Applications of MRI to Psychopharmacology

  • Dan J. Stein
  • Yihong Yang
  • Betty Jo Salmeron


Pharmacological functional magnetic resonance (pharmacoMRI or phMRI) refers to the use of functional magnetic resonance imaging (fMRI) after administration of a psychotropic agent [1], but can be defined more broadly as the application of MRI methods to basic and clinical psychopharmacology questions. There has been significant growth in this field over the past decade, with a steady increase in published papers, perhaps attesting to the significant potential of phMRI for advancing psychopharmacological knowledge in important ways [2–9]. In this chapter, we begin by outlining some general issues in phMRI, outlining some of its advantages and limitations. We then go on to illustrate the potential value of phMRI by discussing both animal and clinical work.


Independent Component Analysis Independent Component Analysis Arterial Spin Label Bold Signal Local Field Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part by NIH/NIDA.


  1. 1.
    Chen YCI, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, et al. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med. 1997;38:389–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Honey G, Bullmore E. Human pharmacological MRI. Trends Pharmacol Sci. 2004;25:366–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Shah YB, Marsden CA. The application of functional magnetic resonance imaging to neuropharmacology. Curr Opin Pharmacol. 2004;4:517–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Leslie RA, James MF. Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci. 2000;21:314–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Paulus MP, Stein MB. Role of functional magnetic resonance imaging in drug discovery. Neuropsychol Rev. 2007;17:179–88.PubMedCrossRefGoogle Scholar
  6. 6.
    Salmeron BJ, Stein EA. Pharmacological applications of magnetic resonance imaging. Psychopharm Bull. 2002;36:179–88.Google Scholar
  7. 7.
    Wise RG, Tracey I. The role of fMRI in drug discovery. J Magn Reson Imaging. 2006;23:862–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudin M, Beckmann N, Porszasz R, Reese T, Bochelen D, Sauter A. In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed. 1999;12:69–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Borsook D, Bleakman D, Hargreaves R, Upadhyay J, Schmidt KF, Becerra L. A “BOLD” experiment in defining the utility of fMRI in drug development. Neuroimage. 2008;42:461–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Cropley VL, Fujita M, Innis RB, Nathan PJ. Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol Psychiatry. 2006;59:898–907.PubMedCrossRefGoogle Scholar
  11. 11.
    Roy CS, Sherrington CS. On the regulation the blood supply of the brain. J Physiol. 1896;11:85–108.Google Scholar
  12. 12.
    Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA. 1986;83(4):1140–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci US Am. 1990;87:9868–72.CrossRefGoogle Scholar
  14. 14.
    MacIntosh BJ, Pattinson KTS, Gallichan D, Ahmad I, Miller KL, Feinberg DA, et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab. 2008;28:1514–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Kofke WA, Blissitt PA, Rao H, Wang JJ, Addya K, Detre J. Remifentanil-induced cerebral blood flow effects in normal humans: dose and ApoE genotype. Anesth Analg. 2007;105:167–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Kochanek PM, Hendrich KS, Robertson CL, Williams DS, Melick JA, Ho C, et al. Assessment of the effect of 2-chloroadenosine in normal rat brain using spin-labeled MRI measurement of perfusion. Magn Reson Med. 2001;45:924–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Silva AC, Zhang WG, Williams DS, Koretsky AP. Multislice Mri of rat-brain perfusion during amphetamine stimulation using arterial spin-labeling. Magn Reson Med. 1995;33:209–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruns A, Kunnecke B, Risterucci C, Moreau JL, von Kienlin M. Validation of cerebral blood perfusion imaging as a modality for quantitative pharmacological MRI in rats. Magn Reson Med. 2009;61:1451–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lu HB, Xi ZX, Gitajn L, Rea W, Yang YH, Stein EA. Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proc Natl Acad Sci US Am. 2007;104:2489–94.CrossRefGoogle Scholar
  20. 20.
    Marota JJA, Mandeville JB, Weisskoff RM, Moskowitz MA, Rosen BR, Kosofsky BE. Cocaine activation discriminates dopaminergic projections by temporal response: an fMRI study in rat. Neuroimage. 2000;11:13–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Anderson IM, Mckie S, Elliott R, Williams SR, Deakin JFW. Assessing human 5-HT function in vivo with pharmacoMRI. Neuropharmacology. 2008;55:1029–37.PubMedCrossRefGoogle Scholar
  22. 22.
    Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611.PubMedCrossRefGoogle Scholar
  23. 23.
    Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry. 1998;155:1009–15.PubMedGoogle Scholar
  24. 24.
    Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, et al. Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage. 2005;26:1097–108.PubMedCrossRefGoogle Scholar
  25. 25.
    Mckie S, Del Ben C, Elliott R, Williams S, del Vai N, Anderson I, et al. Neuronal effects of acute citalopram detected by pharmacoMRI. Psychopharmacology. 2005;180:680–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Rose SE, Janke AL, Strudwick MW, McMahon KL, Chalk JB, Snyder P, et al. Assessment of dynamic susceptibility contrast cerebral blood flow response to amphetamine challenge: a human pharmacological magnetic resonance imaging study at 1.5 and 4 T. Magn Reson Med. 2006;55:9–15.PubMedCrossRefGoogle Scholar
  27. 27.
    Addicott MA, Yang LL, Peiffer AM, Burnett LR, Burdette JH, Chen MY, et al. The effect of daily caffeine use on cerebral blood flow: how much caffeine can we tolerate? Hum Brain Mapp. 2009;30:3102–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Furey ML, Pietrini P, Haxby JV. Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science. 2000;290:2315-+Google Scholar
  29. 29.
    Kimberg DY, Aguirre GK, Lease J, D’Esposito M. Cortical effects of bromocriptine, a D-2 dopamine receptor agonist, in human subjects, revealed by fMRI. Hum Brain Mapp. 2001;12:246–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Levin JM, Ross MH, Mendelson JH, Kaufman MJ, Lange N, Maas LC, et al. Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion. Psychiatry Res Neuroimaging. 1998;82:135–46.CrossRefGoogle Scholar
  31. 31.
    Mattay VS, Callicott JH, Bertolino A, Heaton I, Frank JA, Coppola R, et al. Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage. 2000;12:268–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Seifritz E, Bilecen D, Hanggi D, Haselhorst R, Radu EW, Wetzel S, et al. Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI. Psychiatry Res Neuroimaging. 2000;99:1–13.CrossRefGoogle Scholar
  33. 33.
    Thiel CM, Henson RNA, Dolan RJ. Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMR1 study. Neuropsychopharmacology. 2002;27:282–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Wise RG, Lujan BJ, Schweinhardt P, Peskett GD, Rogers R, Tracey I. The anxiolytic effects of midazolam during anticipation to pain revealed using fMRI. Magn Reson Imaging. 2007;25:801–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Loubinoux I, Boulanouar K, Ranjeva JP, Carel C, Berry I, Rascol O, et al. Cerebral functional magnetic resonance imaging activation modulated by a single dose of the monoamine neurotransmission enhancers fluoxetine and fenozolone during hand sensorimotor tasks. J Cereb Blood Flow Metab. 1999;19(12):1365–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci US Am. 2002;99:455–60.CrossRefGoogle Scholar
  37. 37.
    Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-dependent decrease of activation in bilateral amygdala and insula by lorazepam during emotion processing. Arch Gen Psychiatry. 2005;62:282–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Vollm B, Richardson P, Mckie S, Elliott R, Deakin JFW, Anderson IM. Serotonergic modulation of neuronal responses to behavioural inhibition and reinforcing stimuli: an fMRI study in healthy volunteers. Eur J Neurosci. 2006;23:552–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Norbury R, Mackay CE, Cowen PJ, Goodwin GM, Harmer CJ. Short-term antidepressant treatment and facial processing – functional magnetic resonance imaging study. Br J Psychiatry. 2007;190:531–2.PubMedCrossRefGoogle Scholar
  40. 40.
    Simmons AN, Arce E, Lovero KL, Stein MB, Paulus MP. Subchronic SSRI administration reduces insula response during affective anticipation in healthy volunteers. Int J Neuropsychopharmacol. 2009;12:1009–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C, et al. Negative dip in BOLD fMRI is caused by blood flow – Oxygen consumption uncoupling in humans. Neuroimage. 2002;15:98–102.PubMedCrossRefGoogle Scholar
  42. 42.
    Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rauch A, Rainer G, Logothetis NK. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci US Am. 2008;105:6759–64.CrossRefGoogle Scholar
  44. 44.
    Schmidt KF, Febo M, Shen Q, Luo F, Sicard KM, Ferris CF, et al. Hemodynamic and metabolic changes induced by cocaine in anesthetized rat observed with multimodal functional MRI. Psychopharmacology. 2006;185:479–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Choi JK, Chen YI, Hamel E, Jenkins BG. Brain hemodynamic changes mediated by dopamine receptors: role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage. 2006;30:700–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Rao SM, Salmeron BJ, Durgerian S, Janowiak JA, Fischer M, Risinger RC, et al. Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry. 2000;157:1697–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Pattinson KTS, Rogers R, Mayhew SD, Tracey I, Wise RG. Pharmacological FMRI: measuring opioid effects on the BOLD response to hypercapnia. J Cereb Blood Flow Metab. 2007;27:414–23.PubMedCrossRefGoogle Scholar
  48. 48.
    Luo F, Wu GH, Li Z, Li SJ. Characterization of effects of mean arterial blood pressure induced by cocaine and cocaine methiodide on BOLD signals in rat brain. Magn Reson Med. 2003;49:264–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Luo F, Schmidt KF, Fox GB, Ferris CF. Differential responses in CBF and CBV to cocaine as measured by fMRI: implications for pharmacological MRI signals derived oxygen metabolism assessment. J Psychiatr Res. 2009;43:1018–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Schwarz A, Gozzi A, Reese T, Bertani S, Crestan V, Hagan J, et al. Selective dopamine D-3 receptor antagonist SB-277011-A potentiates phMRI response to acute amphetamine challenge in the rat brain. Synapse. 2004;54:1–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Gozzi A, Ceolin L, Schwarz A, Reese T, Bertani S, Crestan V, et al. A multimodality investigation of cerebral hemodynamics and autoregulation in pharmacological MRI. Magn Reson Imaging. 2007;25:826–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Gollub RL, Breiter HC, Kantor H, Kennedy G, Gastfriend D, Mathew RT, et al. Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J Cereb Blood Flow Metab. 1998;18:724–34.PubMedCrossRefGoogle Scholar
  53. 53.
    Mulderink TA, Gitelman DR, Mesulam MM, Parrish TB. On the use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage. 2002;15:37–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM. Dietary caffeine consumption modulates fMRI measures. Neuroimage. 2002;17:751–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang ZM, Andersen AH, Avison MJ, Gerhardt GA, Gash DM. Functional MRI of apomorphine activation of the basal ganglia in awake rhesus monkeys. Brain Res. 2000;852:290–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang ZM, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, et al. Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage. 2001;14:1159–67.PubMedCrossRefGoogle Scholar
  57. 57.
    Hagino H, Tabuchi E, Kurachi M, Saitoh O, Sun YJ, Kondoh T, et al. Effects of D-2 dopamine receptor agonist and antagonist on brain activity in the rat assessed by functional magnetic resonance imaging. Brain Res. 1998;813:367–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Febo M, Segarra AC, Tenney JR, Brevard ME, Duong TQ, Ferris CF. Imaging cocaine-induced changes in the mesocorticolimbic dopaminergic system of conscious rats. J Neurosci Meth. 2004;139:167–76.CrossRefGoogle Scholar
  59. 59.
    Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF. The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology. 2005;30:936–43.PubMedCrossRefGoogle Scholar
  60. 60.
    Chin CL, Pauly JR, Surber BW, Skoubis PD, Mcgaraughty S, Hradil VP, et al. Pharmacological MRI in awake rats predicts selective binding of alpha(4)beta(2) nicotinic receptors. Synapse. 2008;62:159–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Peeters RR, Tindemans I, De Schutter E, Van der Linden A. Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magn Reson Imaging. 2001;19:821–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Lahti KM, Ferris CF, Li FH, Sotak CH, King JA. Comparison of evoked cortical activity in conscious and propofol-anesthetized rats using functional MRI. Magn Reson Med. 1999;41:412–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Gozzi A, Schwarz A, Crestan V, Bifone A. Drug-anaesthetic interaction in phMRI: the case of the psychotomimetic agent phencyclidine. Magn Reson Imaging. 2008;26:999–1006.PubMedCrossRefGoogle Scholar
  64. 64.
    Steward CA, Marsden CA, Prior MJW, Morris PG, Shah YB. Methodological considerations in rat brain BOLD contrast pharmacological MRI. Psychopharmacology. 2005;180:687–704.PubMedCrossRefGoogle Scholar
  65. 65.
    Rauch A, Rainer G, Augath M, Elterinann A, Logothetis NK. Pharmacological MRI combined with electrophysiology in non-human primates: effects of Lidocaine on primary visual cortex. Neuroimage. 2008;40:590–600.PubMedCrossRefGoogle Scholar
  66. 66.
    Stark JA, Davies KE, Williams SR, Luckman SM. Functional magnetic resonance imaging and c-Fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. Neuroimage. 2006;31:1228–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Arthurs OJ, Stephenson CME, Rice K, Lupson V, Spiegelhalter DJ, Boniface SJ, et al. Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. Neuroimage. 2004;21:540–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Pohlmann A, Barjat H, Tilling LC. James MF. Pharmacological fMRI – Challenges in analysing drug-induced single-event BOLD responses. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:3411–6.Google Scholar
  69. 69.
    Bloom AS, Hoffmann RG, Fuller SA, Pankiewicz J, Harsch HH, Stein EA. Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp. 1999;8:235–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Wilkinson D, Halligan P. Opinion – the relevance of behavioural measures for functional-imaging studies of cognition. Nat Rev Neurosci. 2004;5:67–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Norbury R, Mackay CE, Cowen PJ, Goodwin GM, Harmer CJ. The effects of reboxetine on emotional processing in healthy volunteers: an fMRI study. Mol Psychiatry. 2008;13:1011–20.PubMedCrossRefGoogle Scholar
  72. 72.
    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SCR, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci US Am. 1999;96:13432–7.CrossRefGoogle Scholar
  74. 74.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–19.PubMedCrossRefGoogle Scholar
  75. 75.
    McKeown MJ, Hansen LK, Sejnowski TJ. Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol. 2003;13:620–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Whitcher B, Schwarz AJ, Barjat H, Smart SC, Grundy RI, James MF. Wavelet-based cluster analysis: data-driven grouping of voxel time courses with application to perfusion-weighted and pharmacological MRI of the rat brain. Neuroimage. 2005;24:281–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Schwarz AJ, Whitcher B, Gozzi A, Reese T, Bifone A. Study-level wavelet cluster analysis and data-driven signal models in pharmacological MRI. J Neurosci Meth. 2007;159:346–60.CrossRefGoogle Scholar
  78. 78.
    Dieler AC, Sämann PG, Leicht G, Eser D, Kirsch V, Baghai TC, et al. Independent component analysis applied to pharmacological magnetic resonance imaging (phMRI): new insights into the functional networks underlying panic attacks as induced by CCK-4. Curr Pharm Des. 2008;14:3492–507.PubMedCrossRefGoogle Scholar
  79. 79.
    Mitsis GD, Iannetti GD, Smart TS, Tracey I, Wise RG. Regions of interest analysis in pharmacological fMRI: how do the definition criteria influence the inferred result? Neuroimage. 2008;40:121–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Chen YI, Brownell AL, Galpern W, Isacson O, Bogdanov M, Beal MF, et al. Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. Neuroreport. 1999;10:2881–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Nguyen TV, Brownell AL, Chen YCI, Livni E, Coyle JT, Rosen BR, et al. Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse. 2000;36:57–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Dixon AL, Prior M, Morris PM, Shah YB, Joseph MH, Young AMJ. Dopamine antagonist modulation of amphetamine response as detected using pharmacological MRI. Neuropharmacology. 2005;48:236–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Schwarz AJ, Zocchi A, Reese T, Gozzi A, Garzotti M, Varnier G, et al. Concurrent pharmacological MRI and in situ microdialysis of cocaine reveal a complex relationship between the central hemodynamic response and local dopamine concentration. Neuroimage. 2004;23:296–304.PubMedCrossRefGoogle Scholar
  84. 84.
    Preece M, Mukherjee B, Huang CLH, Hall LD, Leslie RA, James MF. Detection of pharmacologically mediated changes in cerebral activity by functional magnetic resonance imaging: the effects of sulpiride in the brain of the anaesthetised rat. Brain Res. 2001;916:107–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Ireland MD, Lowe AS, Reavill C, James MF, Leslie RA, Williams SCR. Mapping the effects of the selective dopamine D-2/D-3 receptor agonist quinelorane using pharmacological magnetic resonance imaging. Neuroscience. 2005;133:315–26.PubMedCrossRefGoogle Scholar
  86. 86.
    Nordquist RE, Risterucci C, Moreau JL, von Kienlin M, Kunnecke B, Maco M, et al. Effects of aripiprazole/OPC-14597 on motor activity, pharmacological models of psychosis, and brain activity in rats. Neuropharmacology. 2008;54:405–16.PubMedCrossRefGoogle Scholar
  87. 87.
    Easton N, Marshall FH, Marsden CA, Fone KCF. Mapping the central effects of methylphenidate in the rat using pharmacological MRI BOLD contrast. Neuropharmacology. 2009;57:653–64.PubMedCrossRefGoogle Scholar
  88. 88.
    Canese R, Adriani W, Marco EM, De Pasquale F, Lorenzini P, De Luca N, et al. Peculiar response to methylphenidate in adolescent compared to adult rats: a phMRI study. Psychopharmacol Berl. 2009;203:143–53.CrossRefGoogle Scholar
  89. 89.
    Chen YC, Choi JK, Andersen SL, Rosen BR, Jenkins BG. Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging. Psychopharmacol Berl. 2005;180:705–15.CrossRefGoogle Scholar
  90. 90.
    Martin C, Sibson NR. Pharmacological MRI in animal models: a useful tool for 5-HT research? Neuropharmacology. 2008;55:1038–47.PubMedCrossRefGoogle Scholar
  91. 91.
    Houston GC, Papadakis NG, Carpenter TA, Hall LD, Mukherjee B, James MF, et al. Mapping of brain activation in response to pharmacological agents using fMRI in the rat. Magn Reson Imaging. 2001;19:905–19.PubMedCrossRefGoogle Scholar
  92. 92.
    Stark JA, Mckie S, Davies KE, Williams SR, Luckman SM. 5-HT2C antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding. Eur J Neurosci. 2008;27:457–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Scanley BE, Kennan RP, Gore JC. Changes in rat cerebral blood volume due to modulation of the 5-HT1A receptor measured with susceptibility enhanced contrast MRI. Brain Res. 2001;913:149–55.PubMedCrossRefGoogle Scholar
  94. 94.
    Shah YB, Prior MJW, Dixon AL, Morris PG, Marsden CA. Detection of cannabinoid agonist evoked increase in BOLD contrast in rats using functional magnetic resonance imaging. Neuropharmacology. 2004;46:379–87.PubMedCrossRefGoogle Scholar
  95. 95.
    Shah YB, Haynes L, Prior MJ, Marsden CA, Morris PG, Chapman V. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology. 2005;180:761–73.PubMedCrossRefGoogle Scholar
  96. 96.
    Malisza KL, Docherty JC. Capsaicin as a source for painful stimulation in functional MRI. J Magn Reson Imaging. 2001;14:341–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Kochanek PM, Hendrich KS, Jackson EK, Wisniewski SR, Melick JA, Shore PM, et al. Characterization of the effects of adenosine receptor agonists on cerebral blood flow in uninjured and traumatically injured rat brain using continuous arterial spin-labeled magnetic resonance imaging. J Cereb Blood Flow Metab. 2005;25:1596–612.PubMedCrossRefGoogle Scholar
  98. 98.
    Fabene PF, Marzola P, Sbarbati A, Bentivoglio M. Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage. Neuroimage. 2003;18:375–89.PubMedCrossRefGoogle Scholar
  99. 99.
    Van Camp N, D’Hooge R, Verhoye M, Peeters RR, De Deyn PP, Van der Linden A. Simultaneous electroencephalographic recording and functional magnetic resonance imaging during pentylenetetrazol-induced seizures in rat. Neuroimage. 2003;19:627–36.PubMedCrossRefGoogle Scholar
  100. 100.
    Reese T, Bjelke B, Porszasz R, Baumann D, Bochelen D, Sauter A, et al. Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed. 2000;13:43–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Gozzi A, Schwarz AJ, Reese T, Crestan V, Bertani S, Turrini G, et al. Functional magnetic resonance mapping of intracerebroventricular infusion of a neuroactive peptide in the anaesthetised rat. J Neurosci Meth. 2005;142:115–24.CrossRefGoogle Scholar
  102. 102.
    Burdett NG, Menon DK, Carpenter TA, Jones JG, Hall LD. Visualization of changes in regional cerebral blood-flow (Rcbf) produced by ketamine using long Te gradient-Echo sequences – preliminary-results. Magn Reson Imaging. 1995;13:549–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Dodd GT, Stark JA, Mckie S, Williams SR, Luckman SM. Central cannabinoid signaling mediating food intake: a pharmacological-challenge magnetic resonance imaging and functional histology study in rat. Neuroscience. 2009;163:1192–200.PubMedCrossRefGoogle Scholar
  104. 104.
    Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A. Region-specific effects of nicotine on brain activity: a pharmacological MRI study in the drug-naive rat. Neuropsychopharmacology. 2006;31:1690–703.PubMedCrossRefGoogle Scholar
  105. 105.
    Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G, et al. Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology. 2008;201:273–84.PubMedCrossRefGoogle Scholar
  106. 106.
    Gozzi A, Large CH, Schwarz A, Bertani S, Crestan V, Bifone A. Differential effects of antipsychotic and glutamatergic agents on the phMRI response to phencyclidine. Neuropsychopharmacology. 2008;33:1690–703.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen Z, Silva AC, Yang J, Shen J. Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res. 2005;79:383–91.PubMedCrossRefGoogle Scholar
  108. 108.
    Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR, et al. Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther. 2009;328:141–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Roberts TJ, Williams SCR, Modo M. A pharmacological MRI assessment of dizocilpine (MK-801) in the 3-nitroproprionic acid-lesioned rat. Neurosci Lett. 2008;444:42–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Chin CL, Tovcimak AE, Hradil VP, Seifert TR, Hollingsworth PR, Chandran P, et al. Differential effects of cannabinoid receptor agonists on regional brain activity using pharmacological MRI. Br J Pharmacol. 2008;153:367–79.PubMedCrossRefGoogle Scholar
  111. 111.
    Easton N, Shah YB, Marshall FH, Fone KC, Marsden CA. Guanfacine produces differential effects in frontal cortex compared with striatum: assessed by phMRI BOLD contrast. Psychopharmacology. 2006;189:369–85.PubMedCrossRefGoogle Scholar
  112. 112.
    Easton N, Marshall F, Fone K, Marsden C. Atomoxetine produces changes in cortico-basal thalamic loop circuits: assessed by phMRI BOLD contrast. Neuropharmacology. 2007;52:812–26.PubMedCrossRefGoogle Scholar
  113. 113.
    Littlewood CL, Jones N, O’Neill MJ, Mitchell SN, Tricklebank M, Williams SCR. Mapping the central effects of ketamine in the rat using pharmacological MRI. Psychopharmacology. 2006;186:64–81.PubMedCrossRefGoogle Scholar
  114. 114.
    Jones N, O’Neill MJ, Tricklebank M, Libri V, Williams SC. Examining the neural targets of the AMPA receptor potentiator LY404187 in the rat brain using pharmacological magnetic resonance imaging. Psychopharmacol Berl. 2005;180:743–51.CrossRefGoogle Scholar
  115. 115.
    Chen Q, Andersen AH, Zhang Z, Ovadia A, Gash DM, Avison MJ. Mapping drug-induced changes in cerebral R(2)* by Multiple Gradient Recalled Echo functional MRI. Magn Reson Imaging. 1996;14:469–76.PubMedCrossRefGoogle Scholar
  116. 116.
    Chen Q, Andersen AH, Zhang ZM, Ovadia A, Cass WA, Gash DM, et al. Functional MRI of basal ganglia responsiveness to levodopa in parkinsonian rhesus monkeys. Exp Neurol. 1999;158:63–75.PubMedCrossRefGoogle Scholar
  117. 117.
    Luan LM, Ding F, Ai Y, Andersen A, Hardy P, Forman E, et al. Pharmacological MRI (phMRI) monitoring of treatment in hemiparkinsonian rhesus monkeys. Cell Transplant. 2008;17:417–25.PubMedGoogle Scholar
  118. 118.
    Xu HY, Li SJ, Bodurka J, Zhao XL, Xi ZX, Stein EA. Heroin-induced neuronal activation in rat brain assessed by functional MRI. Neuroreport. 2000;11:1085–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Calderan L, Chiamulera C, Marzola P, Fabene PF, Fumagalli GF, Sbarbati A. Sub-chronic nicotine-induced changes in regional cerebral blood volume and transversal relaxation time patterns in the rat: a magnetic resonance study. Neurosci Lett. 2005;377:195–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Easton N, Marshall F, Fone KCF, Marsden CA. Differential effects of the D- and L-isomers of amphetamine on pharmacological MRI BOLD contrast in the rat. Psychopharmacology. 2007;193:11–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Xi ZX, Wu GH, Stein EA, Li SJ. GABAergic mechanisms of heroin-induced brain activation assessed with functional MRI. Magn Reson Med. 2002;48:838–43.PubMedCrossRefGoogle Scholar
  122. 122.
    Xi ZX, Wu GH, Stein EA, Li SJ. Opiate tolerance by heroin self-administration: an MRI study in rat. Magn Reson Med. 2004;52:108–14.PubMedCrossRefGoogle Scholar
  123. 123.
    Luo F, Xi ZX, Wu GH, Liu C, Gardner EL, Li SJ. Attenuation of brain response to heroin correlates with the reinstatement of heroin-seeking in rats by fMRI. Neuroimage. 2004;22:1328–35.PubMedCrossRefGoogle Scholar
  124. 124.
    Lowe AS, Williams SCR, Symms MR, Stolerman IP, Shoaib M. Functional magnetic resonance neuroimaging of drug dependence: naloxone-precipitated morphine withdrawal. Neuroimage. 2002;17:902–10.PubMedCrossRefGoogle Scholar
  125. 125.
    Shoaib M, Lowe AS, Williams SCR. Imaging localised dynamic changes in the nucleus accumbens following nicotine withdrawal in rats. Neuroimage. 2004;22:847–54.PubMedCrossRefGoogle Scholar
  126. 126.
    Kalisch R, Salome N, Platzer S, Wigger A, Czisch M, Sommer W, et al. High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. Neuroimage. 2004;23:382–91.PubMedCrossRefGoogle Scholar
  127. 127.
    Schwarz AJ, Gozzi A, Reese T, Heidbreder CA, Bifone A. Pharmacological. modulation of functional connectivity: the correlation structure underlying the phMRI response to d-amphetamine modified by selective dopamine D-3 receptor antagonist SB277011A. Magn Reson Imaging. 2007;25:811–20.PubMedCrossRefGoogle Scholar
  128. 128.
    Schwarz AJ, Gozzi A, Reese T, Bifone A. In vivo mapping of functional connectivity in neurotransmitter systems using pharmacological MRI. Neuroimage. 2007;34:1627–36.PubMedCrossRefGoogle Scholar
  129. 129.
    Schwarz AJ, Gozzi A, Bifone A. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI. Neuroimage. 2009;47:302–11.PubMedCrossRefGoogle Scholar
  130. 130.
    Kuriwaki J, Nishijo H, Kondoh T, Uwano T, Torii K, Katsuki M, et al. Comparison of brain activity between dopamine D2 receptor-knockout and wild mice in response to dopamine agonist and antagonist assessed by fMRI. Neurosignals. 2004;13:227–40.PubMedCrossRefGoogle Scholar
  131. 131.
    Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, et al. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. Neuroimage. 2006;32:538–50.PubMedCrossRefGoogle Scholar
  132. 132.
    Lu H, Scholl CA, Zuo Y, Demny S, Rea W, Stein EA, et al. Registering and analyzing rat fMRI data in the stereotaxic framework by exploiting intrinsic anatomical features. Magn Reson Imaging. 2010;28:146–52.PubMedCrossRefGoogle Scholar
  133. 133.
    Lu HB, Yang SL, Zuo YT, Demny S, Stein EA, Yang YH. Real-time animal functional magnetic resonance imaging and its application to neurophamacological studies. Magn Reson Imaging. 2008;26:1266–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Hariri AR, Mattay VS, Tessitore A, Fera F, Smith WG, Weinberger DR. Dextroamphetamine modulates the response of the human amygdala. Neuropsychopharmacology. 2002;27:1036–40.PubMedCrossRefGoogle Scholar
  135. 135.
    Brassen S, Tost H, Hoehn F, Weber-Fahr W, Klein S, Braus DF. Haloperidol challenge in healthy male humans: a functional magnetic resonance imaging study. Neurosci Lett. 2003;340:193–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Honey GD, Suckling J, Zelaya F, Long C, Routledge C, Jackson S, et al. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system. Brain. 2003;126:1767–81.PubMedCrossRefGoogle Scholar
  137. 137.
    Murphy A, Mckie S, Deakin JFW. Aripiprazole and risperidone improve working memory in healthy volunteers; an fMRI study. Eur Neuropsychopharmacol. 2009;19:S188–9.CrossRefGoogle Scholar
  138. 138.
    Vollm BA, de Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, et al. Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology. 2004;29:1715–22.PubMedCrossRefGoogle Scholar
  139. 139.
    Fischer H, Nyberg L, Karlsson S, Karlsson P, Brehmer Y, Rieckmann A, et al. Simulating neurocognitive aging: effects of a dopaminergic antagonist on brain activity during working memory. Biol Psychiatry. 2010;67:575–80.PubMedCrossRefGoogle Scholar
  140. 140.
    Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, et al. Catechol O-methyltransferase val(158)-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci US Am. 2003;100:6186–91.CrossRefGoogle Scholar
  141. 141.
    Bullmore E, Suckling J, Zelaya F, Long C, Honey G, Reed L, et al. Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cereb Cortex. 2003;13:144–54.PubMedCrossRefGoogle Scholar
  142. 142.
    Stein DJ, Newman TK, Savitz J, Ramesar R. Warriors vs worriers: the role of COMT gene variants. CNS Spectr. 2006;11:745–8.PubMedGoogle Scholar
  143. 143.
    Munafo MR, Brown SM, Hariri AR. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis. Biol Psychiatry. 2008;63:852–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Thiel CM, Henson RNA, Morris JS, Friston KJ, Dolan RJ. Pharmacological modulation of behavioral and neuronal correlates of repetition priming. J Neurosci. 2001;21:6846–52.PubMedGoogle Scholar
  145. 145.
    Bentley P, Vuilleumier P, Thiel CM, Driver J, Dolan RJ. Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage. 2003;20:58–70.PubMedCrossRefGoogle Scholar
  146. 146.
    Bentley P, Vuilleumier P, Thiel CM, Driver J, Dolan RJ. Effects of attention and emotion on repetition priming and their modulation by cholinergic enhancement. J Neurophysiol. 2003;90:1171–81.PubMedCrossRefGoogle Scholar
  147. 147.
    Bentley P, Husain M, Dolan RJ. Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory. Neuron. 2004;41:969–82.PubMedCrossRefGoogle Scholar
  148. 148.
    Kukolja J, Thiel CM, Fink GR. Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. J Neurosci. 2009;29:8119–28.PubMedCrossRefGoogle Scholar
  149. 149.
    Stephenson CME, Suckling J, Dirckx SG, Ooi C, McKenna PJ, Bisbrown-Chippendale R, et al. GABAergic inhibitory mechanisms for repetition-adaptivity in large-scale brain systems. Neuroimage. 2003;19:1578–88.PubMedCrossRefGoogle Scholar
  150. 150.
    Coull JT, Nobre AC, Frith CD. The noradrenergic alpha 2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex. 2001;11:73–84.PubMedCrossRefGoogle Scholar
  151. 151.
    Northoff G, Witzel T, Richter A, Gessner M, Schlagenhauf F, Fell J, et al. GABA-ergic modulation of prefrontal spatio-temporal activation pattern during emotional processing: a combined fMRI/MEG study with placebo and lorazepam. J Cogn Neurosci. 2002;14:348–70.PubMedCrossRefGoogle Scholar
  152. 152.
    Fu CHY, Abel KM, Allin MPG, Gasston D, Costafreda SG, Suckling J, et al. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study. Psychopharmacology. 2005;183:92–102.PubMedCrossRefGoogle Scholar
  153. 153.
    Abel KM, Allin MPG, Kucharska-Pietura K, David A, Andrew C, Williams S, et al. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. Neuroreport. 2003;14:387–91.PubMedCrossRefGoogle Scholar
  154. 154.
    Wise RG, Rogers R, Painter D, Bantick S, Ploghaus A, Williams P, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage. 2002;16:999–1014.PubMedCrossRefGoogle Scholar
  155. 155.
    Wise RG, Williams P, Tracey I. Using fMRI to quantify the time dependence of remifentanil an algesia in the human brain. Neuropsychopharmacology. 2004;29:626–35.PubMedCrossRefGoogle Scholar
  156. 156.
    Pattinson KTS, Governo RJ, MacIntosh BJ, Russell EC, Corfield DR, Tracey I, et al. Opioids depress cortical centers responsible for the volitional control of respiration. J Neurosci. 2009;29: 8177–86.PubMedCrossRefGoogle Scholar
  157. 157.
    Arce E, Miller DA, Feinstein JS, Stein MB, Paulus MP. Lorazepam dose-dependently decreases risk-taking related activation in limbic areas. Psychopharmacology. 2006;189:105–16.PubMedCrossRefGoogle Scholar
  158. 158.
    Deakin JFW, Lees J, Mckie S, Hallak JEC, Williams SR, Dursun SM. Glutamate and the neural basis of the subjective effects of ketamine. Arch Gen Psychiatry. 2008;65:154–64.PubMedCrossRefGoogle Scholar
  159. 159.
    Borras MC, Becerra L, Ploghaus A, Gostic JM, DaSilva A, Gonzalez RG, et al. fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J Neurophysiol. 2004;91:2723–33.PubMedCrossRefGoogle Scholar
  160. 160.
    Kukolja J, Schlapfer TE, Keysers C, Klingmuller D, Maier W, Fink GR, et al. Modeling a negative response bias in the human amygdala by noradrenergic-glucocorticoid interactions. J Neurosci. 2008;28:12868–76.PubMedCrossRefGoogle Scholar
  161. 161.
    Hurlemann R, Walter H, Rehme AK, Kukolja J, Santoro SC, Schmidt C, Schnell K, Musshoff F, Keysers C, Maier W, Kendrick KM, Onur OA. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol. Psychol Med. 2010;40:1–10Google Scholar
  162. 162.
    van Honk J, Pruessner JC. Psychoneuroendocrine Imaging: a special issue of psychoneuroendocrinology. Psychoneuroen­docrinology. 2010;35:1–4.PubMedCrossRefGoogle Scholar
  163. 163.
    Alves FS, Figee M, Vamelsvoort T, Veltman D, de Haan L. The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. Psychopharmacol Bull. 2008;41:121–32.Google Scholar
  164. 164.
    Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM. Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol Psychiatry. 2006;59:816–20.PubMedCrossRefGoogle Scholar
  165. 165.
    Arce E, Simmons AN, Lovero KL, Stein MB, Paulus MP. Escitalopram effects on insula and amygdala BOLD activation during emotional processing. Psychopharmacology. 2008;196:661–72.PubMedCrossRefGoogle Scholar
  166. 166.
    Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry. 2004;161:1256–63.PubMedCrossRefGoogle Scholar
  167. 167.
    Norbury R, Taylor MJ, Selvaraj S, Murphy SE, Harmer CJ, Cowen PJ. Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology. 2009;206:197–204.PubMedCrossRefGoogle Scholar
  168. 168.
    Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Harmer CJ. Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry. 2009;194:535–40.PubMedCrossRefGoogle Scholar
  169. 169.
    Harmer CJ, Bhagwagar Z, Perrett DI, Vollm BA, Cowen PJ, Goodwin GM. Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology. 2003;28:148–52.PubMedCrossRefGoogle Scholar
  170. 170.
    Cools R, Calder AJ, Lawrence AD, Clark L, Bullmore E, Robbins TW. Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology. 2005;180:670–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Evers EAT, Cools R, Clark L, van der Veen FM, Jolles J, Sahakian BJ, et al. Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychop­harmacology. 2005;30:1138–47.PubMedCrossRefGoogle Scholar
  172. 172.
    Del Ben CM, Deakin JFW, Mckie S, Delvai NA, Williams SR, Elliott R, et al. The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an fMRI study. Neuropsychopharmacology. 2005;30:1724–34.CrossRefGoogle Scholar
  173. 173.
    Anderson IM, Del Ben CM, Mckie S, Richardson P, Williams SR, Elliott R, et al. Citalopram modulation of neuronal responses to aversive face emotions: a functional MRI study. Neuroreport. 2007;18:1351–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Vollm B, Richardson P, McKie S, Reniers R, Elliott R, Anderson IM, et al. Neuronal correlates and serotonergic modulation of behavioural inhibition and reward in healthy and antisocial individuals. J Psychiatr Res. 2010;44:123–31.PubMedCrossRefGoogle Scholar
  175. 175.
    Kalin NH, Davidson RJ, Irwin W, Warner G, Orendi JL, Sutton SK, et al. Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine. J Clin Psychiatry. 1997;58:32–9.PubMedCrossRefGoogle Scholar
  176. 176.
    Kalin NH, Irwin W, Anderle M, Davidson RJ. Venlafaxine induces early and later changes in the neural circuitry of emotion that correlate with treatment response. Biol Psychiatry. 2001;49:321.Google Scholar
  177. 177.
    Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry. 2003;160:64–75.PubMedCrossRefGoogle Scholar
  178. 178.
    Whalen PJ, Johnstone T, Somerville LH, Nitschke JB, Polis S, Alexander AL, et al. A functional magnetic resonance imaging predictor of treatment response to venlafaxine in generalized anxiety disorder. Biol Psychiatry. 2008;63:858–63.PubMedCrossRefGoogle Scholar
  179. 179.
    Bhagwagar Z, Cowen PJ, Goodwin GM, Harmer CJ. Normalization of enhanced fear recognition by acute SSRI treatment in subjects with a previous history of depression. Am J Psychiatry. 2004;161:166–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Stephan KE, Magnotta VA, White T, Arndt S, Flaum M, O’Leary DS, et al. Effects of olanzapine on cerebellar functional connectivity in schizophrenia measured by fMRI during a simple motor task. Psychol Med. 2001;31:1065–78.PubMedCrossRefGoogle Scholar
  181. 181.
    Nahas Z, George MS, Horner MD, Markowitz JS, Li XB, Lorberbaum JP, et al. Augmenting atypical Antipsychotics with a cognitive enhancer (donepezil) improves regional brain activity in schizophrenia patients: a pilot double-blind placebo controlled BOLD fMRI study. Neurocase. 2003;9:274–82.PubMedCrossRefGoogle Scholar
  182. 182.
    Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH. Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry. 2004;55:850–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Sell LA, Simmons A, Lemmens GM, Williams SCR, Brammer M, Strang J. Functional magnetic resonance imaging of the acute effect of intravenous heroin administration on visual activation in long-term heroin addicts: results from a feasibility study. Drug Alcohol Depend. 1997;49:55–60.PubMedCrossRefGoogle Scholar
  184. 184.
    Lowen SB, Nickerson LD, Levin JM. Differential effects of acute cocaine and placebo administration on visual cortical activation in healthy subjects measured using BOLD fMRI. Pharmacol Biochem Behav. 2009;92:277–82.PubMedCrossRefGoogle Scholar
  185. 185.
    Li SJ, Biswal B, Li Z, Risinger R, Rainey C, Cho JK, et al. Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magn Reson Med. 2000;43:45–51.PubMedCrossRefGoogle Scholar
  186. 186.
    Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, et al. Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry. 2009;66:431–41.PubMedCrossRefGoogle Scholar
  187. 187.
    Lawrence NS, Ross TJ, Stein EA. Cognitive mechanisms of nicotine on visual attention. Neuron. 2002;36:539–48.PubMedCrossRefGoogle Scholar
  188. 188.
    Hahn B, Ross TJ, Yang YH, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J Neurosci. 2007;27:3477–89.PubMedCrossRefGoogle Scholar
  189. 189.
    Hahn B, Ross TJ, Wolkenberg FA, Shakleya DM, Huestis MA, Stein EA. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study. Cereb Cortex. 2009;19:1990–2000.PubMedCrossRefGoogle Scholar
  190. 190.
    Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH. Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging. 2002;20:141–5.PubMedCrossRefGoogle Scholar
  191. 191.
    Jacobsen LK, Pugh KR, Mencl WE, Gelernter J. C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology. 2006;188:530–40.PubMedCrossRefGoogle Scholar
  192. 192.
    Wrase J, Grusser SM, Klein S, Diener C, Hermann D, Flor H, et al. Development of alcohol-associated cues and cue-induced brain activation in alcoholics. Eur Psychiatry. 2002;17:287–91.PubMedCrossRefGoogle Scholar
  193. 193.
    Hermann D, Smolka MN, Wrase J, Klein S, Nikitopoulos J, Georgi A, et al. Blockade of cue-induced brain activation of abstinent alcoholics by a single administration of amisulpride as measured with fMRI. Alcohol Clin Exp Res. 2006;30:1349–54.PubMedCrossRefGoogle Scholar
  194. 194.
    Schneider F, Habel U, Wagner M, Franke P, Salloum JB, Shah NJ, et al. Subcortical correlates of craving in recently abstinent alcoholic patients. Am J Psychiatry. 2001;158:1075–83.PubMedCrossRefGoogle Scholar
  195. 195.
    Thiel CM, Fink GR. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Neuroscience. 2008;152:381–90.PubMedCrossRefGoogle Scholar
  196. 196.
    Kano M, Gyoba J, Kamachi M, Mochizuki H, Hongo M, Yanai K. Low doses of alcohol have a selective effect on the recognition of happy facial expressions. Hum Psychopharmacol Clin Exp. 2003;18:131–9.CrossRefGoogle Scholar
  197. 197.
    Koppelstaetter F, Poeppel TD, Siedentopf CM, Ischebeck A, Verius M, Haala I, et al. Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage. 2008;39:492–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Koppelstaetter F, Poeppel TD, Siedentopf CM, Ischebeck A, Kolbitsch C, Mottaghy FM, et al. Caffeine and Cognition in Functional Magnetic Resonance Imaging. Dis: J Alzheimers; 2010.Google Scholar
  199. 199.
    Langleben DD, Ruparel K, Elman I, Busch-Winokur S, Pratiwadi R, Loughead J, et al. Acute effect of methadone maintenance dose on brain FMRI response to heroin-related cues. Am J Psychiatry. 2008;165:390–4.PubMedCrossRefGoogle Scholar
  200. 200.
    Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, et al. Selective effects of methylphenidate in attention-deficit/hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA. 1998;95:14494–9.PubMedCrossRefGoogle Scholar
  201. 201.
    Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH. Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry. 2002;159:1322–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Silveri MM, Anderson CM, Mcneil JF, Diaz CI, Lukas SE, Mendelson JH, et al. Oral methylphenidate challenge selectively decreases putaminal T2 in healthy subjects. Drug Alcohol Depend. 2004;76:173–80.PubMedCrossRefGoogle Scholar
  203. 203.
    Anderson CM, Lowen SB, Renshaw PF. Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis. J Neurosci Meth. 2006;151:52–61.CrossRefGoogle Scholar
  204. 204.
    Kaufman MJ, Levin JM, Maas LC, Kukes TJ, Villafuerte RA, Dostal K, et al. Cocaine-induced cerebral vasoconstriction differs as a function of sea and menstrual cycle phase. Biol Psychiatry. 2001;49:774–81.PubMedCrossRefGoogle Scholar
  205. 205.
    Streeter CC, Ciraulo DA, Harris GJ, Kaufman MJ, Lewis RF, Knapp CM, et al. Functional magnetic resonance imaging of alprazolam-induced changes in humans with familial alcoholism. Psychiatry Res Neuroimaging. 1998;82:69–82.CrossRefGoogle Scholar
  206. 206.
    Sosnovik DE, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol. 2007;18:4–10.PubMedCrossRefGoogle Scholar
  207. 207.
    Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol. 2009;64:12–21.PubMedCrossRefGoogle Scholar
  208. 208.
    Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dan J. Stein
    • 1
  • Yihong Yang
    • 2
  • Betty Jo Salmeron
    • 3
  1. 1.Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
  2. 2.FMRI Section, Neuroimaging Research BranchNational Institute on Drug Abuse, NIHBaltimoreUSA
  3. 3.Neuroimaging Research BranchNational Institute on Drug Abuse, NIHBaltimoreUSA

Personalised recommendations