Advertisement

Post-perovskite Phase: Findings, Structure and Property

Chapter
  • 1.8k Downloads

Abstract

Experimental study by (1994) on natural garnets in a laser-heated diamond-anvil under 30 GPa showed transformation of this phase to a new mineral having a perovskite like structure. Subsequently mineral physicists observed that all essential mantle minerals transformed to an assemblage comprising perovskite or rock salt like structure. While studying pyrolitic assemblage under lower mantle conditions, Hirose et al. observed that between 110 and 120 GPa a new phase appeared. It had a structure with Cmcm space group and was isostructural with UFeS3. It had a layered structure made up of two types of layers. One layer had a two-dimensional network of SiO6 octahedra, connected by edge or corner sharing along the direction of a and c axis. The other layer is formed by Mg cation.

The P-T condition or depth of transformation of perovskite to post-perovskite structure coincides with the D″ layer of the earth. As this layer shows seismic anisotropy, it has been postulated that materials with post-perovskite structure may have lattice preferred orientation (LOP). This paper also describes deformation experiments related to development of LOP in the material with post-perovskite structures.

Keywords

Perovskite Phase Lower Mantle Seismic Anisotropy Lattice Prefer Orientation Photon Factory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carrez P, Ferre D, Cordier P (2007) Implications for plastic flow in deep mantle from modelling dislocations in MgSiO3. Nature 446: 68–70CrossRefGoogle Scholar
  2. Hirose K, Kawamura K (2004) Discovery of post-perovskite phase transition in MgSiO3 and the earth’s lowermost mantle (in Japanese) Rev High Press Sci Tec 14: 265–274CrossRefGoogle Scholar
  3. Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite phase. Am Mineral 90: 262–265CrossRefGoogle Scholar
  4. Iitaka T, Hirose K, Kawamura K, Murkami M (2004) The elasticity of MgSiO3 post-persovskite phase in the earth’s lowermost mantle. Nature 430: 442–445CrossRefGoogle Scholar
  5. Kesson SE, Fitz Gerald JD, Shelly JM (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature 393: 252–255CrossRefGoogle Scholar
  6. Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg,Fe)SiO3 perovskite to over 100 gigapascals. Science 235: 668–670CrossRefGoogle Scholar
  7. Kojitani H, Shirako Y, Akaogi M (2007) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Inter 165: 127–134CrossRefGoogle Scholar
  8. Liu L (1974) Post oxide phases of Forsterite and Enstatite. Geophys Res Lett 2: 417–419CrossRefGoogle Scholar
  9. Liu HZ, Chen J, Hu J, Martin CD, Weidner DJ, Hausermann D, Mao HK (2005) Octahedral filing evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32. L04304CrossRefGoogle Scholar
  10. Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao HK, Wenk HR (2006) Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311: 644–646CrossRefGoogle Scholar
  11. Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Dyffy TS, Wenk HR (2007). Deformation of (Mg,Fe)SiO3 post-perovskite and D” anisotropy. Science 316: 1729–1732CrossRefGoogle Scholar
  12. Murakami K (2004) Phase Transitions of Lower Mantle Minerals and Its Geophysical Implications, Ph.D thesis, Tokyo Institute of TechnologyGoogle Scholar
  13. Murakami K, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Postperovskite phase transition in MgSiO3. Science 304: 855–858CrossRefGoogle Scholar
  14. Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K (2007) Sound velocity of MgSiO3 post-perovskite phase: A constraint on the D”discontinuty. Earth Planet Sci Lett 259: 18–23CrossRefGoogle Scholar
  15. Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CalrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Minerals 34: 679CrossRefGoogle Scholar
  16. Okada T, Yagi T, Niwa K, Kikegawa T (2008) Phys Earth Planet Inter. submittedGoogle Scholar
  17. Oganov AR, Ono S (2004) Theoritical and experimental-evidence for a post-perovskite phase of MgSiO3 in earth’s D”layer. Nature 430: 445–448CrossRefGoogle Scholar
  18. Oganov AR, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of earth’s D”layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438: 1142–1144CrossRefGoogle Scholar
  19. Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Goto H, Ueda Y, Yagi T (2008) CaPtO3 as novel post-perovskite oxide. Phys Chem Minerals 35: 189CrossRefGoogle Scholar
  20. Ohta K, Onoda S, Hirose K, Sinmyo R, Shimizu K, Sata N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in earths D”layer. Science 320: 89–91CrossRefGoogle Scholar
  21. Ono S, Kikegawa T, Ohishi Y (2006) Structural properties of CalrO3-type MgSiO3 up to 144 GPa. Am Minera 19: 475–478CrossRefGoogle Scholar
  22. Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Hirose K, Ohishi O (2006) Equation of state of the post-perovskite phase synthesised from a natural (Mg,Fe)SiO3 and CdGeO3 perovskite and the post-perovskite phase transition. Proc Natl Acad Sci 103: 3039–3043CrossRefGoogle Scholar
  23. Tateno S, Hirose K, Sata N, Ohishi Y (2005) High-pressure behavior of MnGeO3 and CdGeO3 perovskite and the post-perovskite phase transition. Phys Chem Mineral 32: 721–725CrossRefGoogle Scholar
  24. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet Sci Lett 224: 241–248CrossRefGoogle Scholar
  25. Watanuki T, Shimomura O, Yagi T, Kondo T, Isshiki M (2001) Construction of laser-heated diamond-anvil cell system for in-situ X-ray diffraction study at Spring-8. Rev Sci Instrum 72: 1289–1292CrossRefGoogle Scholar
  26. Yamazaki D, Yoshino T, Ohfuji H ando J, Yoneda A (2006) Origin of seismic anisotropy in the D” layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252: 372–378CrossRefGoogle Scholar
  27. Yagi T, Mao HK, Bell PM (1978) Structure and crystal chemistry of post-perovskite type MgSiO3. Phys Chem Mineral 3: 97–110CrossRefGoogle Scholar
  28. Yagi T, Kondo T, Watanuki T, Shimomura O, Kikegawa T (2001) Laser heated diamond-anvil apparatus at the photon factory and SPring-8: Problems and improvements. Rev Sci Instrum 72: 1293–1296.CrossRefGoogle Scholar

Copyright information

© Indian National Science Academy, New Delhi 2009

Authors and Affiliations

  1. 1.Institute for Solid State PhysicsUniversity of TokyoJapan

Personalised recommendations