Clinical Applications of MR Perfusion Imaging

  • Ronald L. Wolf


Several techniques are available for assessing brain perfusion or hemodynamics in the clinical setting, in general falling into two basic categories: those using diffusible and those using nondiffusible tracers. H 2 15 O PET, 99mTc-HMPAO or 99mTc-ECD single photon emission computed tomography, stable xenon computed tomography (CT), and arterial spin-labeled (ASL) MRI are examples of diffusible tracer techniques, where the tracer is not confined to the vessels and enters the tissue. The major nondiffusible tracer techniques in use are bolus contrast CT and MR perfusion methods, where the tracer remains within the vasculature as long as the blood–brain barrier is intact. Clinical experience in MRI is greatest for bolus contrast or dynamic susceptibility contrast perfusion MRI, although the use of dynamic contrast-enhanced and ASL techniques is increasing. Each MRI-based technique has advantages and disadvantages, which are discussed briefly in this chapter and in greater depth in chapters elsewhere in this book. Improvements in acquisition and postprocessing strategies over the last several years have made efficient implementation of both approaches a reality, not only in clinical trials but also in routine daily clinical practice with practical utility of perfusion methodology demonstrated for several applications such as acute and chronic cerebrovascular disease, central nervous system neoplasms, epilepsy, and aging and neurodegenerative disorders. This chapter focuses primarily on these clinical applications, using selected examples to illustrate strengths, weaknesses, or complementary roles of different MR perfusion techniques.


Single Photon Emission Compute Tomography Cerebral Blood Flow Cerebral Blood Volume Blood Oxygen Level Dependent Carotid Artery Stent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36:e83–99.PubMedCrossRefGoogle Scholar
  2. 2.
    Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19:701–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med. 2006;55:219–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Wang J, Alsop DC, Song HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med. 2003;50:599–607.PubMedCrossRefGoogle Scholar
  5. 5.
    Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15:488–500.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med. 2003;49:796–802.PubMedCrossRefGoogle Scholar
  7. 7.
    Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997;10:237–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med. 2005;53:15–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke. 2004;35:882–7. Epub 2004 Feb 2026.PubMedCrossRefGoogle Scholar
  10. 10.
    Werner R, Norris DG, Alfke K, Mehdorn HM, Jansen O. Continuous artery-selective spin labeling (CASSL). Magn Reson Med. 2005;53:1006–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Latchaw RE, Yonas H, Hunter GJ, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34:1084–104.PubMedCrossRefGoogle Scholar
  12. 12.
    Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-­labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4:346–59.PubMedCrossRefGoogle Scholar
  13. 13.
    Theberge J. Perfusion magnetic resonance imaging in psychiatry. Top Magn Reson Imaging. 2008;19:111–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Ostergaard L. Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging. 2005;22:710–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17:509–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Alsop DC, Perfusion MR. Imaging. In: Atlas SW, editor. Magnetic resonance imaging of the brain and spine. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2002. p. 215–38.Google Scholar
  18. 18.
    Wong EC. Quantifying CBF with pulsed ASL: technical and pulse sequence factors. J Magn Reson Imaging. 2005;22:727–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Latchaw RE, Alberts MJ, Lev MH, et al. Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke. 2009;40:3646–78.PubMedCrossRefGoogle Scholar
  20. 20.
    Kohrmann M, Schellinger PD. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro MR imaging. Radiology. 2009;251:627–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Wintermark M, Rowley HA, Lev MH. Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro CT. Radiology. 2009;251:619–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab. 2004;24:351–71.PubMedCrossRefGoogle Scholar
  23. 23.
    Larrue V, von Kummer RR, Muller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke. 2001;32:438–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Alsop DC, Makovetskaya E, Kumar S, Selim M, Schlaug G. Markedly reduced apparent blood volume on bolus contrast magnetic resonance imaging as a predictor of hemorrhage after thrombolytic therapy for acute ischemic stroke. Stroke. 2005;36:746–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Fiehler J, Remmele C, Kucinski T, et al. Reperfusion after severe local perfusion deficit precedes hemorrhagic transformation: an MRI study in acute stroke patients. Cerebrovasc Dis. 2005;19:117–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Kidwell CS, Villablanca JP, Saver JL. Advances in neuroimaging of acute stroke. Curr Atheroscler Rep. 2000;2:126–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Selim M, Fink JN, Kumar S, et al. Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator: prognostic value of the initial apparent diffusion coefficient and diffusion-weighted lesion volume. Stroke. 2002;33:2047–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Firlik AD, Yonas H, Kaufmann AM, et al. Relationship between cerebral blood flow and the development of swelling and life-threatening herniation in acute ischemic stroke. J Neurosurg. 1998;89:243–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Bang OY, Saver JL, Alger JR, et al. Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke. 2009;40:454–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Kassner A, Roberts T, Taylor K, Silver F, Mikulis D. Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol. 2005;26:2213–7.PubMedGoogle Scholar
  31. 31.
    Kassner A, Roberts TP, Moran B, Silver FL, Mikulis DJ. Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR Am J Neuroradiol. 2009;30:1864–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Wu S, Thornhill RE, Chen S, Rammo W, Mikulis DJ, Kassner A. Relative recirculation: a fast, model-free surrogate for the measurement of blood-brain barrier permeability and the prediction of hemorrhagic transformation in acute ischemic stroke. Invest Radiol. 2009;44(10):662–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol. 1998;55:1475–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Derdeyn CP, Grubb Jr RL, Powers WJ. Cerebral hemodynamic impairment: methods of measurement and association with stroke risk. Neurology. 1999;53:251–9.PubMedGoogle Scholar
  35. 35.
    Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol. 1991;29:231–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Derdeyn CP, Videen TO, Yundt KD, et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain. 2002;125:595–607.PubMedCrossRefGoogle Scholar
  37. 37.
    Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol. 2009;30:876–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Ginsberg MD. The new language of cerebral ischemia. AJNR Am J Neuroradiol. 1997;18:1435–45.PubMedGoogle Scholar
  39. 39.
    Kim JH, Lee SJ, Shin T, et al. Correlative assessment of hemodynamic parameters obtained with T2*-weighted perfusion MR imaging and SPECT in symptomatic carotid artery occlusion. AJNR Am J Neuroradiol. 2000;21:1450–6.PubMedGoogle Scholar
  40. 40.
    Bozzao A, Floris R, Gaudiello F, Finocchi V, Fantozzi LM, Simonetti G. Hemodynamic modifications in patients with ­symptomatic unilateral stenosis of the internal carotid artery: evaluation with MR imaging perfusion sequences. AJNR Am J Neuroradiol. 2002;23:1342–5.PubMedGoogle Scholar
  41. 41.
    Doerfler A, Eckstein HH, Eichbaum M, et al. Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease before and after carotid endarterectomy. J Vasc Surg. 2001;34:587–93.PubMedCrossRefGoogle Scholar
  42. 42.
    Kajimoto K, Moriwaki H, Yamada N, et al. Cerebral hemodynamic evaluation using perfusion-weighted magnetic resonance imaging: comparison with positron emission tomography values in chronic occlusive carotid disease. Stroke. 2003;34:1662–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Kluytmans M, van der Grond J, Folkers PJ, Mali WP, Viergever MA. Differentiation of gray matter and white matter perfusion in patients with unilateral internal carotid artery occlusion. J Magn Reson Imaging. 1998;8:767–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Kluytmans M, van der Grond J, Viergever MA. Gray matter and white matter perfusion imaging in patients with severe carotid artery lesions. Radiology. 1998;209:675–82.PubMedGoogle Scholar
  45. 45.
    Maeda M, Yuh WT, Ueda T, et al. Severe occlusive carotid artery disease: hemodynamic assessment by MR perfusion imaging in symptomatic patients. AJNR Am J Neuroradiol. 1999;20:43–51.PubMedGoogle Scholar
  46. 46.
    Nasel C, Azizi A, Wilfort A, Mallek R, Schindler E. Measurement of time-to-peak parameter by use of a new standardization method in patients with stenotic or occlusive disease of the carotid artery. AJNR Am J Neuroradiol. 2001;22:1056–61.PubMedGoogle Scholar
  47. 47.
    Nasel C, Kronsteiner N, Schindler E, Kreuzer S, Gentzsch S. Standardized time to peak in ischemic and regular cerebral tissue measured with perfusion MR imaging. AJNR Am J Neuroradiol. 2004;25:945–50.PubMedGoogle Scholar
  48. 48.
    Nighoghossian N, Berthezene Y, Philippon B, Adeleine P, Froment JC, Trouillas P. Hemodynamic parameter assessment with dynamic susceptibility contrast magnetic resonance imaging in unilateral symptomatic internal carotid artery occlusion. Stroke. 1996;27:474–9.PubMedCrossRefGoogle Scholar
  49. 49.
    van Osch MJ, Rutgers DR, Vonken EP, et al. Quantitative cerebral perfusion MRI and CO2 reactivity measurements in patients with symptomatic internal carotid artery occlusion. Neuroimage. 2002;17:469–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol. 2007;28:1850–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kudo K, Sasaki M, Yamada K, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254:200–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med. 2003;50:164–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology. 2009;72:1140–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31:680–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology. 1998;50:633–41.PubMedGoogle Scholar
  56. 56.
    Siewert B, Schlaug G, Edelman RR, Warach S. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology. 1997;48:673–9.PubMedGoogle Scholar
  57. 57.
    Hunsche S, Sauner D, Schreiber WG, Oelkers P, Stoeter P. FAIR and dynamic susceptibility contrast-enhanced perfusion imaging in healthy subjects and stroke patients. J Magn Reson Imaging. 2002;16:137–46.PubMedCrossRefGoogle Scholar
  58. 58.
    Kimura H, Kado H, Koshimoto Y, Tsuchida T, Yonekura Y, Itoh H. Multislice continuous arterial spin-labeled perfusion MRI in patients with chronic occlusive cerebrovascular disease: a correlative study with CO2 PET validation. J Magn Reson Imaging. 2005;22:189–98.PubMedCrossRefGoogle Scholar
  59. 59.
    Wolf RL, Alsop DC, McGarvey ML, Maldjian JA, Wang J, Detre JA. Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging. 2003;13:17–27.PubMedGoogle Scholar
  60. 60.
    Yoneda K, Harada M, Morita N, Nishitani H, Uno M, Matsuda T. Comparison of FAIR technique with different inversion times and post contrast dynamic perfusion MRI in chronic occlusive cerebrovascular disease. Magn Reson Imaging. 2003;21:701–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16:1236–49.PubMedCrossRefGoogle Scholar
  62. 62.
    Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med. 2001;46:974–84.PubMedCrossRefGoogle Scholar
  63. 63.
    Hendrikse J, van Osch MJ, Rutgers DR, et al. Internal carotid artery occlusion assessed at pulsed arterial spin-labeling perfusion MR imaging at multiple delay times. Radiology. 2004;233:899–904. Epub 2004 Oct 2014.PubMedCrossRefGoogle Scholar
  64. 64.
    Hendrikse J, Petersen ET, van Laar PJ, Golay X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology. 2008;246:572–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Bokkers RP, van der Worp HB, Mali WP, Hendrikse J. Noninvasive MR imaging of cerebral perfusion in patients with a carotid artery stenosis. Neurology. 2009;73:869–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Bokkers RP, van Laar PJ, van de Ven KC, Kapelle LJ, Klijn CJ, Hendrikse J. Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol. 2008;29:1698–703.PubMedCrossRefGoogle Scholar
  67. 67.
    Mull M, Schwarz M, Thron A. Cerebral hemispheric low-flow infarcts in arterial occlusive disease. Lesion patterns and angiomorphological conditions. Stroke. 1997;28:118–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Markus HS, Lythgoe DJ, Ostegaard L, O’Sullivan M, Williams SC. Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry. 2000;69:48–53.PubMedCrossRefGoogle Scholar
  69. 69.
    O’Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59:321–6.PubMedGoogle Scholar
  70. 70.
    Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124:457–67.PubMedCrossRefGoogle Scholar
  71. 71.
    Vernieri F, Pasqualetti P, Passarelli F, Rossini PM, Silvestrini M. Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke. 1999;30:593–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg. 1995;21:338–44. discussion 344–335.PubMedCrossRefGoogle Scholar
  73. 73.
    Arbab AS, Aoki S, Toyama K, et al. Quantitative measurement of regional cerebral blood flow with flow-sensitive alternating ­inversion recovery imaging: comparison with [iodine 123]-iodoamphetamin single photon emission CT. AJNR Am J Neuroradiol. 2002;23:381–8.PubMedGoogle Scholar
  74. 74.
    Guckel FJ, Brix G, Schmiedek P, et al. Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology. 1996;201:405–12.PubMedGoogle Scholar
  75. 75.
    Nighoghossian N, Berthezene Y, Meyer R, et al. Assessment of cerebrovascular reactivity by dynamic susceptibility contrast-­enhanced MR imaging. J Neurol Sci. 1997;149:171–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Yen YF, Field AS, Martin EM, et al. Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med. 2002;47:921–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC. Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging. 1999;10: 870–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Mandell DM, Han JS, Poublanc J, et al. Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in Patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke. 2008;39:2021–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Chang TY, Liu HL, Lee TH, et al. Change in cerebral perfusion after carotid angioplasty with stenting is related to cerebral vasoreactivity: a study using dynamic susceptibility-weighted contrast-enhanced MR imaging and functional MR imaging with a breath-holding paradigm. AJNR Am J Neuroradiol. 2009;30:1330–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Goode SD, Krishan S, Alexakis C, Mahajan R, Auer DP. Precision of cerebrovascular reactivity assessment with use of different quantification methods for hypercapnia functional MR imaging. AJNR Am J Neuroradiol. 2009;30:972–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Lythgoe DJ, Williams SC, Cullinane M, Markus HS. Mapping of cerebrovascular reactivity using BOLD magnetic resonance imaging. Magn Reson Imaging. 1999;17:495–502.PubMedCrossRefGoogle Scholar
  82. 82.
    Rutgers DR, Klijn CJ, Kappelle LJ, van der Grond J. Recurrent stroke in patients with symptomatic carotid artery occlusion is associated with high-volume flow to the brain and increased collateral circulation. Stroke. 2004;35:1345–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Rutgers DR, Klijn CJ, Kappelle LJ, van Huffelen AC, van der Grond J. A longitudinal study of collateral flow patterns in the circle of Willis and the ophthalmic artery in patients with a symptomatic internal carotid artery occlusion. Stroke. 2000;31:1913–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Kluytmans M, van der Grond J, van Everdingen KJ, Klijn CJ, Kappelle LJ, Viergever MA. Cerebral hemodynamics in relation to patterns of collateral flow. Stroke. 1999;30:1432–9.PubMedCrossRefGoogle Scholar
  85. 85.
    van Laar PJ, van der Grond J, Bremmer JP, Klijn CJ, Hendrikse J. Assessment of the contribution of the external carotid artery to brain perfusion in patients with internal carotid artery occlusion. Stroke. 2008;39:3003–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med. 1999;41:1093–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Gunther M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med. 2006;56:671–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Jones CE, Wolf RL, Detre JA, et al. Structural MRI of carotid artery atherosclerotic lesion burden and characterization of hemispheric cerebral blood flow before and after carotid endarterectomy. NMR Biomed. 2006;19:198–208.PubMedCrossRefGoogle Scholar
  89. 89.
    Werner R, Alfke K, Schaeffter T, Nabavi A, Mehdorn HM, Jansen O. Brain perfusion territory imaging applying oblique-plane arterial spin labeling with a standard send/receive head coil. Magn Reson Med. 2004;52:1443–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Wong EC. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med. 2007;58:1086–91.PubMedCrossRefGoogle Scholar
  91. 91.
    Davies NP, Jezzard P. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med. 2003;49:1133–42.PubMedCrossRefGoogle Scholar
  92. 92.
    van Laar PJ, van der Grond J, Mali WP, Hendrikse J. Magnetic resonance evaluation of the cerebral circulation in obstructive arterial disease. Cerebrovasc Dis. 2006;21:297–306.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu B, Wang X, Guo J, et al. Collateral circulation imaging: MR perfusion territory arterial spin-labeling at 3T. AJNR Am J Neuroradiol. 2008;29:1855–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Hendrikse J, van der Zwan A, Ramos LM, et al. Altered flow territories after extracranial-intracranial bypass surgery. Neurosurgery. 2005;57:486–94. discussion 486–494.PubMedCrossRefGoogle Scholar
  95. 95.
    Wityk RJ, Hillis A, Beauchamp N, Barker PB, Rigamonti D. Perfusion-weighted magnetic resonance imaging in adult moyamoya syndrome: characteristic patterns and change after surgical intervention: case report. Neurosurgery. 2002;51:1499–505. discussion 1506.PubMedGoogle Scholar
  96. 96.
    Calamante F, Ganesan V, Kirkham FJ, et al. MR perfusion imaging in Moyamoya Syndrome: potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke. 2001;32:2810–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Jefferson AL, Glosser G, Detre JA, Sinson G, Liebeskind DS. Neuropsychological and perfusion MR imaging correlates of revascularization in a case of moyamoya syndrome. AJNR Am J Neuroradiol. 2006;27:98–100.PubMedGoogle Scholar
  98. 98.
    Kim SK, Wang KC, Oh CW, et al. Evaluation of cerebral hemodynamics with perfusion MRI in childhood moyamoya disease. Pediatr Neurosurg. 2003;38:68–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee M, Zaharchuk G, Guzman R, Achrol A, Bell-Stephens T, Steinberg GK. Quantitative hemodynamic studies in moyamoya disease: a review. Neurosurg Focus. 2009;26:E5.PubMedCrossRefGoogle Scholar
  100. 100.
    Schubert GA, Weinmann C, Seiz M, et al. Cerebrovascular insufficiency as the criterion for revascularization procedures in selected patients: a correlation study of xenon contrast-enhanced CT and PWI. Neurosurg Rev. 2009;32:29–35. discussion 35–26.PubMedCrossRefGoogle Scholar
  101. 101.
    Tanaka Y, Nariai T, Nagaoka T, et al. Quantitative evaluation of cerebral hemodynamics in patients with moyamoya disease by dynamic susceptibility contrast magnetic resonance imaging–comparison with positron emission tomography. J Cereb Blood Flow Metab. 2006;26:291–300.PubMedCrossRefGoogle Scholar
  102. 102.
    Togao O, Mihara F, Yoshiura T, et al. Cerebral hemodynamics in Moyamoya disease: correlation between perfusion-weighted MR imaging and cerebral angiography. AJNR Am J Neuroradiol. 2006;27:391–7.PubMedGoogle Scholar
  103. 103.
    Ances BM, McGarvey ML, Abrahams JM, et al. Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. J Neuroimaging. 2004;14:133–8.PubMedGoogle Scholar
  104. 104.
    Gillard JH, Hardingham CR, Antoun NM, Freer CE, Kirkpatrick PJ. Evaluation of carotid endarterectomy with sequential MR perfusion imaging: a preliminary 12-month follow up. Clin Radiol. 1999;54:798–803.PubMedCrossRefGoogle Scholar
  105. 105.
    Kluytmans M, van der Grond J, Eikelboom BC, Viergever MA. Long-term hemodynamic effects of carotid endarterectomy. Stroke. 1998;29:1567–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Soinne L, Helenius J, Tatlisumak T, et al. Cerebral hemodynamics in asymptomatic and symptomatic patients with high-grade carotid stenosis undergoing carotid endarterectomy. Stroke. 2003;34:1655–61.PubMedCrossRefGoogle Scholar
  107. 107.
    Wilkinson ID, Griffiths PD, Hoggard N, et al. Short-term changes in cerebral microhemodynamics after carotid stenting. AJNR Am J Neuroradiol. 2003;24:1501–7.PubMedGoogle Scholar
  108. 108.
    Yun TJ, Cheon JE, Na DG, et al. Childhood moyamoya disease: quantitative evaluation of perfusion MR imaging–correlation with clinical outcome after revascularization surgery. Radiology. 2009;251:216–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Hosoda K, Kawaguchi T, Shibata Y, et al. Cerebral vasoreactivity and internal carotid artery flow help to identify patients at risk for hyperperfusion after carotid endarterectomy. Stroke. 2001;32:1567–73.PubMedCrossRefGoogle Scholar
  110. 110.
    Reigel MM, Hollier LH, Sundt Jr TM, Piepgras DG, Sharbrough FW, Cherry KJ. Cerebral hyperperfusion syndrome: a cause of neurologic dysfunction after carotid endarterectomy. J Vasc Surg. 1987;5:628–34.PubMedGoogle Scholar
  111. 111.
    Fukuda T, Ogasawara K, Kobayashi M, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy using cerebral blood volume measured by perfusion-weighted MR imaging ­compared with single-photon emission CT. AJNR Am J Neuroradiol. 2007;28:737–42.PubMedGoogle Scholar
  112. 112.
    Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol. 2008;29:1428–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Pollock JM, Deibler AR, Whitlow CT, et al. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol. 2009;30:378–85.PubMedCrossRefGoogle Scholar
  114. 114.
    Bartynski WS. Posterior reversible encephalopathy syndrome, part 2: controversies surrounding pathophysiology of vasogenic edema. AJNR Am J Neuroradiol. 2008;29:1043–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Bartynski WS. Posterior reversible encephalopathy syndrome, part 1: fundamental imaging and clinical features. AJNR Am J Neuroradiol. 2008;29:1036–42.PubMedCrossRefGoogle Scholar
  116. 116.
    Bracard S, Anxionnat R, Auliac S, et al. Relevance of diffusion and perfusion weighted mri for endovascular treatment of vasospasm in subarachnoid hemorrhage. J Neuroradiol. 2001;28:27–32.PubMedGoogle Scholar
  117. 117.
    Hattingen E, Blasel S, Dettmann E, et al. Perfusion-weighted MRI to evaluate cerebral autoregulation in aneurysmal subarachnoid haemorrhage. Neuroradiology. 2008;50:929–38.PubMedCrossRefGoogle Scholar
  118. 118.
    Hertel F, Walter C, Bettag M, Morsdorf M. Perfusion-weighted magnetic resonance imaging in patients with vasospasm: a useful new tool in the management of patients with subarachnoid hemorrhage. Neurosurgery. 2005;56:28–35. discussion 35.PubMedGoogle Scholar
  119. 119.
    Ohtonari T, Kakinuma K, Kito T, Ezuka I, Kanazawa T. Diffusion-perfusion mismatch in symptomatic vasospasm after subarachnoid hemorrhage. Neurol Med Chir (Tokyo). 2008;48:331–6. discussion 336.CrossRefGoogle Scholar
  120. 120.
    Rordorf G, Koroshetz WJ, Copen WA, et al. Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke. 1999;30:599–605.PubMedCrossRefGoogle Scholar
  121. 121.
    Weidauer S, Lanfermann H, Raabe A, Zanella F, Seifert V, Beck J. Impairment of cerebral perfusion and infarct patterns attributable to vasospasm after aneurysmal subarachnoid hemorrhage: a prospective MRI and DSA study. Stroke. 2007;38:1831–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Beck J, Raabe A, Lanfermann H, et al. Effects of balloon angioplasty on perfusion- and diffusion-weighted magnetic resonance imaging results and outcome in patients with cerebral vasospasm. J Neurosurg. 2006;105:220–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Nickele C, Muro K, Getch CC, Walker MT, Bernstein RA. Severe reversible cerebral vasoconstriction syndrome mimicking aneurysmal rupture and vasospasm. Neurocrit Care. 2007;7:81–5.PubMedCrossRefGoogle Scholar
  124. 124.
    Fiehler J, Illies T, Piening M, et al. Territorial and microvascular perfusion impairment in brain arteriovenous malformations. AJNR Am J Neuroradiol. 2009;30:356–61.PubMedCrossRefGoogle Scholar
  125. 125.
    Wolf RL, Wang J, Detre JA, Zager EL, Hurst RW. AV shunt visualization with arterial spin labeled perfusion MR imaging. Paper presented at: Proceedings of the International Society for Magnetic Resonance in Medicine, 2006; Seattle, WA, USA.Google Scholar
  126. 126.
    Guo WY, Wu YT, Wu HM, et al. Toward normal perfusion after radiosurgery: perfusion MR Imaging with independent component analysis of brain arteriovenous malformations. AJNR Am J Neuroradiol. 2004;25:1636–44.PubMedGoogle Scholar
  127. 127.
    Ducreux D, Buvat I, Meder JF, et al. Perfusion-weighted MR imaging studies in brain hypervascular diseases: comparison of arterial input function extractions for perfusion measurement. AJNR Am J Neuroradiol. 2006;27:1059–69.PubMedGoogle Scholar
  128. 128.
    Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:83–95.PubMedCrossRefGoogle Scholar
  129. 129.
    Aronen HJ, Perkio J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am. 2002;12:501–23.PubMedCrossRefGoogle Scholar
  130. 130.
    Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol. 2006;27:475–87.PubMedGoogle Scholar
  131. 131.
    Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol. 2005;185:763–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191:41–51.PubMedGoogle Scholar
  133. 133.
    Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology. 2009;250:887–96.PubMedCrossRefGoogle Scholar
  134. 134.
    Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol. 2004;25:214–21.PubMedGoogle Scholar
  135. 135.
    Donahue KM, Krouwer HG, Rand SD, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med. 2000;43:845–53.PubMedCrossRefGoogle Scholar
  136. 136.
    Schmainda KM, Rand SD, Joseph AM, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol. 2004;25:1524–32.PubMedGoogle Scholar
  137. 137.
    Tourdias T, Rodrigo S, Oppenheim C, et al. Pulsed arterial spin labeling applications in brain tumors: practical review. J Neuroradiol. 2008;35:79–89.PubMedCrossRefGoogle Scholar
  138. 138.
    Cao Y, Sundgren PC, Tsien CI, Chenevert TT, Junck L. Physiologic and metabolic magnetic resonance imaging in gliomas. J Clin Oncol. 2006;24:1228–35.PubMedCrossRefGoogle Scholar
  139. 139.
    Cha S. Neuroimaging in neuro-oncology. Neurotherapeutics. 2009;6:465–77.PubMedCrossRefGoogle Scholar
  140. 140.
    Cha S, Pierce S, Knopp EA, et al. Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. AJNR Am J Neuroradiol. 2001;22:1109–16.PubMedGoogle Scholar
  141. 141.
    Bernarding J, Braun J, Koennecke HC. Diffusion- and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging. 2002;15:96–100.PubMedCrossRefGoogle Scholar
  142. 142.
    Pivawer G, Law M, Zagzag D. Perfusion MR imaging and proton MR spectroscopic imaging in differentiating necrotizing cerebritis from glioblastoma multiforme. Magn Reson Imaging. 2007;25:238–43.PubMedCrossRefGoogle Scholar
  143. 143.
    Ge Y, Law M, Johnson G, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26:1539–47.PubMedGoogle Scholar
  144. 144.
    Chan JH, Tsui EY, Chau LF, et al. Discrimination of an infected brain tumor from a cerebral abscess by combined MR perfusion and diffusion imaging. Comput Med Imaging Graph. 2002;26:19–23.PubMedCrossRefGoogle Scholar
  145. 145.
    Erdogan C, Hakyemez B, Yildirim N, Parlak M. Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J Comput Assist Tomogr. 2005;29:663–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Ernst TM, Chang L, Witt MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology. 1998;208:663–9.PubMedGoogle Scholar
  147. 147.
    Holmes TM, Petrella JR, Provenzale JM. Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR Am J Roentgenol. 2004;183:1247–52.PubMedGoogle Scholar
  148. 148.
    Muccio CF, Esposito G, Bartolini A, Cerase A. Cerebral abscesses and necrotic cerebral tumours: differential diagnosis by perfusion-weighted magnetic resonance imaging. Radiol Med. 2008;113:747–57.PubMedCrossRefGoogle Scholar
  149. 149.
    Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11–29.PubMedCrossRefGoogle Scholar
  150. 150.
    Al-Okaili RN, Krejza J, Woo JH, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy–initial experience. Radiology. 2007;243:539–50.PubMedCrossRefGoogle Scholar
  151. 151.
    Knopp EA, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999;211:791–8.PubMedGoogle Scholar
  152. 152.
    Ludemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zimmer C. Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol. 2001;11:1231–41.PubMedCrossRefGoogle Scholar
  153. 153.
    Maeda M, Itoh S, Kimura H, et al. Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology. 1993;189:233–8.PubMedGoogle Scholar
  154. 154.
    Jackson A, Kassner A, Annesley-Williams D, Reid H, Zhu XP, Li KL. Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. AJNR Am J Neuroradiol. 2002;23:7–14.PubMedGoogle Scholar
  155. 155.
    Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol. 2005;26:1446–54.PubMedGoogle Scholar
  156. 156.
    Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol. 2001;22:1306–15.PubMedGoogle Scholar
  157. 157.
    Young GS, Setayesh K. Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol. 2009;30:575–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Law M, Yang S, Babb JS, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol. 2004;25:746–55.PubMedGoogle Scholar
  159. 159.
    Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol. 2002;178:711–6.PubMedGoogle Scholar
  160. 160.
    Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21:891–9.PubMedGoogle Scholar
  161. 161.
    Weber MA, Zoubaa S, Schlieter M, et al. Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology. 2006;66:1899–906.PubMedCrossRefGoogle Scholar
  162. 162.
    Maia Jr AC, Malheiros SM, da Rocha AJ, et al. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol. 2005;26:777–83.PubMedGoogle Scholar
  163. 163.
    Whitmore RG, Krejza J, Kapoor GS, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg. 2007;107:600–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Wolf RL, Wang J, Wang S, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging. 2005;22:475–82.PubMedCrossRefGoogle Scholar
  165. 165.
    Law M, Meltzer DE, Wetzel SG, et al. Conventional MR imaging with simultaneous measurements of cerebral blood volume and vascular permeability in ganglioglioma. Magn Reson Imaging. 2004;22:599–606.PubMedCrossRefGoogle Scholar
  166. 166.
    Noguchi T, Yoshiura T, Hiwatashi A, et al. Perfusion imaging of brain tumors using arterial spin-labeling: correlation with histopathologic vascular density. AJNR Am J Neuroradiol. 2008;29:688–93.PubMedCrossRefGoogle Scholar
  167. 167.
    Chawla S, Wang S, Wolf RL, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007;28:1683–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.PubMedGoogle Scholar
  169. 169.
    Verma R, Zacharaki EI, Ou Y, et al. Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol. 2008;15:966–77.PubMedCrossRefGoogle Scholar
  170. 170.
    Law M, Young R, Babb J, Pollack E, Johnson G. Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. AJNR Am J Neuroradiol. 2007;28:761–6.PubMedGoogle Scholar
  171. 171.
    Wetzel SG, Cha S, Law M, et al. Preoperative assessment of intracranial tumors with perfusion MR and a volumetric interpolated examination: a comparative study with DSA. AJNR Am J Neuroradiol. 2002;23:1767–74.PubMedGoogle Scholar
  172. 172.
    Emblem KE, Nedregaard B, Nome T, et al. Glioma grading by using histogram analysis of blood volume heterogeneity from MR-derived cerebral blood volume maps. Radiology. 2008;247:808–17.PubMedCrossRefGoogle Scholar
  173. 173.
    Young R, Babb J, Law M, Pollack E, Johnson G. Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging. 2007;26:1053–63.PubMedCrossRefGoogle Scholar
  174. 174.
    Gaa J, Warach S, Wen P, Thangaraj V, Wielopolski P, Edelman RR. Noninvasive perfusion imaging of human brain tumors with EPISTAR. Eur Radiol. 1996;6:518–22.PubMedGoogle Scholar
  175. 175.
    Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003;228:523–32.PubMedCrossRefGoogle Scholar
  176. 176.
    Wang J, Fernandez-Seara MA, Wang S, St Lawrence KS. When perfusion meets diffusion: in vivo measurement of water permeability in human brain. J Cereb Blood Flow Metab. 2006;13:13.Google Scholar
  177. 177.
    Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol. 1998;171:1479–86.PubMedGoogle Scholar
  178. 178.
    Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol. 2006;58:394–403.PubMedCrossRefGoogle Scholar
  179. 179.
    Hakyemez B, Erdogan C, Bolca N, Yildirim N, Gokalp G, Parlak M. Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Magn Reson Imaging. 2006;24:817–24.PubMedCrossRefGoogle Scholar
  180. 180.
    Liao W, Liu Y, Wang X, et al. Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging. Acta Radiol. 2009;50:217–25.PubMedCrossRefGoogle Scholar
  181. 181.
    Sugahara T, Korogi Y, Shigematsu Y, et al. Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr. 1999;23:232–7.PubMedCrossRefGoogle Scholar
  182. 182.
    Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222:715–21.PubMedCrossRefGoogle Scholar
  183. 183.
    Hakyemez B, Yildirim N, Erdogan C, Kocaeli H, Korfali E, Parlak M. Meningiomas with conventional MRI findings resembling intraaxial tumors: can perfusion-weighted MRI be helpful in differentiation? Neuroradiology. 2006;48:695–702.PubMedCrossRefGoogle Scholar
  184. 184.
    Kimura H, Takeuchi H, Koshimoto Y, et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol. 2006;27:85–93.PubMedGoogle Scholar
  185. 185.
    Ludemann L, Grieger W, Wurm R, Wust P, Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-­enhanced MRI. Magn Reson Imaging. 2005;23:833–41.PubMedCrossRefGoogle Scholar
  186. 186.
    Uematsu H, Maeda M, Sadato N, et al. Vascular permeability: quantitative measurement with double-echo dynamic MR imaging–theory and clinical application. Radiology. 2000;214:912–7.PubMedGoogle Scholar
  187. 187.
    Yang S, Law M, Zagzag D, et al. Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. AJNR Am J Neuroradiol. 2003;24:1554–9.PubMedGoogle Scholar
  188. 188.
    Kremer S, Grand S, Remy C, et al. Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma. Neuroradiology. 2004;46:642–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Callot V, Galanaud D, Figarella-Branger D, et al. Correlations between MR and endothelial hyperplasia in low-grade gliomas. J Magn Reson Imaging. 2007;26:52–60.PubMedCrossRefGoogle Scholar
  190. 190.
    Chaskis C, Stadnik T, Michotte A, Van Rompaey K, D’Haens J. Prognostic value of perfusion-weighted imaging in brain glioma: a prospective study. Acta Neurochir (Wien). 2006;148:277–85. discussion 285.CrossRefGoogle Scholar
  191. 191.
    Maia Jr AC, Malheiros SM, da Rocha AJ, et al. Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonance imaging. J Neurosurg. 2004;101:970–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Law M, Oh S, Babb JS, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging–prediction of patient clinical response. Radiology. 2006;238:658–67. Epub 2006 Jan 2005.PubMedCrossRefGoogle Scholar
  193. 193.
    Law M, Oh S, Johnson G, et al. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery. 2006;58:1099–107. discussion 1099–1107.PubMedCrossRefGoogle Scholar
  194. 194.
    Law M, Young RJ, Babb JS, et al. Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2008;247:490–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Hoefnagels FW, Lagerwaard FJ, Sanchez E, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol. 2009;256:878–87.PubMedCrossRefGoogle Scholar
  196. 196.
    Bisdas S, Kirkpatrick M, Giglio P, Welsh C, Spampinato MV, Rumboldt Z. Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol. 2009;30:681–8.PubMedCrossRefGoogle Scholar
  197. 197.
    Cao Y, Tsien CI, Nagesh V, et al. Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int J Radiat Oncol Biol Phys. 2006;64:876–85.PubMedCrossRefGoogle Scholar
  198. 198.
    Hirai T, Murakami R, Nakamura H, et al. Prognostic value of perfusion MR imaging of high-grade astrocytomas: long-term follow-up study. AJNR Am J Neuroradiol. 2008;29:1505–10.PubMedCrossRefGoogle Scholar
  199. 199.
    Saraswathy S, Crawford FW, Lamborn KR, et al. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol. 2009;91:69–81.PubMedCrossRefGoogle Scholar
  200. 200.
    Cao Y, Nagesh V, Hamstra D, et al. The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res. 2006;66:8912–7.PubMedCrossRefGoogle Scholar
  201. 201.
    Law M, Brodsky JE, Babb J, et al. High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: preliminary results of molecular studies in gliomas with elevated perfusion. J Magn Reson Imaging. 2007;25:1113–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Cha S, Knopp EA, Johnson G, et al. Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol. 2000;21:881–90.PubMedGoogle Scholar
  203. 203.
    Fuss M, Wenz F, Scholdei R, et al. Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys. 2000;48:53–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol. 2004;39:277–87.PubMedCrossRefGoogle Scholar
  205. 205.
    Wenz F, Rempp K, Hess T, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue: quantification with dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol. 1996;166:187–93.PubMedGoogle Scholar
  206. 206.
    Leach MO, Brindle KM, Evelhoch JL, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol. 2003;76(Spec No 1):S87–91.PubMedCrossRefGoogle Scholar
  207. 207.
    Gonzalez J, Kumar AJ, Conrad CA, Levin VA. Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys. 2007;67:323–6.PubMedCrossRefGoogle Scholar
  208. 208.
    Torcuator R, Zuniga R, Mohan YS, et al. Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol. 2009;94:63–8.PubMedCrossRefGoogle Scholar
  209. 209.
    Wong ET, Huberman M, Lu XQ, Mahadevan A. Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol. 2008;26:5649–50.PubMedCrossRefGoogle Scholar
  210. 210.
    Andersen C, Jensen FT. Differences in blood-tumour-barrier leakage of human intracranial tumours: quantitative monitoring of vasogenic oedema and its response to glucocorticoid treatment. Acta Neurochir (Wien). 1998;140:919–24.CrossRefGoogle Scholar
  211. 211.
    Armitage PA, Schwindack C, Bastin ME, Whittle IR. Quantitative assessment of intracranial tumor response to dexamethasone using diffusion, perfusion and permeability magnetic resonance imaging. Magn Reson Imaging. 2007;25:303–10.PubMedCrossRefGoogle Scholar
  212. 212.
    Bastin ME, Carpenter TK, Armitage PA, Sinha S, Wardlaw JM, Whittle IR. Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. AJNR Am J Neuroradiol. 2006;27:402–8.PubMedGoogle Scholar
  213. 213.
    Wilkinson ID, Jellineck DA, Levy D, et al. Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery. 2006;58:640–6. discussion 640–646.PubMedCrossRefGoogle Scholar
  214. 214.
    Clarke JL, Chang S. Pseudoprogression and pseudoresponse: challenges in brain tumor imaging. Curr Neurol Neurosci Rep. 2009;9:241–6.PubMedCrossRefGoogle Scholar
  215. 215.
    Robins HI, Lassman AB, Khuntia D. Therapeutic advances in malignant glioma: current status and future prospects. Neuroimaging Clin N Am. 2009;19:647–56.PubMedCrossRefGoogle Scholar
  216. 216.
    Brandes AA, Franceschi E, Tosoni A, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26:2192–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE. Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol. 2007;82:81–3.PubMedCrossRefGoogle Scholar
  218. 218.
    Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19:527–57.PubMedCrossRefGoogle Scholar
  219. 219.
    Barajas Jr RF, Chang JS, Segal MR, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253(2):486–96.PubMedCrossRefGoogle Scholar
  220. 220.
    Forsyth PA, Kelly PJ, Cascino TL, et al. Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg. 1995;82:436–44.PubMedCrossRefGoogle Scholar
  221. 221.
    McGirt MJ, Bulsara KR, Cummings TJ, et al. Prognostic value of magnetic resonance imaging-guided stereotactic biopsy in the evaluation of recurrent malignant astrocytoma compared with a lesion due to radiation effect. J Neurosurg. 2003;98:14–20.PubMedCrossRefGoogle Scholar
  222. 222.
    Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol. 2009;22:179–84.PubMedGoogle Scholar
  223. 223.
    Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain. 2005;128:1369–76.PubMedCrossRefGoogle Scholar
  224. 224.
    Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR. Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol. 1994;15:965–8.PubMedGoogle Scholar
  225. 225.
    Dupont P, Van Paesschen W, Palmini A, et al. Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone. Epilepsia. 2006;47:1550–7.PubMedCrossRefGoogle Scholar
  226. 226.
    Goffin K, Dedeurwaerdere S, Van Laere K, Van Paesschen W. Neuronuclear assessment of patients with epilepsy. Semin Nucl Med. 2008;38:227–39.PubMedCrossRefGoogle Scholar
  227. 227.
    Thadani VM, Siegel A, Lewis P, et al. Validation of ictal single photon emission computed tomography with depth encephalography and epilepsy surgery. Neurosurg Rev. 2004;27:27–33.PubMedCrossRefGoogle Scholar
  228. 228.
    Leonhardt G, de Greiff A, Weber J, et al. Brain perfusion following single seizures. Epilepsia. 2005;46:1943–9.PubMedCrossRefGoogle Scholar
  229. 229.
    Pollock JM, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA. Pulsed arterial spin-labeled MR imaging evaluation of tuberous sclerosis. AJNR Am J Neuroradiol. 2009;30:815–20.PubMedCrossRefGoogle Scholar
  230. 230.
    Fink GR, Pawlik G, Stefan H, Pietrzyk U, Wienhard K, Heiss WD. Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sci. 1996;137:28–34.PubMedCrossRefGoogle Scholar
  231. 231.
    Gaillard WD, Fazilat S, White S, et al. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology. 1995;45:1841–7.PubMedGoogle Scholar
  232. 232.
    Leiderman DB, Balish M, Sato S, et al. Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res. 1992;13:153–7.PubMedCrossRefGoogle Scholar
  233. 233.
    Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Int Neuropsychol Soc. 2007;13:526–38.PubMedCrossRefGoogle Scholar
  234. 234.
    Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L. An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging. 2008;26:870–3.PubMedCrossRefGoogle Scholar
  235. 235.
    Stefanovic B, Warnking JM, Kobayashi E, et al. Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage. 2005;28:205–15.PubMedCrossRefGoogle Scholar
  236. 236.
    Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol. 1999;30:115–24.PubMedCrossRefGoogle Scholar
  237. 237.
    Liu HL, Kochunov P, Hou J, et al. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med. 2001;45:431–5.PubMedCrossRefGoogle Scholar
  238. 238.
    Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol. 2001;22:1334–41.PubMedGoogle Scholar
  239. 239.
    Wu RH, Bruening R, Noachtar S, et al. MR measurement of regional relative cerebral blood volume in epilepsy. J Magn Reson Imaging. 1999;9:435–40.PubMedCrossRefGoogle Scholar
  240. 240.
    O’Brien TJ, David EP, Kilpatrick CJ, Desmond P, Tress B. Contrast-enhanced perfusion and diffusion MRI accurately lateralize temporal lobe epilepsy: a pilot study. J Clin Neurosci. 2007;14:841–9.PubMedCrossRefGoogle Scholar
  241. 241.
    Pendse N, Wissmeyer M, Altrichter S, et al. Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol. 2010;37(1):60–3.PubMedCrossRefGoogle Scholar
  242. 242.
    Lim YM, Cho YW, Shamim S, et al. Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res. 2008;82:183–9.PubMedCrossRefGoogle Scholar
  243. 243.
    Crelier GR, Hoge RD, Munger P, Pike GB. Perfusion-based functional magnetic resonance imaging with single-shot RARE and GRASE acquisitions. Magn Reson Med. 1999;41:132–6.PubMedCrossRefGoogle Scholar
  244. 244.
    Fernandez-Seara MA, Wang J, Wang Z, et al. Imaging mesial temporal lobe activation during scene encoding: comparison of fMRI using BOLD and arterial spin labeling. Hum Brain Mapp. 2007;28(12):1391–400.PubMedCrossRefGoogle Scholar
  245. 245.
    Fernandez-Seara MA, Wang Z, Wang J, et al. Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T. Magn Reson Med. 2005;54:1241–7.PubMedCrossRefGoogle Scholar
  246. 246.
    Alsop DC, Detre JA. Background suppressed 3D RARE arterial spin labeled perfusion MRI. Paper presented at: Proceedings of the International Society for Magnetic Resonance in Medicine, 1999; Philadelphia, PA, USA.Google Scholar
  247. 247.
    Wang J, Li L, Roc AC, et al. Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla. Magn Reson Imaging. 2004;22:1–7.PubMedCrossRefGoogle Scholar
  248. 248.
    Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M. Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging. 2007;25:696–702.PubMedCrossRefGoogle Scholar
  249. 249.
    Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med. 2004;51:736–43.PubMedCrossRefGoogle Scholar
  250. 250.
    Wang J, Licht DJ, Jahng GH, et al. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 2003;18:404–13.PubMedCrossRefGoogle Scholar
  251. 251.
    Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-­dependence with fully automatic image postprocessing algorithm. Magn Reson Med. 2007;58:1232–41.PubMedCrossRefGoogle Scholar
  252. 252.
    Wang J, Licht DJ. Pediatric perfusion MR imaging using arterial spin labeling. Neuroimaging Clin N Am. 2006;16:149–67. ix.PubMedCrossRefGoogle Scholar
  253. 253.
    Licht DJ, Wang J, Silvestre DW, et al. Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg. 2004;128:841–9.PubMedGoogle Scholar
  254. 254.
    Oguz KK, Golay X, Pizzini FB, et al. Sickle cell disease: continuous arterial spin-labeling perfusion MR imaging in children. Radiology. 2003;227:567–74.PubMedCrossRefGoogle Scholar
  255. 255.
    Strouse JJ, Cox CS, Melhem ER, et al. Inverse correlation between cerebral blood flow measured by continuous arterial spin-labeling (CASL) MRI and neurocognitive function in children with sickle cell anemia (SCA). Blood. 2006;108:379–81.PubMedCrossRefGoogle Scholar
  256. 256.
    Alsop DC, Fearing MA, Johnson K, Sperling R, Fong TG, Inouye SK. The role of neuroimaging in elucidating delirium pathophysiology. J Gerontol A Biol Sci Med Sci. 2006;61:1287–93.PubMedGoogle Scholar
  257. 257.
    Lehericy S, Marjanska M, Mesrob L, Sarazin M, Kinkingnehun S. Magnetic resonance imaging of Alzheimer’s disease. Eur Radiol. 2007;17:347–62.PubMedCrossRefGoogle Scholar
  258. 258.
    Ries ML, Carlsson CM, Rowley HA, et al. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc. 2008;56:920–34.PubMedCrossRefGoogle Scholar
  259. 259.
    Johnston SC, O’Meara ES, Manolio TA, et al. Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann Intern Med. 2004;140:237–47.PubMedGoogle Scholar
  260. 260.
    Mathiesen EB, Waterloo K, Joakimsen O, Bakke SJ, Jacobsen EA, Bonaa KH. Reduced neuropsychological test performance in asymptomatic carotid stenosis: the Tromso Study. Neurology. 2004;62:695–701.PubMedGoogle Scholar
  261. 261.
    Cohen MB, Mather PJ. A review of the association between congestive heart failure and cognitive impairment. Am J Geriatr Cardiol. 2007;16:171–4.PubMedCrossRefGoogle Scholar
  262. 262.
    Last D, Alsop DC, Abduljalil AM, et al. Global and regional effects of type 2 diabetes on brain tissue volumes and cerebral vasoreactivity. Diabetes Care. 2007;30:1193–9.PubMedCrossRefGoogle Scholar
  263. 263.
    Moftakhar R, Turk AS, Niemann DB, et al. Effects of carotid or vertebrobasilar stent placement on cerebral perfusion and cognition. AJNR Am J Neuroradiol. 2005;26:1772–80.PubMedGoogle Scholar
  264. 264.
    Krishnan S, Talley BD, Slavin MJ, Doraiswamy PM, Petrella JR. Current status of functional MR imaging, perfusion-weighted imaging, and diffusion-tensor imaging in Alzheimer’s disease diagnosis and research. Neuroimaging Clin N Am. 2005;15:853–68. xi.PubMedCrossRefGoogle Scholar
  265. 265.
    Gonzalez RG, Fischman AJ, Guimaraes AR, et al. Functional MR in the evaluation of dementia: correlation of abnormal dynamic cerebral blood volume measurements with changes in cerebral metabolism on positron emission tomography with fludeoxyglucose F 18. AJNR Am J Neuroradiol. 1995;16:1763–70.PubMedGoogle Scholar
  266. 266.
    Harris GJ, Lewis RF, Satlin A, et al. Dynamic susceptibility contrast MRI of regional cerebral blood volume in Alzheimer’s disease. Am J Psychiatry. 1996;153:721–4.PubMedGoogle Scholar
  267. 267.
    Harris GJ, Lewis RF, Satlin A, et al. Dynamic susceptibility contrast MR imaging of regional cerebral blood volume in Alzheimer disease: a promising alternative to nuclear medicine. AJNR Am J Neuroradiol. 1998;19:1727–32.PubMedGoogle Scholar
  268. 268.
    Luckhaus C, Flub MO, Wittsack HJ, et al. Detection of changed regional cerebral blood flow in mild cognitive impairment and early Alzheimer’s dementia by perfusion-weighted magnetic resonance imaging. Neuroimage. 2008;40:495–503.PubMedCrossRefGoogle Scholar
  269. 269.
    Pearlson GD, Harris GJ, Powers RE, et al. Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry. 1992;49:402–8.PubMedGoogle Scholar
  270. 270.
    Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G. Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol. 2001;22:1030–6.PubMedGoogle Scholar
  271. 271.
    Cavallin L, Axelsson R, Wahlund LO, et al. Voxel-based correlation between coregistered single-photon emission computed tomography and dynamic susceptibility contrast magnetic resonance imaging in subjects with suspected Alzheimer disease. Acta Radiol. 2008;49:1154–61.PubMedCrossRefGoogle Scholar
  272. 272.
    Sandson TA, O’Connor M, Sperling RA, Edelman RR, Warach S. Noninvasive perfusion MRI in Alzheimer’s disease: a preliminary report. Neurology. 1996;47:1339–42.PubMedGoogle Scholar
  273. 273.
    Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage. 2008;42:1267–74.PubMedCrossRefGoogle Scholar
  274. 274.
    Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM. Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology. 2009;250:856–66.PubMedCrossRefGoogle Scholar
  275. 275.
    Fleisher AS, Podraza KM, Bangen KJ, et al. Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiol Aging. 2009;30:1737–48.PubMedCrossRefGoogle Scholar
  276. 276.
    Johnson NA, Jahng GH, Weiner MW, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234:851–9.PubMedCrossRefGoogle Scholar
  277. 277.
    Du AT, Jahng GH, Hayasaka S, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006;67:1215–20.PubMedCrossRefGoogle Scholar
  278. 278.
    Fong T, Press D, Alsop DC. Greater blood flow reduction in mild diffuse lewy body disease than in mild Alzheimer’s disease. Paper presented at: Proceedings of the International Society for Magnetic Resonance in Medicine, 2006; Seattle, WA, USA.Google Scholar
  279. 279.
    Xu G, Antuono PG, Jones J, et al. Perfusion fMRI detects deficits in regional CBF during memory-encoding tasks in MCI subjects. Neurology. 2007;69:1650–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiology, Neuroradiology SectionUniversity of Pennsylvania Health SystemPhiladelphiaUSA

Personalised recommendations