DTI and fMRI: Review of Complementary Techniques

  • Jay J. Pillai
  • Domenico Zaca


This chapter discusses how the combination of blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) can be used for presurgical mapping of brain lesions such as brain tumors. The need to map both eloquent cortex and eloquent white matter in a complementary manner will be stressed. Both the underlying physical principles and the clinical applications of BOLD fMRI and DTI will be explained in detail with inclusion of several clinical examples that illustrate how the integration of these techniques is practically utilized.


Apparent Diffusion Coefficient Fractional Anisotropy Diffusion Tensor Imaging Superior Longitudinal Fasciculus Bold fMRI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Blamire AM, Ogawa S, Ugurbil K, et al. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89:11069–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Turner R, Le Bihan D, Moonen CT, Despres D, Frank J. Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med. 1991;22:159–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002;3:142–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Vanzetta I, Grinvald A. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science. 1999;5444:1555–7.CrossRefGoogle Scholar
  6. 6.
    Detre JA, Wang J. Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol. 2002;113:621–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241:462–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS. Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993;30:161–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Pillai J. The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. AJNR Am J Neuroradiol. 2010;31:219–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Petrella JR, Shah LM, Harris KM, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240:793–802.PubMedCrossRefGoogle Scholar
  11. 11.
    Holodny AI. Preoperative and postoperative mapping of eloquent regions in the brain. ASNR 2004:33–6.Google Scholar
  12. 12.
    Liu T, Frank L, Wong E, Buxton R. Detection power, estimation efficiency, and predictability in event-related fMRI. Neuroimage. 2001;13:759–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Bogomolny DL, Petrovich NM, Hou BL, et al. Functional MRI in the brain tumor patient. Top Magn Reson Imaging. 2004;15:325–35.PubMedCrossRefGoogle Scholar
  14. 14.
    Pujol J, Conesa G, Deus J, et al. Presurgical identification of the primary sensorimotor cortex by functional magnetic resonance imaging. J Neurosurg. 1996;84:7–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Boecker H, Kleinschmidt A, Requardt M, et al. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study. Brain. 1994;117:1231–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Wexler BE, Fulbright RK, Lacadie CM, et al. An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging. 1997;15:385–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Kocak M. Functional MR imaging of the motor homunculus: toward optimizing paradigms. Proceedings of the American Society of Neuroradiology, Vancouver, Canada. May 13–17, 2002.Google Scholar
  18. 18.
    Yetkin FZ, Mueller WM, Hammeke TA, Morris 3rd GL, Haughton VM. Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. Neurosurgery. 1995;36:921–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Engström M, Ragnehed M, Lundberg P, Söderfeldt B. Paradigm design of sensory-motor and language tests in clinical fMRI. Neurophysiol Clin. 2004;34:267–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol. 1998;19:1095–8.PubMedGoogle Scholar
  21. 21.
    Salvan CV, Ulmer JL, DeYoe EA, et al. Visual object agnosia and pure word alexia: correlation of functional magnetic resonance imaging and lesion localization. J Comput Assist Tomogr. 2004;28:63–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Pillai JJ, Araque JM, Allison JD, et al. Functional MRI study of semantic and phonological language processing in bilingual subjects: preliminary findings. Neuroimage. 2003;19:565–76.PubMedCrossRefGoogle Scholar
  23. 23.
    Bookheimer SY, Zeffiro TA, Blaxton TA, et al. Regional cerebral blood flow during auditory responsive naming: evidence for cross-modality neural activation. Neuroreport. 1998;9:2409–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Thulborn KR, Carpenter PA, Just MA. Plasticity of language-­related brain function during recovery from stroke. Stroke. 1999;30:749–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Phillips MD, Lowe MJ, Lurito JT, Dzemidzic M, Mathews VP. Temporal lobe activation demonstrates sex-based differences during passive listening. Radiology. 2001;220:202–7.PubMedGoogle Scholar
  26. 26.
    FitzGerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18:1529–39.PubMedGoogle Scholar
  27. 27.
    Sereno MI, Dale AM, Reppas JB, et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995;268:889–93.PubMedCrossRefGoogle Scholar
  28. 28.
    DeYoe EA, Carman GJ, Bandettini P, et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA. 1996;93:2382–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Golby AJ, Poldrack RA, Brewer JB, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124:1841–54.PubMedCrossRefGoogle Scholar
  30. 30.
    Golby AJ, Poldrack RA, Illes J, et al. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. 2002;43:855–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18:1311–5.PubMedGoogle Scholar
  32. 32.
    Roux FE, Boulanouar K, Ranjeva JP, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Wu JS, Zhou LF, Chen W, et al. Prospective comparison of ­functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas. Zhonghua wai ke za zhi [Chin J Surg]. 2005;43:1141–5.Google Scholar
  34. 34.
    Gaillard WD. Functional MR imaging of language, memory, and sensorimotor cortex. Neuroimag Clin N Am. 2004;14:471–85.CrossRefGoogle Scholar
  35. 35.
    Thomason ME, Foland LC, Glover GH. Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum Brain Mapp. 2007;28:59–68.PubMedCrossRefGoogle Scholar
  36. 36.
    Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.PubMedCrossRefGoogle Scholar
  37. 37.
    Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987;28:353–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Ebisu T, Naruse S, Horikawa Y, et al. Discrimination between different types of white matter edema with diffusion-weighted MR imaging. J Magn Reson Imaging. 1993;3:863–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Arfanakis K, Haughton VM, Carew JD, et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23:794–802.PubMedGoogle Scholar
  40. 40.
    Tien R, Felseberg G, Friedman H, et al. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol. 1994;162:671–7.PubMedGoogle Scholar
  41. 41.
    Stejskal EO, Tanner JE. Spin diffusion measurement: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288.CrossRefGoogle Scholar
  42. 42.
    Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR ­imaging of the human brain. Radiology. 1996;201:637–48.PubMedGoogle Scholar
  43. 43.
    Shimony JS, McKinstry RC, Akbudak E, et al. Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology. 1999;212:770–84.PubMedGoogle Scholar
  44. 44.
    Chenevert TL, Brunberg JA, Pipe JG. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177:401–5.PubMedGoogle Scholar
  45. 45.
    Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Berman JI, Berger MS, Mukherjee P, et al. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101:66–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Guye M, Parker GJ, Symms M, et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage. 2003;19:1349–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Mori S, Van Zijl PC. Fiber tracking: principles and strategies – a technical review. NMR Biomed. 2002;15:468–80.PubMedCrossRefGoogle Scholar
  49. 49.
    Parker GJ, Haroon HA, Wheeler-Kingshott CA. A framework for a streamline based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging. 2003;18:242–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Lazar M, Alexander AL. Bootstrap white matter tractography (BOOT-TRAC). Neuroimage. 2005;24:524–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Mori S, Crain BJ, Chacko VP, Van Zijl PCM. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Wakana S, Jiang H, Nagae-Poetscher LM, Van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230:77–87.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones DK, Horsfield MA, Simmons A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med. 1999;42:515–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Witwer BP et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002;97:568–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA. Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Zentralbl Neurochir. 2009;70:27–35.CrossRefGoogle Scholar
  56. 56.
    FitzGerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol. 1997;18:1529–39.PubMedGoogle Scholar
  57. 57.
    Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY, Weinstein S, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48(4):1003–12.PubMedGoogle Scholar
  58. 58.
    Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18(7):1311–5.PubMedGoogle Scholar
  59. 59.
    Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR, et al. Articles – language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52:798–809.PubMedGoogle Scholar
  60. 60.
    Brannen JH, Badie B, Moritz CH, Quigley M, Meyerand ME, Haughton VM. Reliability of functional MR imaging with word-generation tasks for mapping Broca’s area. AJNR Am J Neuroradiol. 2001;22:1711–8.PubMedGoogle Scholar
  61. 61.
    Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248:579–89.PubMedCrossRefGoogle Scholar
  62. 62.
    Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18:1311–5.PubMedGoogle Scholar
  63. 63.
    Roux FE, Boulanouar K, Ranjeva JP, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Roux FE, Boulanouar K, Ranjeva JP, et al. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochir (Wien). 1999;141:71–9.CrossRefGoogle Scholar
  65. 65.
    Hirsch J, Ruge MI, Kim KH, et al. Anintegrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47:711–21. discussion 721–22.PubMedGoogle Scholar
  66. 66.
    Roux FE, Ibarrola D, Tremoulet M, et al. Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery. 2001;9:1145–56. discussion 1156–57.Google Scholar
  67. 67.
    Krings T, Schreckenberger M, Rohde V, et al. Functional MRI and 18F FDG-positron emission tomography for presurgical planning: comparison with electrical cortical stimulation. Acta Neurochir (Wien). 2002;144:889–99.CrossRefGoogle Scholar
  68. 68.
    Wu JS, Zhou LF, Chen W, et al. Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas [in Chinese]. Zhonghua Wai Ke Za Zhi. 2005;43:1141–5.PubMedGoogle Scholar
  69. 69.
    Xie J, Chen XZ, Jiang T, et al. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with gliomas involving the motor cortical areas. Chin Med J (Engl). 2008;121:631–5.Google Scholar
  70. 70.
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978–84.PubMedGoogle Scholar
  71. 71.
    Bahn MM, Lin W, Silbergeld DL, Miller JW, Kuppusamy K, Cook RJ, et al. Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. AJR Am J Roentgenol. 1997;169(2):575–9.PubMedGoogle Scholar
  72. 72.
    Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY. Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002;145:166–76.PubMedCrossRefGoogle Scholar
  73. 73.
    Rutten GJ, Ramsey NF, van Rijen PC, Alpherts WC, van Veelen CW. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17:447–60.PubMedCrossRefGoogle Scholar
  74. 74.
    Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B, et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage. 2003;18:460–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Fernandes MA, Smith ML, Logan W, Crawley A, McAndrews MP. Comparing language lateralization determined by dichotic listening and fMRI activation in frontal and temporal lobes in children with epilepsy. Brain Lang. 2006;96:106–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Constable RT. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50:2225–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Medina LS, Bernal B, Dunoyer C, et al. Seizure disorders: functional MR imaging for diagnostic evaluation and surgical treatment – prospective study. Radiology. 2005;236:247–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A, et al. Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry. 2005;76(8):1152–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Bello L, Gambini A, Castellano A, et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage. 2008;39:369–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61:935–48. discussion 948–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Ulmer JL, et al. The role of diffusion tensor imaging inestablishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3(6):567–76.PubMedCrossRefGoogle Scholar
  82. 82.
    Bello L, et al. Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus. 2010;28(2):E6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Neuroradiology DivisionThe Johns Hopkins University School of Medicine, The Johns Hopkins HospitalBaltimoreUSA
  2. 2.Department of RadiologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations