mantle boundary. Scientific American May: 48–65Google Scholar
  56. Jeanolz R, Wenk HR (1988) Convection and anisotropy of the inner core. Geophys Res Letter 15: 72–75CrossRefGoogle Scholar
  57. Jeffrey H (1937) On the materials and density of the earth’s crust. Mon Nat Roy Astron Soc Geophys Suppl 4: 50–61Google Scholar
  58. Johnson L (1967) Array measurements of P velocities in the upper mantle. J Geophys Res 72: 6309–6325CrossRefGoogle Scholar
  59. Johnson L (1969) Array measurements of P velocities in lower mantle. Bull Seism Soc Am 59: 973–1008Google Scholar
  60. Kaila KL, Narain H (1976) Evolution of the Himalayas based on seismotectonics and deep seismic sounding. Proc Himalayan Geol Sem Section II B: 1–39Google Scholar
  61. Kaila KL, Reddy PR, Dixit MM, Kotesware Rao (1985) Crustal structure across the Narmada-Son lineament, central India from deep seismic soundings. Geol Soc Ind 26: 465–480Google Scholar
  62. Kaila KL, Roychowdhury K, Reddy PR, Krishnan VG, Narain Hari, Subbotin SI, Sollogub VB, Chekunov AV, Kharetchko EG, Lazarenko MA, Ilchenko TV (1979) Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding. Jour Geol Soc Ind 20: 367–333Google Scholar
  63. Kaila KL, Tewari HC (1985) Deep seismic sounding and crustal tectonics. Assoc Explor Geophys Osmania Univ India 43–59Google Scholar
  64. Kaila KL, Tiwari HC, Mall DM (1987) Crustal structure and delineation of Gondwana basin in the Mahanadi delta area, India, from Deep Seismic Soundings. J Geol Soc Ind 29: 293–308Google Scholar
  65. Kaila KL, Tripathi KM, Dixit MM (1984) Crustal Structure along Wular Lake — Gulmarg. Aaoshera, profile across Pir Panjal Range of Himalayas from the seismic soundings. Geol Soc Ind 25: 706–719Google Scholar
  66. Karason H, Van der Hilst RD (2001) Tomographic imaging of the lowermost mantle with differential times of reflected and diffracted core phases (PKP, Pdiff). J Geophys Res 106: 6569–6587CrossRefGoogle Scholar
  67. Karki BB, Warren MC, Stixrude L, Ackland GJ, Crain J (1997) Ab initio studies of high-pressure structural transformations in silica. Physical Review B 55: 3465–3471CrossRefGoogle Scholar
  68. Kato T, Kumazawa M (1985) Garnet phase of MgSiO3 filling the pyroxene-ilmenite gap at very high temperature. Nature 316: 803–805CrossRefGoogle Scholar
  69. Kawakatsu H, Niu FL (1994) Seismic evidence for a 920 km discontinuity in the mantle. Nature 371: 301–305CrossRefGoogle Scholar
  70. Kennett BLN, Engdahi ER (1991) Travel times for global earthquake location and phase identification. Geophys J International 105: 429–465CrossRefGoogle Scholar
  71. Kesson SE, Fitz G, Shelley JW, Withers RL (1995) Phase relations structure and crystal chemistry of some aluminous silicate perovskites. Earth Planet Sci 134: 187–201CrossRefGoogle Scholar
  72. Khitarov NI (1964) New experimental work in the field of deep seated processes. Geochim Inter 3: 532–535Google Scholar
  73. Kinbota S, Berg E (1967) Evidence for magma in the Katmai volcanic range. Bull Volcanol 31: 175–214CrossRefGoogle Scholar
  74. Knittle E, Jeanolz R (1987) Synthesis and equation of state of (Mg, Fe) SiO3 perovskite to over 100 GPa. Science 235: 668–670CrossRefGoogle Scholar
  75. Knittle E, Jeanolz R (1991) Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science 251: 1438–1443CrossRefGoogle Scholar
  76. Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. In: Rubie DC, Duffy TS, Ohtani E (eds) New Developments in High-Pressure Mineral Physics and Applications to the Earth’s Interior, ElsevierGoogle Scholar
  77. Kubota S, E Berg (1967) Evidence for magma in the Katmai volcanic range. Bull Volcanol 31: 175–214CrossRefGoogle Scholar
  78. Kushiro (1973) Partial melting of garnet lherzolites from kimberlite at high pressures. In: Nixon PH (ed) Lesotho kimberlites. Lerotho National Development Corporation, Maseru, LesothoGoogle Scholar
  79. Lay T (2007) Deep Earth Structure-Lower Mantle and D″. In: Price DG (ed) Treatise on Geophysics 2: Mineral Physics Past, Present and Future, ElsevierGoogle Scholar
  80. Lay T, Willams Q, Granero EJ, Kellogg L, Wysession ME (1998b) Seismic wave anisotropy in the D″ region and its implications In: Gurnis M, Wysession, ME, Knittle E and Buffett BA (eds) The Core-Mantle boundary Regions. Am Geophys Union, Washington DCGoogle Scholar
  81. Lay T, Young CJ (1989) Waveform complexity in teleseismic broadband SH displacements: Slab diffractions or deep mantle reflections? Geophys Res Lett 16: 605–608CrossRefGoogle Scholar
  82. Mao HK, Wu Y, Chen LC, Shu JF, Jephocat AP (1990) Static compression of iron to 300 Gpa and Fo0.8Ni0.2 alloy to 260 Gpa: Implications for compression of the core. J Geophys Res 95: 21737–21742CrossRefGoogle Scholar
  83. Mao HK, Yagi T, Bell PM (1977) Mineralogy of the earth’s deep mantle: Quenching experiments on mineral compositions at high pressure and temperature. Carnegie Inst Wash Yb 76: 502–504Google Scholar
  84. Mao HR, Hemley RJ, Chao ECT (1987b) The application of micro-Raman spectroscopy to analysis and identification of minerals in thin sections. Scanning microscopy 1: 495–501Google Scholar
  85. Mao WL, Mao HK, Goncharov AF, et al. (2002) Hydrogen clusters in clathrate hydrate. Science 297Google Scholar
  86. Markhinin EK (1968) Volcanism as an agent of formation of the Earth’s crust. In: Knopoff L, Drake CL and Hart PJ (eds) The Crust and Upper Mantle of the Pacific Area. Geophysical Monograph 12, Am Geophys Union, Washington DCGoogle Scholar
  87. Masters G, Laske G, Bolton H, Dziewonski A (2000) The relative behavior of shear velocity, bulk sound speed and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Karato SI, Forte A, Liebermann R, Masters G and Stixrude L (eds) Earth’s deep Interior: Mineral Physics and Tomography from Atomic to the Global Scale. Am Geophys Union, Washington DCGoogle Scholar
  88. McBirney AR (1969) Compositional variations in Cenozoic calcalkaline suites of Central America. In: Oregon Dep. Geol Mineral Ind Bull 65: 185–189Google Scholar
  89. Mechie J, Egorkin AV, Fuchs K, Ryberg T, Solodilov L, Wenzel F (1993) P-wave mantle velocity structure beneath northern Eurasia from long-range recordings along the profile. Phys Earth Planet Inter 79: 269–286CrossRefGoogle Scholar
  90. Megnin C, Romanowicz B (2000) The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveform. Geophys J Int 143: 709–728CrossRefGoogle Scholar
  91. Megnin C, Romanowicz B (2008) The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher mode wave form. Geophys J Internet 143: 709–728CrossRefGoogle Scholar
  92. Melchior P (1986) The physics of the Earth’s core. Pergman press, Oxford.Google Scholar
  93. Miyajima N, Fujino K, Kondo N, Yagi T (1999) Garnet-perovskite transformation under conditions of the earth’s lower mantle: an analytical transmission electron microscopy study. Phys Earth Planet Int 116: 117–131CrossRefGoogle Scholar
  94. Morelli A, Dzieworksi AM, Woodhouse JH (1986) Anisotropy of the inner core inferred from PKIP travel times. Geophys Res Letter 13: 1545–1548CrossRefGoogle Scholar
  95. Morgan WR (1965) Gravity anomalies and convection currents: The Puerto Rico Trench and the Mid Atlantic rise. J Geophys Res 6189–6204Google Scholar
  96. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post perovskite phase transition in MgSiO3. Science 304: 855–858CrossRefGoogle Scholar
  97. Naray-Szabo STV (1943) Der Structure type des perovskits (CaTiO3). Naturewiss 31: 202–203CrossRefGoogle Scholar
  98. Nishimura CE and Forsyth DW (1989): The anisotropic structure of the upper mantle in the Pacific. Geophys J Oxford 96: 203–229CrossRefGoogle Scholar
  99. Nolet G, Grand SP, Kennet BLN (1994) Seismic heterogeneity in the upper mantle J Geophys Res 99: 23753–23766CrossRefGoogle Scholar
  100. Nuttli OW (1969) Travel times and amplitude of S waves from nuclear explosion in Nevada. Bull Seism Soc Am 59: 385–398Google Scholar
  101. O’Neill B, Jeanloz R (1994) MgSiO3-FeSiO3-Al2O3 in the Earth’s lower mantle: perovskite and garnet at 1200 km depth. J Geophys Res 99: 19901–19915CrossRefGoogle Scholar
  102. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430: 445–448CrossRefGoogle Scholar
  103. Oguri K, Funamori N, Takeyuki U, Nobuyoshi M, Yagi T, Fujino K (2000) Post-garnet transition in a natural pyrope: A multi-anvil study based on in situ X-ray diffraction and transmission electron microscopy. Physics of the Earth and Planetary Interiors 122: 175–186CrossRefGoogle Scholar
  104. Ohtani E, Kato T, Sawamoto H (1986) Melting of model chondritic mantle to 20 GPa. Nature 322: 352–354CrossRefGoogle Scholar
  105. Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. In: Rubie DC, Duffy TS, Ohtani E (eds) New Developments in High-pressure Mineral Physics and Applications to the Earth’s interior. ElsevierGoogle Scholar
  106. Ohtani E, Sawamoto H (1987) Melting experiment on a model chondrite mantle composition at 25 GPa. Geophys Res Letter 14: 733–736CrossRefGoogle Scholar
  107. Panero W, Knutson R, Akbar S, Stixrude L (2006) Al2O3 incorporation in MgSiO3 perovskite and ilmenite. Earth and Planetary Science Letters 252: 152–161CrossRefGoogle Scholar
  108. Presnall DC, Gasparik T (1990) Melting enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4)-Majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J Gephys Res 95: 15.771–15.777CrossRefGoogle Scholar
  109. Press F (1969) The suboceanic mantle. Science 165: 174–176CrossRefGoogle Scholar
  110. Raith R (1963) The crustal rocks. In: M.N. Hill (ed.) The Sea. Wiley Inter Science, New YorkGoogle Scholar
  111. Revenaugh JS, Jordan TH (1991) Mantle layering from seismic reverberations, 2. The transition zone. J Geophys Res 96: 19763–19780CrossRefGoogle Scholar
  112. Ringwood AE (1974) The petrological evolution of island are systems. J Geol Soc London 183–204Google Scholar
  113. Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill Book Company, USAGoogle Scholar
  114. Ringwood AE, Major A (1966) Synthesis of Mg2SiO4-Fe2SiO4 solid solutions. Earth and Planet Sc Letters 1: 241–245CrossRefGoogle Scholar
  115. Ringwood AE, Major A (1968) High pressure transformations of spinels. 1. Earth and Planet Sc Letters 5: 245–250CrossRefGoogle Scholar
  116. Ringwood AE, Major A (1971) Olivine-spinel transformations in MgMnGeO4, FeMnGeO4 and CoMnGeO4. J Phys Chem Solids 31: 2791–2793CrossRefGoogle Scholar
  117. Ringwood AF, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Interior 3: 89–108CrossRefGoogle Scholar
  118. Ritsema J, van Heijst HJ (2000) Seismic imaging of structural heterogeneity in the Earth’s mantle: Evidence for large-scale mantle flow. Science Progress 83: 243–259Google Scholar
  119. Ritsema J, Van Heijst HJ (2002) Constraints on the correlation of P and S wave velocity homogeneity in the mantle from P, PP, PPP and PKPab travel times. Geophys J Internat 149: 482–489CrossRefGoogle Scholar
  120. Romanowicz B (1998) Attenuation tomography of the earth’s mantle. A review of current status. Pure and Applied Geophys 153: 257–272CrossRefGoogle Scholar
  121. Romanowicz B (2003) Global mantle tomography Progress status in the past 10 years. Annual Review of Earth and Planet Sci 31: 303–328CrossRefGoogle Scholar
  122. Ronov AB, Yaroshevsky AA (1969) Chemical composition of the Earth’s Crust. In: Hart PJ (ed) The Earth’s Crust and Upper Mantle, Geophysical Monograph 13, Am Geophysical Union, Washington DCGoogle Scholar
  123. Saxena SK, Dubrovinsky LS, Haggkvist P, Cerenius G Shen, Mao HK (1995) Synchrotron X-ray Study of Iron at High Pressure and Temperature. Science 269: 1703–1704CrossRefGoogle Scholar
  124. Serghiou G, Zerr A, Chopelas A, Boehler R (1998) The transition of pyrope to perovskite. Phys Chem Miner 25: 193–196CrossRefGoogle Scholar
  125. Shearer PM (1990) Seismic imaging of upper mantle structure with new evidence for a 520 km discontinuity. Nature 344: 121–126CrossRefGoogle Scholar
  126. Shen GY, Prakopenka VB, River ML, Sutton SR (2004) Structure of liquid iron at pressures up to 58 GPa. Physical Review Letters 92: 1–4Google Scholar
  127. Shidorin I, Gurnis M, Helmberger DV (1999) Evidence for a ubiquitons seismic discontinuity at the base of the mantle. Science 286: 1326–1331CrossRefGoogle Scholar
  128. Shimozuru D (1963) Geophysical evidence for suggesting the existence of molten pockets in the earth’s upper mantle. Bull Volcanol 26: 181–195CrossRefGoogle Scholar
  129. Stacey FD (1977) A thermal model of the earth. Phys Earth Planet Int 15: 341–348CrossRefGoogle Scholar
  130. Steinhart JS, Meyer RP (1961) Explosion studies of continental structure. Carnegie Inst Wash Pub 62: 409Google Scholar
  131. Steinle-Neumann G, Stixrude L, Cohen RE, Gleseren O (2001) Elasticity of iron at the temperature of the Earth’s inner core. Nature 413: 57–60CrossRefGoogle Scholar
  132. Stixrude L (2007) Properties of Rocks and Minerals-Seismic Properties of Rocks and Minerals and Structure of the Earth. In: Price DG (ed) Treatise on Geophysics 2: Mineral Physics Past, Present and Future, ElsevierGoogle Scholar
  133. Stixrude L, Lithgow-Bertelloni C (2005) Mineralogy and elasticity of the oceanic upper mantle: Origin of the low velocity zone. J Geophys Res Solid Earth 110 B03204. doi: 10. 1029/2004 JB002965Google Scholar
  134. Takahashi E (1986) Melting of dry peridotite KLB-1 up to 14 GPa, Implications of the origin of the periodotitic upper mantle. J Geophys Res 91: 9367–9382CrossRefGoogle Scholar
  135. Takida M, Richet P (1989) Equation of state of CaSiO3 perovskite to 96 GPa. Geophys Res Lett 16: 1351–1354.CrossRefGoogle Scholar
  136. Talwani M, Pichon X Le, Ewing M (1966) A crustal section across Puetrico Trench. J Geophys Res 70: 341–352CrossRefGoogle Scholar
  137. Talwani M, Sutton GH, Worzel JL (1959) A crustal section across the Puero Rico Trench. J Geophys Res 64: 1545–1555CrossRefGoogle Scholar
  138. Tsuchiya T, Tsuchiya J, Ummemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in Earth’s lower mantle. Earth and Planet Science letters 224: 241–248CrossRefGoogle Scholar
  139. Uchiyama Y, Yagi T, Akaogi M, Ito E (1992) Technical report of the institute of solid state physics. The University of Tokyo, JapanGoogle Scholar
  140. Utada H, Koyama T, Shimazu H, Chane AD (2003) A seismiglobal reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett. 30.10.1029/2002 GL016092Google Scholar
  141. Utada H, Koyama T, Shimizu H, Chave AD (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Letter 30. 1194. doi: 10.1029/2002 GL 016902Google Scholar
  142. Vinnik L, Kato M, Kawakatsu H (2001) Search for seismic discontinuities in the lower mantle. Geophys J Internat 147: 41–56CrossRefGoogle Scholar
  143. Vinnik LP (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Inter 15: 39–45CrossRefGoogle Scholar
  144. Wang D, Mookherjee M, Youshang Xu, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443 977–980CrossRefGoogle Scholar
  145. Wang Y, Uchida T, Zhang J, Rivers ML, Sutton SR (2004) In: Ruble D, Duffy TS and Ohtani E (eds) New Developments in High Pressure Mineral Physics and Application to the Earth’s Interior, ElsevierGoogle Scholar
  146. Wells AF (1962) Structural Inorganic Chemistry, 2nd edn. Clarendon, OxfordGoogle Scholar
  147. Woodland AB (1998) The orthorhombic to high-monoclinic phase transition in Mg-Fe pyroxenes: Can it produce a seismic discontinuity. Geophys REs Letters 25: 1241–1244CrossRefGoogle Scholar
  148. Yagi T, Kusanagi S, Tsuchida Y, Fukai Y (1989) Isochemical compression and stability of perovskite-type CaSiO3. Proceeding Japan Acad. B-Physics 65: 129–132CrossRefGoogle Scholar
  149. Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443: 973–976CrossRefGoogle Scholar
  150. Zao D (2001) Seismic structure and origin of hotspots and mantle plumes. Earth and Planet Sci Letters 192: 251–265.CrossRefGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  1. 1.National Centre of Experimental Mineralogy and PetrologyUniversity of AllahabadAllahabad, U.P.India
  2. 2.Department of Earth SciencesUniversity of Western OntarioLondonCanada

Personalised recommendations