Magnetoencephalography: Epilepsy and Brain Mapping



Magnetoencephalography (MEG) directly measures the magnetic fields created by neural electrical activity. Unlike functional magnetic resonance imaging (fMRI), which detects a tertiary effect of neural activation (change in local blood oxygenation level due to a change in blood flow), MEG is a more direct measure of brain functional activity. The temporal resolution of MEG is determined by the rate at which data rate can be acquired, and current systems are more than capable of acquisition speed that allows real-time assessment of brain function (typically up to 12-kHz sampling). This includes normal endogenous oscillatory activity (such as alpha oscillations in the occipital lobes) and isolated “spikes” or bursts of electrical discharges in the setting of epilepsy, both requiring temporal resolution measured on a millisecond scale. The high temporal resolution also allows for the determination of propagation of brain activity, to aid in the identification of epileptogenic foci in the setting of rapid generalization.


Vagal Nerve Stimulator Eloquent Cortex Wada Test Volumetric Magnetic Resonance Imaging Electromagnetic Activity 



The authors would like to acknowledge the assistance of J. Christopher Edgar, PhD, William C. Gaetz, PhD, and Nicole Florance, MD, in obtaining the source material.


  1. 1.
    Lewine JD, Orrison Jr WW. Spike and slow wave localization by magnetoencephalography. Neuroimaging Clin N Am. 1995;5(4):575–96.PubMedGoogle Scholar
  2. 2.
    Williamson SJ, Kaufman L. Evolution of neuromagnetic topographic mapping. Brain Topogr. 1990;3(1):113–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Jung TP, Makeig S, McKeown MJ, Bell AJ, Lee TW, Sejnowski TJ. Imaging brain dynamics using independent component analysis. Proc IEEE Inst Electr Electron Eng. 2001;89(7):1107–22.PubMedGoogle Scholar
  4. 4.
    Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006;51(7):1759–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Coles MGH, Donchin E, Porges W. Principles of signal acquisition. In: Coles MGH, Donchin E, Porges W, editors. Psychophysiology: systems, processes, and applications – a handbook. New York: Guilford Press; 1986. p. 183–221.Google Scholar
  6. 6.
    Picton TW, Bentin S, Berg P, et al. Guildlines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000;37:127–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Fernandes JM, da Silva AM, Huiskamp G, et al. What does an epileptiform spike look like in MEG? Comparison between coincident EEG and MEG spikes. J Clin Neurophysiol. 2005;22(1):68–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Scherg M, Berg P. New concepts of brain source imaging and localization. Electroencephalogr Clin Neurophysiol Suppl. 1996;46:127–37.PubMedGoogle Scholar
  9. 9.
    Robinson SE, Nagarajan SS, Mantle M, Gibbons V, Kirsch H. Localization of interictal spikes using SAM(g2) and dipole fit. Neurol Clin Neurophysiol. 2004;2004:74.PubMedGoogle Scholar
  10. 10.
    Huang MX, Shih JJ, Lee RR, et al. Commonalities and differences among vectorized beamformers in electromagnetic source imaging. Brain Topogr. 2004;16:139–58.PubMedCrossRefGoogle Scholar
  11. 11.
    Wood CC, Cohen D, Cuffin BN, Yarita M, Allison T. Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science. 1985;227(4690):1051–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Okada YC, Tanenbaum R, Williamson SJ, Kaufman L. Somatotopic organization of the human somatosensory cortex revealed by neuromagnetic measurements. Exp Brain Res. 1984;56(2):197–205.PubMedCrossRefGoogle Scholar
  13. 13.
    Romani GL, Rossini P. Neuromagnetic functional localization: principles, state of the art, and perspectives. Brain Topogr. 1988;1(1):5–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Allison T, McCarthy G, Wood CC, Jones SJ. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain. 1991;114(Pt 6):2465–503.PubMedCrossRefGoogle Scholar
  15. 15.
    Hari R, Kaukoranta E. Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol. 1985;24(3):233–56.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakamura A, Yamada T, Goto A, et al. Somatosensory homunculus as drawn by MEG. Neuroimage. 1998;7:377–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Sobel DF, Gallen CC, Schwartz BJ, et al. Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR Am J Neuroradiol. 1993;14(4):915–25.PubMedGoogle Scholar
  18. 18.
    Roberts TP, Zusman E, McDermott M, Barbaro N, Rowley HA. Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg. 1995;1(6):339–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol. 2000;17(2):57–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97(6):1333–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Aine CJ, Supek S, George JS, et al. Retinotopic organization of human visual cortex: departures from the classical model. Cereb Cortex. 1996;6(3):354–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Alberstone CD, Skirboll SL, Benzel EC, et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg. 2000;92(1):79–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Halgren E, Raij T, Marinkovic K, Jousmäki V, Hari R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex. 2000;10:69–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. 1960. J Neurosurg. 2007;106(6):1117–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Merrifield WS, Simos PG, Papanicolaou AC, Philpott LM, Sutherling WW. Hemispheric language dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques. Epilepsy Behav. 2007;10:120–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hirata M, Kato A, Taniguchi M, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage. 2004;23(1):46–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang et al. Consistency of interictal and ictal onset localization using magnetoencephalography in patients with partial epilepsy. J Neurosurg 2003;98(4):837–845.Google Scholar
  29. 29.
    Cheyne et al. Event-related beamforming: a robust method for presurgical functional mapping using MEG. Clin Neurophysiol 2007; 118(8):1691–1704.Google Scholar
  30. 30.
    Knowlton et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann Neurol 2008; 64(1):25–34.Google Scholar
  31. 31.
    Schwartz et al. Magnetoencephalography for pediatric epilepsy: how we do it. AJNR Am J Neuroradiol 2008;29(5):832–837.Google Scholar
  32. 32.
    Knowlton et al. Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann Neurol 2009;65(6):716–723.Google Scholar
  33. 33.
    Pirmoradi et al. Language tasks used for the presurgical assessment of epileptic patients with MEG. Epileptic Disord 2010;12(2):97–108.Google Scholar
  34. 34.
    Stefan et al. Magnetoencephalography adds to the surgical evaluation process. Epilepsy Behav. 2011;20(2):172–7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiology, CHOP Radiology, Children’s Hospital of PhiladelphiaUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations