Functional MRI of the Spinal Cord: Diffusion-Weighted, Diffusion Tensor Imaging, and Fiber Tractography

  • Meng Law
  • Majda M. Thurnher
  • Eric Schwartz
  • Adam Flanders


Diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), fiber tractography (FT), and blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) in the brain have seen progressive translation from the laboratory to the clinic in the past decade. In many clinics and institutions, DWI and DTI are part of the routine clinical MRI examination. At our institution, pre-surgical mapping of the eloquent brain is also commonly performed. More recently, these challenging advanced MR imaging techniques have been applied to an even more challenging part of the central nervous system, namely the spinal cord. There are major challenges to imaging the spinal cord.


Spinal Cord Spinal Cord Injury Fractional Anisotropy Diffusion Tensor Imaging Acquire Immune Deficiency Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maier SE, Mamata H. Diffusion tensor imaging of the spinal cord. Ann NY Acad Sci. 2005;1064:50–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Mikulis DJ, Wood ML, Zerdoner OA, Poncelet BP. Oscillatory motion of the normal cervical spinal cord. Radiology. 1994;192(1):117–21.PubMedGoogle Scholar
  3. 3.
    Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): application to high-resolution diffusion tensor imaging. Magn Reson Med. 2004;52(6):1388–96.PubMedCrossRefGoogle Scholar
  4. 4.
    von Mengershausen M, Norris DG, Driesel W. 3D diffusion tensor imaging with 2D navigated turbo spin echo. Magma. 2005;18(4):206–16.CrossRefGoogle Scholar
  5. 5.
    Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am. 2009;17:225–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Hesseltine S, Law M, Lopez S, Babb J, Johnson G. Diffusion tensor imaging of the human spinal cord: determination of normal regional metrics. In the Proceedings of the ISMRM 2006.Google Scholar
  7. 7.
    Hesseltine SM, Law M, Babb J, Rad M, Lopez S, Ge Y, et al. Diffusion tensor imaging in multiple sclerosis: assessment of regional differences in the axial plane within normal-appearing cervical spinal cord. AJNR Am J Neuroradiol. 2006;27(6):1189–93.PubMedGoogle Scholar
  8. 8.
    Schwartz ED, Cooper ET, Chin CL, Wehrli S, Tessler A, Hackney DB. Ex vivo evaluation of ADC values within spinal cord white matter tracts. AJNR Am J Neuroradiol. 2005;26(2):390–7.PubMedGoogle Scholar
  9. 9.
    Schwartz ED, Chin CL, Shumsky JS, Jawad AF, Brown BK, Wehrli S, et al. Apparent diffusion coefficients in spinal cord transplants and surrounding white matter correlate with degree of axonal dieback after injury in rats. AJNR Am J Neuroradiol. 2005;26(1):7–18.PubMedGoogle Scholar
  10. 10.
    Van Hecke W, Leemans A, Sijbers J, Vandervliet E, Van Goethem J, Parizel PM. A tracking-based diffusion tensor imaging segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging. J Magn Reson Imaging. 2008;27(5):978–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsuchiya K, Fujikawa A, Honya K, Nitatori T, Suzuki Y. Diffusion tensor tractography of the lower spinal cord. Neuroradiology. 2008;50(3):221–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology. 1976;26(6 PT 2):26–8.PubMedGoogle Scholar
  13. 13.
    Toussaint D, Perier O, Verstappen A, Bervoets S. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol. 1983;3(3):211–20.PubMedGoogle Scholar
  14. 14.
    Clark CA, Werring DJ, Miller DH. Diffusion imaging of the ­spinal cord in vivo: estimation of the principal diffusivities and application to multiple sclerosis. Magn Reson Med. 2000;43(1):133–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Valsasina P, Rocca MA, Agosta F, Benedetti B, Horsfield MA, Gallo A, et al. Mean diffusivity and fractional anisotropy histogram analysis of the cervical cord in MS patients. Neuroimage. 2005;26(3):822–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Ohgiya Y, Oka M, Hiwatashi A, Liu X, Kakimoto N, Westesson PL, et al. Diffusion tensor MR imaging of the cervical spinal cord in patients with multiple sclerosis. Eur Radiol. 2007; 17(10):2499–504.PubMedCrossRefGoogle Scholar
  17. 17.
    van Hecke W, Nagels G, Emonds G, Leemans A, Sijbers J, van Goethem J, et al. A diffusion tensor imaging group study of the spinal cord in multiple sclerosis patients with and without T2 spinal cord lesions. J Magn Reson Imaging. 2009;30(1):25–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Ducreux D, Lepeintre JF, Fillard P, Loureiro C, Tadie M, Lasjaunias P. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol. 2006;27(1):214–6.PubMedGoogle Scholar
  19. 19.
    Ducreux D, Fillard P, Facon D, Ozanne A, Lepeintre JF, Renoux J, et al. Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am. 2007;17(1):137–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Kadanka Z, Mares M, Bednanik J, Smrcka V, Krbec M, Stejskal L, et al. Approaches to spondylotic cervical myelopathy: conservative versus surgical results in a 3-year follow-up study. Spine. 2002;27(20):2205–10. discussion 2210–1.PubMedCrossRefGoogle Scholar
  21. 21.
    McCormick WE, Steinmetz MP, Benzel EC. Cervical spondylotic myelopathy: make the difficult diagnosis, then refer for surgery. Cleve Clin J Med. 2003;70(10):899–904.PubMedCrossRefGoogle Scholar
  22. 22.
    Healy JF, Healy BB, Wong WH, Olson EM. Cervical and lumbar MRI in asymptomatic older male lifelong athletes: frequency of degenerative findings. J Comput Assist Tomogr. 1996;20(1):107–12.PubMedCrossRefGoogle Scholar
  23. 23.
    Hochman M. Cervical spondylotic myelopathy: a review. The Internet Journal of Neurology 2005.Google Scholar
  24. 24.
    Ohta K, Fujimura Y, Nakamura M, Watanabe M, Yato Y. Experimental study on MRI evaluation of the course of cervical spinal cord injury. Spinal Cord. 1999;37(8):580–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsumoto M, Toyama Y, Ishikawa M, Chiba K, Suzuki N, Fujimura Y. Increased signal intensity of the spinal cord on magnetic resonance images in cervical compressive myelopathy. Does it predict the outcome of conservative treatment? Spine. 2000;25(6):677–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Matsuda Y, Miyazaki K, Tada K, Yasuda A, Nakayama T, Murakami H, et al. Increased MR signal intensity due to cervical myelopathy. Analysis of 29 surgical cases. J Neurosurg. 1991;74(6):887–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Facon D, Ozanne A, Fillard P, Lepeintre J-F, Tournoux-Facon C, Ducreux D. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol. 2005;26(6):1587–94.PubMedGoogle Scholar
  28. 28.
    Fukuoka M, Matsui N, Otsuka T, Murakami M, Seo Y. Magnetic resonance imaging of experimental subacute spinal cord compression. Spine. 1998;23(14):1540–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology. 2003;45(2):90–4.PubMedGoogle Scholar
  30. 30.
    Haughton V. Medical imaging of intervertebral disc degeneration: current status of imaging. Spine. 2004;29(23):2751–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim P, Haisa T, Kawamoto T, Kirino T, Wakai S. Delayed myelopathy induced by chronic compression in the rat spinal cord. Ann Neurol. 2004;55(4):503–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Hesseltine S, Law M, Lopez S, Babb J, Cooper PR, Frempong-Badou A, et al. Evaluation of the spinal cord in spondylosis using diffusion tensor imaging: changes in regional minor eigenvalues. In the Proceedings of the ISMRM 2006.Google Scholar
  33. 33.
    Petito CK, Cho ES, Lemann W, Navia BA, Price RW. Neuropathology of acquired immunodeficiency syndrome (AIDS): an autopsy review. J Neuropathol Exp Neurol. 1986;45(6):635–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Henin D, Smith TW, De Girolami U, Sughayer M, Hauw JJ. Neuropathology of the spinal cord in the acquired immunodeficiency syndrome. Hum Pathol. 1992;23(10):1106–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Gray F, Geny C, Lionnet F, Dournon E, Fenelon G, Gherardi R, et al. Neuropathologic study of 135 adult cases of acquired immunodeficiency syndrome (AIDS). Ann Pathol. 1991;11(4):236–47.PubMedGoogle Scholar
  36. 36.
    Artigas J, Grosse G, Niedobitek F. Vacuolar myelopathy in AIDS. A morphological analysis. Pathol Res Pract. 1990;186(2):228–37.PubMedGoogle Scholar
  37. 37.
    Dal Pan GJ, Glass JD, McArthur JC. Clinicopathologic correlations of HIV-1-associated vacuolar myelopathy: an autopsy-based case-control study. Neurology. 1994;44(11):2159–64.PubMedGoogle Scholar
  38. 38.
    Bergmann M, Gullotta F, Kuchelmeister K, Masini T, Angeli G. AIDS-myelopathy. A neuropathological study. Pathol Res Pract. 1993;189(1):58–65.PubMedGoogle Scholar
  39. 39.
    Thurnher MM, Post MJ, Jinkins JR. MRI of infections and neoplasms of the spine and spinal cord in 55 patients with AIDS. Neuroradiology. 2000;42(8):551–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Sartoretti-Schefer S, Blattler T, Wichmann W. Spinal MRI in vacuolar myelopathy, and correlation with histopathological findings. Neuroradiology. 1997;39(12):865–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Mueller-Mang C, Law M, Thurnher M. Diffusion tensor imaging of the cervical spinal cord in asymptomatic HIV-positive patients: preliminary results at 3.0 T. RSNA 2007.Google Scholar
  42. 42.
    Renoux J, Facon D, Fillard P, Huynh I, Lasjaunias P, Ducreux D. MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol. 2006;27(9):1947–51.PubMedGoogle Scholar
  43. 43.
    Lee JW, Park KS, Kim JH, Choi JY, Hong SH, Park SH, et al. Diffusion tensor imaging in idiopathic acute transverse myelitis. AJR Am J Roentgenol. 2008;191(2):W52–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Riggins RS, Kraus JF. The risk of neurologic damage with fractures of the vertebrae. J Trauma. 1977;17(2):126–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Castellano V, Bocconi FL. Injuries of the cervical spine with spinal cord involvement (myelic fractures): statistical considerations. Bull Hosp Joint Dis. 1970;31(2):188–94.PubMedGoogle Scholar
  46. 46.
    Rogers WA. Fractures and dislocations of the cervical spine; an end-result study. J Bone Joint Surg Am. 1957;39-A(2):341–76.PubMedGoogle Scholar
  47. 47.
    Flanders AE, Schaefer DM, Doan HT, Mishkin MM, Gonzalez CF, Northrup BE. Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology. 1990;177(1):25–33.PubMedGoogle Scholar
  48. 48.
    Ronnen HR, de Korte PJ, Brink PR, van der Bijl HJ, Tonino AJ, Franke CL. Acute whiplash injury: is there a role for MR imaging?–a prospective study of 100 patients. Radiology. 1996;201(1):93–6.PubMedGoogle Scholar
  49. 49.
    Borchgrevink G, Smevik O, Haave I, Haraldseth O, Nordby A, Lereim I. MRI of cerebrum and cervical columna within two days after whiplash neck sprain injury. Injury. 1997;28(5–6):331–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Pettersson K, Hildingsson C, Toolanen G, Fagerlund M, Bjornebrink J. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation. Spine. 1997;22(3):283–7. discussion 288.PubMedCrossRefGoogle Scholar
  51. 51.
    Rodriquez AA, Barr KP, Burns SP. Whiplash: pathophysiology, diagnosis, treatment, and prognosis. Muscle Nerve. 2004;29(6):768–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Ovadia D, Steinberg EL, Nissan MN, Dekel S. Whiplash injury – a retrospective study on patients seeking compensation. Injury. 2002;33(7):569–73.PubMedCrossRefGoogle Scholar
  53. 53.
    McDonald JW, Sadowsky C. Spinal-cord injury. Lancet. 2002;359(9304):417–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Beattie MS, Farooqui AA, Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma. 2000;17(10):915–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Nevo U, Hauben E, Yoles E, Agranov E, Akselrod S, Schwartz M, et al. Diffusion anisotropy MRI for quantitative assessment of recovery in injured rat spinal cord. Magn Reson Med. 2001;45(1):1–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Schwartz ED, Yezierski RP, Pattany PM, Quencer RM, Weaver RG. Diffusion-weighted MR imaging in a rat model of syringomyelia after excitotoxic spinal cord injury. AJNR Am J Neuroradiol. 1999;20(8):1422–8.PubMedGoogle Scholar
  57. 57.
    Ford JC, Hackney DB, Alsop DC, Jara H, Joseph PM, Hand CM, et al. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 1994;31(5):488–94.PubMedCrossRefGoogle Scholar
  58. 58.
    Nossin-Manor R, Duvdevani R, Cohen Y. q-Space high b value diffusion MRI of hemi-crush in rat spinal cord: evidence for spontaneous regeneration. Magn Reson Imaging. 2002;20(3):231–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Sagiuchi T, Tachibana S, Endo M, Hayakawa K. Diffusion-weighted MRI of the cervical cord in acute spinal cord injury with type II odontoid fracture. J Comput Assist Tomogr. 2002;26(4):654–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsuchiya K, Fujikawa A, Honya K, Tateishi H, Nitatori T. Value of diffusion-weighted MR imaging in acute cervical cord injury as a predictor of outcome. Neuroradiology. 2006;48(11):803–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Nedeltchev K, Loher TJ, Stepper F, Arnold M, Schroth G, Mattle HP, et al. Long-term outcome of acute spinal cord ischemia syndrome. Stroke. 2004;35(2):560–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Hundsberger T, Thomke F, Hopf HC, Fitzek C. Symmetrical infarction of the cervical spinal cord due to spontaneous bilateral vertebral artery dissection. Stroke. 1998;29(8):1742.PubMedCrossRefGoogle Scholar
  63. 63.
    Gass A, Back T, Behrens S, Maras A. MRI of spinal cord infarction. Neurology. 2000;54(11):2195.PubMedGoogle Scholar
  64. 64.
    Stepper F, Lovblad KO. Anterior spinal artery stroke demonstrated by echo-planar DWI. Eur Radiol. 2001;11(12):2607–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Loher TJ, Bassetti CL, Lovblad KO, Stepper FP, Sturzenegger M, Kiefer C, et al. Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology. 2003;45(8):557–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Kuker W, Weller M, Klose U, Krapf H, Dichgans J, Nagele T. Diffusion-weighted MRI of spinal cord infarction – high resolution imaging and time course of diffusion abnormality. J Neurol. 2004;251(7):818–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang JS, Huan Y, Sun LJ, Ge YL, Zhang XX, Chang YJ. Temporal evolution of spinal cord infarction in an in vivo experimental study of canine models characterized by diffusion-weighted imaging. J Magn Reson Imaging. 2007;26(4):848–54.PubMedCrossRefGoogle Scholar
  68. 68.
    Fujikawa A, Tsuchiya K, Takeuchi S, Hachiya J. Diffusion-weighted MR imaging in acute spinal cord ischemia. Eur Radiol. 2004;14(11):2076–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE. Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology. 2002;44(10):851–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Weidauer S, Dettmann E, Krakow K, Lanfermann H. Diffusion-weighted MRI of spinal cord infarction. Description of two cases and review of the literature. Nervenarzt. 2002;73(10):999–1003.PubMedCrossRefGoogle Scholar
  71. 71.
    Sagiuchi T, Iida H, Tachibana S, Kusumi M, Kan S, Fujii K. Case report: diffusion-weighted MRI in anterior spinal artery stroke of the cervical spinal cord. J Comput Assist Tomogr. 2003;27(3):410–4.PubMedCrossRefGoogle Scholar
  72. 72.
    Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48(11):795–801.PubMedCrossRefGoogle Scholar
  73. 73.
    Hess CP, Mukherjee P. Visualizing white matter pathways in the living human brain: diffusion tensor imaging and beyond. Neuroimaging Clin N Am. 2007;17(4):407–26. vii.PubMedCrossRefGoogle Scholar
  74. 74.
    Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29(4):632–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29(5):843–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41(4):1267–77.PubMedCrossRefGoogle Scholar
  77. 77.
    Mario RJ, Barros T, Biering-Sorensen F, et al. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003;26(Supp 1):50–6.Google Scholar
  78. 78.
    Mulcahey MJ, Gaughan J, Betz RR, et al. The international standards for neurological classification of spinal cord injury: reliability of data when applied to children and youths. Spinal Cord. 2007;45:452–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Wietek BM, Baron CH, Hinnenghofen H, et al. Cortical processing of residual anorectal sensation in patients with spinal cord injury: an FMRI study. Neurogastroenterol Motil. 2008;20(5):488–97.PubMedCrossRefGoogle Scholar
  80. 80.
    Vogel LC, Sandani A, Chafetz R, et al. Intra-rater agreement of the anorectal exam and classification of injury severity in children with spinal cord injury. Spinal Cord. 2009;47:687–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Mohamed FB, Hunter L, Barakat N, Liu J, Sair H, Samdani A, et al. Diffusion tensor imaging of the pediatric spinal cord at 1.5 T: Preliminary results. Proceedings of the annual meeting of the International Society of Magnetic Resonance in Medicine; 2010. p. 2451 (18).Google Scholar
  82. 82.
    Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging. 2004;22(10):1517–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshizawa T, Nose T, Moore GJ, Sillerud LO. Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage. 1996;4(3 Pt 1):174–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Backes WH, Mess WH, Wilmink JT. Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. AJNR Am J Neuroradiol. 2001;22(10):1854–9.PubMedGoogle Scholar
  86. 86.
    Stroman PW, Nance PW, Ryner LN. BOLD MRI of the human cervical spinal cord at 3 tesla. Magn Reson Med. 1999;42(3):571–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Madi S, Flanders AE, Vinitski S, Herbison GJ, Nissanov J. Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol. 2001;22(9):1768–74.PubMedGoogle Scholar
  88. 88.
    Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B. Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging. 2002;20(1):1–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Stracke CP, Pettersson LG, Schoth F, Moller-Hartmann W, Krings T. Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T. Neuroradiology. 2005;47(2):127–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Ng MC, Wu EX, Lau HF, Hu Y, Lam EY, Luk KD. Cervical spinal cord BOLD fMRI study: modulation of functional activation by dexterity of dominant and non-dominant hands. Neuroimage. 2008;39(2):825–31.PubMedCrossRefGoogle Scholar
  91. 91.
    Maieron M, Iannetti GD, Bodurka J, Tracey I, Bandettini PA, Porro CA. Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity. J Neurosci. 2007;27(15):4182–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Stroman PW. Magnetic resonance imaging of neuronal function in the spinal cord: spinal FMRI. Clin Med Res. 2005;3(3):146–56.PubMedCrossRefGoogle Scholar
  93. 93.
    Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B. Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging. 2001;19(6):833–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B. Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magn Reson Med. 2002;48(1):122–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Stroman PW, Kornelsen J, Lawrence J. An improved method for spinal functional MRI with large volume coverage of the spinal cord. J Magn Reson Imaging. 2005;21(5):520–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Kornelsen J, Stroman PW. fMRI of the lumbar spinal cord during a lower limb motor task. Magn Reson Med. 2004;52(2):411–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Ng MC, Wong KK, Li G, Lai S, Yang ES, Hu Y, et al. Proton-density-weighted spinal fMRI with sensorimotor stimulation at 0.2 T. Neuroimage. 2006;29(3):995–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Stroman PW, Malisza KL, Onu M. Functional magnetic resonance imaging at 0.2 Tesla. Neuroimage. 2003;20(2):1210–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Bouwman CJ, Wilmink JT, Mess WH, Backes WH. Spinal cord functional MRI at 3 T: gradient echo echo-planar imaging versus turbo spin echo. Neuroimage. 2008;43(2):288–96.PubMedCrossRefGoogle Scholar
  100. 100.
    Stroman PW, Tomanek B, Krause V, Frankenstein UN, Malisza KL. Mapping of neuronal function in the healthy and injured human spinal cord with spinal fMRI. Neuroimage. 2002;17(4):1854–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Stroman PW, Kornelsen J, Bergman A, Krause V, Ethans K, Malisza KL, et al. Noninvasive assessment of the injured human spinal cord by means of functional magnetic resonance imaging. Spinal Cord. 2004;42(2):59–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence for spinal cord involvement in placebo analgesia. Science. 2009;326(5951):404.PubMedCrossRefGoogle Scholar
  103. 103.
    Agosta F, Valsasina P, Rocca MA, Caputo D, Sala S, Judica E, et al. Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis. Magn Reson Med. 2008;59(5):1035–42.PubMedCrossRefGoogle Scholar
  104. 104.
    Malisza KL, Stroman PW. Functional imaging of the rat cervical spinal cord. J Magn Reson Imaging. 2002;16(5):553–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Malisza KL, Gregorash L, Turner A, Foniok T, Stroman PW, Allman AA, et al. Functional MRI involving painful stimulation of the ankle and the effect of physiotherapy joint mobilization. Magn Reson Imaging. 2003;21(5):489–96.PubMedCrossRefGoogle Scholar
  106. 106.
    Porszasz R, Beckmann N, Bruttel K, Urban L, Rudin M. Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1997;94(10):5034–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Lawrence J, Stroman PW, Bascaramurty S, Jordan LM, Malisza KL. Correlation of functional activation in the rat spinal cord with neuronal activation detected by immunohistochemistry. Neuroimage. 2004;22(4):1802–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Turner JA, Lee JS, Schandler SL, Cohen MJ. An fMRI investigation of hand representation in paraplegic humans. Neurorehabil Neural Repair. 2003;17(1):37–47.PubMedCrossRefGoogle Scholar
  109. 109.
    Foltys H, Kemeny S, Krings T, Boroojerdi B, Sparing R, Thron A, et al. The representation of the plegic hand in the motor cortex: a combined fMRI and TMS study. Neuroreport. 2000;11(1):147–50.PubMedCrossRefGoogle Scholar
  110. 110.
    Mikulis DJ, Jurkiewicz MT, McIlroy WE, Staines WR, Rickards L, Kalsi-Ryan S, et al. Adaptation in the motor cortex following cervical spinal cord injury. Neurology. 2002;58(5):794–801.PubMedGoogle Scholar
  111. 111.
    Sabbah P, de SS, Leveque C, Gay S, Pfefer F, Nioche C, et al. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma. 2002;19(1):53–60.PubMedCrossRefGoogle Scholar
  112. 112.
    Komisaruk BR, Whipple B, Crawford A, Liu WC, Kalnin A, Mosier K. Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Res. 2004;1024(1–2):77–88.PubMedCrossRefGoogle Scholar
  113. 113.
    Hofstetter CP, Schweinhardt P, Klason T, Olson L, Spenger C. Numb rats walk – a behavioural and fMRI comparison of mild and moderate spinal cord injury. Eur J Neurosci. 2003;18(11):3061–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8(3):346–53.PubMedCrossRefGoogle Scholar
  115. 115.
    Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, et al. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 2005;58(5):706–19.PubMedCrossRefGoogle Scholar
  116. 116.
    Leitch JK, et al. Applying functional MRI to the spinal cord and brainstem. Magn Reson Imaging. 2010;28:1225–33.PubMedCrossRefGoogle Scholar
  117. 117.
    Mohamed FB, Hunter LN, Barakat N, Liu CS, Sair H, Samdani AF, Betz RR, Faro SH, Gaughan J, Mulcahey MJ. Diffusion tensor imaging of the pediatric spinal cord at 1.5T: preliminary results. AJNR Am J Neuroradiol. 2011;32(2):339–45.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Meng Law
    • 1
  • Majda M. Thurnher
    • 2
  • Eric Schwartz
    • 3
  • Adam Flanders
    • 4
  1. 1.Los Angeles County Hospital and USC Medical Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Radiology, Section of Neuroradiology and Musculoskeletal RadiologyMedical University of ViennaViennaAustria
  3. 3.Department of RadiologyShields Health CareBrocktonUSA
  4. 4.Department of Radiology, Division of Neuroradiology/ENTThomas Jefferson University HospitalPhiladelphiaUSA

Personalised recommendations