Clinical Applications of Dynamic Contrast-Enhanced (DCE) Permeability Imaging

  • Saulo Lacerda
  • Mark S. Shiroishi
  • Meng Law


A brief overview of the biophysical concepts of permeability imaging will be covered. More detailed reviews of the principles of dynamic contrast-enhanced (DCE) imaging can be found in several excellent reviews [1–3].


Vascular Permeability Conventional Magnetic Resonance Imaging Dynamic Susceptibility Contrast Magnetic Resonance Imaging Method Signal Intensity Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported in part by the GE Healthcare/RSNA Research Scholar Grant. Supported in part by the Zumberge Research Grant, University of Southern California.


  1. 1.
    Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol. 2007;28(10):1850–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Provenzale JM, Schmainda KM. Perfusion imaging for brain tumor characterization and assessment of treatment response. In: Jolesz FA, Newton HB, editors. Handbook of neuro-oncology neuroimaging. New York: Elsevier; 2008. p. 265–77.Google Scholar
  3. 3.
    Parker G, Padhani AR. T1-W DCE MRI: T1-weighted dynamic contrast-enhanced MRI. In: Tofts PS, editor. Quantitative MRI of the brain: measuring changes caused by disease. Chichester, West Sussex, England: John Wiley & Sons; 2003. p. 341–64.Google Scholar
  4. 4.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol. 2010;28(11):1963–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17(2):357–67.PubMedCrossRefGoogle Scholar
  6. 6.
    Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21(6):728–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH. Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst. 2005;97(3):172–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Jackson A, Jayson GC, Li KL, Zhu XP, Checkley DR, Tessier JJ, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol. 2003;76(903): 153–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Parks LD, Choma MA, York GE, Moya M, Provenzale JM. Correlation of DCE and rCBV values for patients with high grade glial neoplasms. Proceedings of the Radiological Society of North America. 2005;Chicago, Ill:346.Google Scholar
  10. 10.
    Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res. 2007;74(2–3):72–84.PubMedCrossRefGoogle Scholar
  11. 11.
    Cao Y, Nagesh V, Hamstra D, Tsien CI, Ross BD, Chenevert TL, et al. The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res. 2006;66(17): 8912–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247(2):490–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Danchaivijitr N, Waldman AD, Tozer DJ, Benton CE, Brasil Caseiras G, Tofts PS, et al. Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology. 2008;247(1): 170–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging – prediction of patient clinical response. Radiology. 2006;238(2):658–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Lev MH, Rosen BR. Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am. 1999;9(2):309–31.PubMedGoogle Scholar
  16. 16.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24(10): 1989–98.PubMedGoogle Scholar
  17. 17.
    Padhani AR, Husband JE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol. 2001;56(8):607–20.PubMedCrossRefGoogle Scholar
  18. 18.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191(1):41–51.PubMedGoogle Scholar
  19. 19.
    Parker GJ, Suckling J, Tanner SF, Padhani AR, Revell PB, Husband JE, et al. Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinetics. J Magn Reson Imaging. 1997;7(3):564–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Knopp MV, Giesel FL, Marcos H, von Tengg-Kobligk H, Choyke P. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging. 2001;12(4):301–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004;25(5): 746–55.PubMedGoogle Scholar
  22. 22.
    Roberts HC, Roberts TP, Ley S, Dillon WP, Brasch RC. Quantitative estimation of microvascular permeability in human brain tumors: correlation of dynamic Gd-DTPA-enhanced MR imaging with histopathologic grading. Acad Radiol. 2002;9 Suppl 1:S151–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Daniel BL, Yen YF, Glover GH, Ikeda DM, Birdwell RL, Sawyer-Glover AM, et al. Breast disease: dynamic spiral MR imaging. Radiology. 1998;209(2):499–509.PubMedGoogle Scholar
  24. 24.
    Provenzale JM, York G, Moya MG, Parks L, Choma M, Kealey S, et al. Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms. AJR Am J Roentgenol. 2006;187(4):1036–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol. 2006;27(2):409–17.PubMedGoogle Scholar
  26. 26.
    Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.PubMedGoogle Scholar
  27. 27.
    Patankar TF, Haroon HA, Mills SJ, Baleriaux D, Buckley DL, Parker GJ, et al. Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol. 2005;26(10):2455–65.PubMedGoogle Scholar
  28. 28.
    Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol. 2002;178(3):711–6.PubMedGoogle Scholar
  29. 29.
    Haris M, Husain N, Singh A, Husain M, Srivastava S, Srivastava C, et al. Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comput Assist Tomogr. 2008;32(6):955–65.PubMedCrossRefGoogle Scholar
  30. 30.
    Roberts HC, Roberts TP, Bollen AW, Ley S, Brasch RC, Dillon WP. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol. 2001;8(5):384–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol. 2002;179(3):783–9.PubMedGoogle Scholar
  32. 32.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol. 1998;171(6):1479–86.PubMedGoogle Scholar
  33. 33.
    Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol. 2001;22(5):959–68.PubMedGoogle Scholar
  34. 34.
    Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg. 1987;66(6):865–74.PubMedCrossRefGoogle Scholar
  35. 35.
    Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21(5):901–9.PubMedGoogle Scholar
  37. 37.
    Hazle JD, Jackson EF, Schomer DF, Leeds NE. Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging. 1997;7(6):1084–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4): 527–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): 987–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, et al. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol. 2008;10(3):361–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008;9(5):453–61.PubMedCrossRefGoogle Scholar
  43. 43.
    de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ. Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology. 2004;63(3): 535–7.PubMedGoogle Scholar
  44. 44.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82(1):81–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Meyzer C, Dhermain F, Ducreux D, Habrand JL, Varlet P, Sainte-Rose C, et al. A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiat Oncol. 2010;5:9.Google Scholar
  46. 46.
    de Groot JF, Yung WK. Bevacizumab and irinotecan in the treatment of recurrent malignant gliomas. Cancer J. 2008;14(5):279–85.PubMedCrossRefGoogle Scholar
  47. 47.
    Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27(8):1262–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Vredenburgh JJ, Desjardins A, Herndon 2nd JE, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25(30): 4722–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Fine HA. Promising new therapies for malignant gliomas. Cancer J. 2007;13(6):349–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Cha S, Knopp EA, Johnson G, Litt A, Glass J, Gruber ML, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol. 2000;21(5):881–90.PubMedGoogle Scholar
  53. 53.
    Muccio CF, Esposito G, Bartolini A, Cerase A. Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med. 2008;113(5): 747–57.PubMedCrossRefGoogle Scholar
  54. 54.
    Batra A, Tripathi RP. Atypical diffusion-weighted magnetic resonance findings in glioblastoma multiforme. Australas Radiol. 2004;48(3):388–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Erdogan C, Hakyemez B, Yildirim N, Parlak M. Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr. 2005;29(5): 663–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC. Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol. 2009;82(982):813–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Britt RH, Enzmann DR, Yeager AS. Neuropathological and computerized tomographic findings in experimental brain abscess. J Neurosurg. 1981;55(4):590–603.PubMedCrossRefGoogle Scholar
  58. 58.
    Cha S, Pierce S, Knopp EA, Johnson G, Yang C, Ton A, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol. 2001;22(6):1109–16.PubMedGoogle Scholar
  59. 59.
    Jain R, Ellika S, Lehman NL, Scarpace L, Schultz LR, Rock JP, et al. Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT? J Neurooncol. 2010;97(3):383–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223(1):11–29.PubMedCrossRefGoogle Scholar
  61. 61.
    Andersen C, Jensen FT. Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien). 1998;140(9):919–24.CrossRefGoogle Scholar
  62. 62.
    Ludemann L, Grieger W, Wurm R, Wust P, Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn Reson Imaging. 2005;23(8):833–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang S, Law M, Zagzag D, Wu HH, Cha S, Golfinos JG, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am J Neuroradiol. 2003;24(8): 1554–9.PubMedGoogle Scholar
  64. 64.
    Berger MS. Perfusion MR and the evaluation of meningiomas: is it important surgically? AJNR Am J Neuroradiol. 2003;24(8): 1499–500.PubMedGoogle Scholar
  65. 65.
    Firat AK, Karakas HM, Kahraman B, Firat Y, Altinok T, Kizilay A. Dynamic contrast-enhanced magnetic resonance imaging findings of mass lesions of the pontocerebellar angle. Kulak Burun Bogaz Ihtis Derg. 2007;17(4):217–23.PubMedGoogle Scholar
  66. 66.
    Zhu XP, Li KL, Kamaly-Asl ID, Checkley DR, Tessier JJ, Waterton JC, et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging. 2000;11(6):575–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Weber MA, Giesel FL, Stieltjes B. MRI for identification of progression in brain tumors: from morphology to function. Expert Rev Neurother. 2008;8(10):1507–25.PubMedCrossRefGoogle Scholar
  68. 68.
    Hawighorst H, Engenhart R, Knopp MV, Brix G, Grandy M, Essig M, et al. Intracranial meningeomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging. 1997;15(4):423–32.PubMedCrossRefGoogle Scholar
  69. 69.
    Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of RadiologyBeneficencia Portuguesa de Sao PauloSao PauloBrazil
  2. 2.Division of Neuroradiology, Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Los Angeles County Hospital and USC Medical Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations