Skip to main content

Applications of fMRI to Neurodegenerative Disease

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

The age distribution in developed countries is shifting, with more seniors living to age 80 and 90 years, and beyond. This shift has created a challenge for medical professionals caring for geriatric patients, as an aging population means an increased prevalence of age-related neurodegenerative brain diseases with signs and symptoms such as memory impairment, frank dementia, and motor deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.

    Article  PubMed  CAS  Google Scholar 

  2. Coleman P, Federoff Kurlan R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology. 2004;63(7):1155–62.

    PubMed  Google Scholar 

  3. DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science. 2003;302(5646):830–4.

    Article  PubMed  CAS  Google Scholar 

  4. Brickman AM, Small SA, Fleisher A. Pinpointing synaptic loss caused by Alzheimer’s disease with fMRI. Behav Neurol. 2009;21(1):93–100.

    PubMed  Google Scholar 

  5. Essig M. Degenerative brain disease. In: Diseases of the brain, head & neck, spine. Milan: Springer; 2008.

    Google Scholar 

  6. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    Article  PubMed  CAS  Google Scholar 

  7. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  8. Pihlajamäki M, Tanila H, Hänninen T, et al. Encoding of novel picture pairs activates the perirhinal cortex: an fMRI study. Hippocampus. 2003;13(1):67–80.

    Article  PubMed  Google Scholar 

  9. Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp. 2001;14(3):129–39.

    Article  PubMed  CAS  Google Scholar 

  10. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  11. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  12. Pariente J, Cole S, Henson R, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol. 2005;58(6):870–9.

    Article  PubMed  Google Scholar 

  13. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  14. Yan JH, Dick MB. Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2006;13(3–4):385–410.

    PubMed  Google Scholar 

  15. Dickerson BC, Sperling RA. Neuroimaging biomarkers for clinical trials of disease-modifying therapies in Alzheimer’s disease. NeuroRx. 2005;2(2):348–60.

    Article  PubMed  Google Scholar 

  16. Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus. 2007;17(11):1060–70.

    Article  PubMed  CAS  Google Scholar 

  17. Amieva H, Le Goff M, Millet X, et al. Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann Neurol. 2008;64(5):492–8.

    Article  PubMed  Google Scholar 

  18. Petersen RC, Parisi JE, Dickson DW, et al. Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol. 2006;63(5):665–72.

    Article  PubMed  Google Scholar 

  19. Morris JC, Cummings J. Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis. 2005;7(3):235–9. discussion 255–62.

    PubMed  Google Scholar 

  20. Morris JC, Storandt M, Miller JP, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58(3):397–405.

    Article  PubMed  CAS  Google Scholar 

  21. Bennett DA, Wilson RS, Schneider JA, et al. Natural history of mild cognitive impairment in older persons. Neurology. 2002;59(2):198–205.

    PubMed  CAS  Google Scholar 

  22. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.

    Article  PubMed  CAS  Google Scholar 

  23. Bowen J, Teri L, Kukull W, McCormick W, McCurry SM, Larson EB. Progression to dementia in patients with isolated memory loss. Lancet. 1997;349(9054):763–5.

    Article  PubMed  CAS  Google Scholar 

  24. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288(12):1475–83.

    Article  PubMed  Google Scholar 

  25. Vogel A, Stokholm J, Gade A, Andersen BB, Hejl AM, Waldemar G. Awareness of deficits in mild cognitive impairment and Alzheimer’s disease: do MCI patients have impaired insight? Dement Geriatr Cogn Disord. 2004;17(3):181–7.

    Article  PubMed  Google Scholar 

  26. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–46.

    Article  PubMed  Google Scholar 

  27. National Institute on Aging. Alzheimer’s disease fact sheet. Bethesda, MD: US National Institute of Health National Institute on Aging; 2008.

    Google Scholar 

  28. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  PubMed  CAS  Google Scholar 

  29. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):1168–70.

    Article  PubMed  CAS  Google Scholar 

  30. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27(10):1372–84.

    Article  PubMed  CAS  Google Scholar 

  31. Jagust WJ, Zheng L, Harvey DJ, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol. 2008;63(1):72–80.

    Article  PubMed  Google Scholar 

  32. Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol. 2000;21(10):1869–75.

    PubMed  CAS  Google Scholar 

  33. Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–72.

    Article  PubMed  CAS  Google Scholar 

  34. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology. 2001;57(5):812–6.

    PubMed  CAS  Google Scholar 

  35. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology. 2003;61(4):500–6.

    PubMed  CAS  Google Scholar 

  36. Gron G, Riepe MW. Neural basis for the cognitive continuum in episodic memory from health to Alzheimer disease. Am J Geriatr Psychiatry. 2004;12(6):648–52.

    PubMed  Google Scholar 

  37. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.

    Article  PubMed  CAS  Google Scholar 

  38. Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain. 2005;128(Pt 4):773–87.

    Article  PubMed  Google Scholar 

  39. Rémy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage. 2005;25(1):253–66.

    Article  PubMed  Google Scholar 

  40. Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.

    Article  PubMed  CAS  Google Scholar 

  41. Hämäläinen A, Pihlajamäki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging. 2007;28(12):1889–903.

    Article  PubMed  Google Scholar 

  42. Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology. 2006;67(6):1011–7.

    Article  PubMed  CAS  Google Scholar 

  43. Gould RL, Brown RG, Owen AM, Bullmore ET, Williams SC, Howard RJ. Functional neuroanatomy of successful paired associate learning in Alzheimer’s disease. Am J Psychiatry. 2005;162(11):2049–60.

    Article  PubMed  Google Scholar 

  44. Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 2010;12(1):27–43.

    Article  PubMed  CAS  Google Scholar 

  45. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  PubMed  CAS  Google Scholar 

  46. Petersen RC. Mild cognitive impairment: current research and clinical implications. Semin Neurol. 2007;27(1):22–31.

    Article  PubMed  Google Scholar 

  47. Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56(1):27–35.

    Article  PubMed  Google Scholar 

  48. Kircher TT, Weis S, Freymann K, et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry. 2007;78(8):812–8.

    Article  PubMed  Google Scholar 

  49. Johnson SC, Schmitz TW, Moritz CH, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging. 2006;27(11):1604–12.

    Article  PubMed  CAS  Google Scholar 

  50. Petrella JR, Krishnan S, Slavin MJ, Tran TT, Murty L, Doraiswamy PM. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology. 2006;240(1):177–86.

    Article  PubMed  Google Scholar 

  51. Lenzi D, Serra L, Perri R, et al. Single domain amnestic MCI: A multiple cognitive domains fMRI investigation. Neurobiol Aging. 2009. Article in Press, Corrected Proof.

    Google Scholar 

  52. Heun R, Freymann K, Erb M, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiol Aging. 2007;28(3):404–13.

    Article  PubMed  Google Scholar 

  53. Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia. 2008;46(6):1624–35.

    Article  PubMed  Google Scholar 

  54. Johnson SC, Schmitz TW, Trivedi MA, et al. The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci. 2006;26(22):6069–76.

    Article  PubMed  CAS  Google Scholar 

  55. Mandzia JL, McAndrews MP, Grady CL, Graham SJ, Black SE. Neural correlates of incidental memory in mild cognitive impairment: an fMRI study. Neurobiol Aging. 2009;30(5):717–30.

    Article  PubMed  Google Scholar 

  56. Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia. 2004;42(7):980–9.

    Article  PubMed  Google Scholar 

  57. Ries ML, Schmitz TW, Kawahara TN, Torgerson BM, Trivedi MA, Johnson SC. Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage. 2006;29(2):485–92.

    Article  PubMed  Google Scholar 

  58. Ries ML, Jabbar BM, Schmitz TW, et al. Anosognosia in mild cognitive impairment: relationship to activation of cortical midline structures involved in self-appraisal. J Int Neuropsychol Soc. 2007;13(3):450–61.

    Article  PubMed  Google Scholar 

  59. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51(2):145–55.

    Article  PubMed  CAS  Google Scholar 

  60. Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer’s and dementia with Lewy bodies. Neurochem Res. 2003;28(11):1743–56.

    Article  PubMed  CAS  Google Scholar 

  61. Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT. Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci. 2004;24(19):4535–40.

    Article  PubMed  CAS  Google Scholar 

  62. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A. 1998;95(4):1834–9.

    Article  PubMed  CAS  Google Scholar 

  63. Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab. 2002;22(9):1042–53.

    Article  PubMed  CAS  Google Scholar 

  64. Rand-Giovannetti E, Chua EF, Driscoll AE, Schacter DL, Albert MS, Sperling RA. Hippocampal and neocortical activation during repetitive encoding in older persons. Neurobiol Aging. 2006;27(1):173–82.

    Article  PubMed  Google Scholar 

  65. Miller SL, Celone K, DePeau K, et al. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci U S A. 2008;105(6):2181–6.

    Article  PubMed  CAS  Google Scholar 

  66. Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage. 2003;20(2):1400–10.

    Article  PubMed  Google Scholar 

  67. Grön G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol. 2002;51(4):491–8.

    Article  PubMed  Google Scholar 

  68. Rémy F, Mirrashed F, Campbell B, Richter W. Mental calculation impairment in Alzheimer’s disease: a functional magnetic resonance imaging study. Neurosci Lett. 2004;358(1):25–8.

    Article  PubMed  CAS  Google Scholar 

  69. Rombouts SA, Goekoop R, Stam CJ, Barkhof F, Scheltens P. Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage. 2005;26(4):1078–85.

    Article  PubMed  Google Scholar 

  70. Pihlajamäki M, DePeau KM, Blacker D, Sperling RA. Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. Am J Geriatr Psychiatry. 2008;16(4):283–92.

    Article  PubMed  Google Scholar 

  71. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–93.

    PubMed  CAS  Google Scholar 

  72. Pihlajamäki M, O’ Keefe K, Bertram L, et al. Evidence of altered posteromedial cortical fMRI activity in subjects at risk for Alzheimer disease. Alzheimer Dis Assoc Disord. 2010;24(1):28–36.

    Article  PubMed  Google Scholar 

  73. Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52.

    Article  PubMed  Google Scholar 

  74. Buckner RL. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron. 2004;44(1):195–208.

    Article  PubMed  CAS  Google Scholar 

  75. Schwindt GC, Black SE. Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. Neuroimage. 2009;45(1):181–90.

    Article  PubMed  Google Scholar 

  76. Peters F, Collette F, Degueldre C, Sterpenich V, Majerus S, Salmon E. The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain. 2009;132(Pt 7):1833–46.

    Article  PubMed  Google Scholar 

  77. Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc. 1999;5(5):377–92.

    Article  PubMed  CAS  Google Scholar 

  78. Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain. 2003;126(Pt 2):292–311.

    Article  PubMed  Google Scholar 

  79. Vandenbulcke M, Peeters R, Dupont P, Van Hecke P, Vandenberghe R. Word reading and posterior temporal dysfunction in amnestic mild cognitive impairment. Cereb Cortex. 2007;17(3):542–51.

    Article  PubMed  Google Scholar 

  80. Miller KM, Finney GR, Meador KJ, Loring DW. Auditory responsive naming versus visual confrontation naming in dementia. Clin Neuropsychol. 2010;24(1):103–18.

    Article  PubMed  Google Scholar 

  81. Dannhauser TM, Walker Z, Stevens T, Lee L, Seal M, Shergill SS. The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain. 2005;128(Pt 6):1418–27.

    Article  PubMed  Google Scholar 

  82. Bokde AL, Lopez-Bayo P, Meindl T, et al. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain. 2006;129(Pt 5):1113–24.

    Article  PubMed  CAS  Google Scholar 

  83. Teipel SJ, Bokde AL, Born C, et al. Morphological substrate of face matching in healthy ageing and mild cognitive impairment: a combined MRI-fMRI study. Brain. 2007;130(Pt 7):1745–58.

    Article  PubMed  Google Scholar 

  84. Thiyagesh SN, Farrow TF, Parks RW, et al. The neural basis of visuospatial perception in Alzheimer’s disease and healthy elderly comparison subjects: an fMRI study. Psychiatry Res. 2009;172(2):109–16.

    Article  PubMed  Google Scholar 

  85. Tripoliti EE, Fotiadis DI, Argyropoulou M, Manis G. A six stage approach for the diagnosis of the Alzheimer’s disease based on fMRI data. J Biomed Inform. 2010;43(2):307–20.

    Article  PubMed  Google Scholar 

  86. Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage. 2007;37(4):1073–82.

    Article  Google Scholar 

  87. Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB. Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage. 2009;47(4):1678–90.

    Article  PubMed  Google Scholar 

  88. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26(4):231–9.

    Article  PubMed  Google Scholar 

  89. Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One. 2007;2(10):e1104.

    Article  PubMed  Google Scholar 

  90. Sorg C, Riedl V, Mühlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(47):18760–5.

    Article  PubMed  CAS  Google Scholar 

  91. Lustig C, Buckner RL. Preserved neural correlates of priming in old age and dementia. Neuron. 2004;42(5):865–75.

    Article  PubMed  CAS  Google Scholar 

  92. Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex. 2006;16(12):1771–82.

    Article  PubMed  Google Scholar 

  93. Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology. 1996;47(2):454–61.

    PubMed  CAS  Google Scholar 

  94. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.

    Article  PubMed  CAS  Google Scholar 

  95. Alexander GE, Chen K, Pietrini P, Rapoport SI, Reiman EM. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer’s disease treatment studies. Am J Psychiatry. 2002;159(5):738–45.

    Article  PubMed  Google Scholar 

  96. Small GW, Ercoli LM, Silverman DH, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97(11):6037–42.

    Article  PubMed  CAS  Google Scholar 

  97. Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A. 2004;101(1):284–9.

    Article  PubMed  CAS  Google Scholar 

  98. Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59(4):673–81.

    Article  PubMed  Google Scholar 

  99. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.

    Article  PubMed  CAS  Google Scholar 

  100. Qi Z, Wu X, Wang Z, et al. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage. 2010;50(1):48–55.

    Article  PubMed  Google Scholar 

  101. Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A. 2003;100(24):14504–9.

    Article  PubMed  CAS  Google Scholar 

  102. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–42.

    Article  PubMed  CAS  Google Scholar 

  103. Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31(2):496–504.

    Article  PubMed  Google Scholar 

  104. Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28(10):967–78.

    Article  PubMed  Google Scholar 

  105. He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage. 2007;35(2):488–500.

    Article  PubMed  Google Scholar 

  106. Petrella JR, Wang L, Krishnan S, et al. Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology. 2007;245(1):224–35.

    Article  PubMed  Google Scholar 

  107. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.

    Article  PubMed  CAS  Google Scholar 

  108. Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67(3):446–52.

    Article  PubMed  CAS  Google Scholar 

  109. Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29(10):1456–65.

    Article  PubMed  CAS  Google Scholar 

  110. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  111. Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol. 2003;54(3):343–51.

    Article  PubMed  Google Scholar 

  112. Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ. Task-induced deactivations during successful paired associates learning: an effect of age but not Alzheimer’s disease. Neuroimage. 2006;31(2):818–31.

    Article  PubMed  Google Scholar 

  113. Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G. Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci. 2006;18(2):227–41.

    Article  PubMed  Google Scholar 

  114. Daselaar SM, Prince SE, Cabeza R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. 2004;23(3):921–7.

    Article  PubMed  CAS  Google Scholar 

  115. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  116. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology. 1993;43(8):1467–72.

    PubMed  CAS  Google Scholar 

  117. Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA. 1995;273(12):942–7.

    Article  PubMed  CAS  Google Scholar 

  118. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8.

    Article  PubMed  CAS  Google Scholar 

  119. Suthana NA, Krupa A, Donix M, et al. Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at genetic risk for Alzheimer’s disease. Neuroimage. 2010;53(3):1077–84.

    Article  PubMed  CAS  Google Scholar 

  120. Dennis NA, Browndyke JN, Stokes J, et al. Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimers Dement. 2010;6:303–11.

    Google Scholar 

  121. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.

    Article  PubMed  CAS  Google Scholar 

  122. Burggren AC, Small GW, Sabb FW, Bookheimer SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):44–51.

    PubMed  Google Scholar 

  123. Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology. 2002;58(8):1197–202.

    PubMed  CAS  Google Scholar 

  124. Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.

    Article  PubMed  Google Scholar 

  125. Fleisher AS, Houston WS, Eyler LT, et al. Identification of Alzheimer disease risk by functional magnetic resonance imaging. Arch Neurol. 2005;62(12):1881–8.

    Article  PubMed  Google Scholar 

  126. Wishart HA, Saykin AJ, Rabin LA, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry. 2006;163(9):1603–10.

    Article  PubMed  Google Scholar 

  127. Han SD, Houston WS, Jak AJ, et al. Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging. 2007;28(2):238–47.

    Article  PubMed  CAS  Google Scholar 

  128. Smith CD, Andersen AH, Kryscio RJ, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology. 1999;53(7):1391–6.

    PubMed  CAS  Google Scholar 

  129. Lind J, Persson J, Ingvar M, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain. 2006;129(Pt 5):1240–8.

    Article  PubMed  Google Scholar 

  130. Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med. 2006;4:1.

    Article  PubMed  CAS  Google Scholar 

  131. Borghesani PR, Johnson LC, Shelton AL, et al. Altered medial temporal lobe responses during visuospatial encoding in healthy APOE*4 carriers. Neurobiol Aging. 2008;29(7):981–91.

    Article  PubMed  CAS  Google Scholar 

  132. Bassett SS, Yousem DM, Cristinzio C, et al. Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain. 2006;129(Pt 5):1229–39.

    Article  PubMed  Google Scholar 

  133. Fleisher AS, Podraza KM, Bangen KJ, et al. Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk. Neurobiol Aging. 2009;30(11):1737–48.

    Article  PubMed  CAS  Google Scholar 

  134. Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A. 2002;99(1):455–60.

    Article  PubMed  CAS  Google Scholar 

  135. Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain. 2008;131(Pt 2):409–24.

    Article  PubMed  Google Scholar 

  136. Kaduszkiewicz H, Zimmermann T, Beck-Bornholdt HP, van den Bussche H. Cholinesterase inhibitors for patients with Alzheimer’s disease: systematic review of randomised clinical trials. BMJ. 2005;331(7512):321–7.

    Article  PubMed  CAS  Google Scholar 

  137. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006;(2):CD003154.

    Google Scholar 

  138. Saykin AJ, Wishart HA, Rabin LA, et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain. 2004;127(Pt 7):1574–83.

    Article  PubMed  Google Scholar 

  139. Kircher TT, Erb M, Grodd W, Leube DT. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry. 2005;13(11):1006–13.

    PubMed  Google Scholar 

  140. Goekoop R, Rombouts SA, Jonker C, et al. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage. 2004;23(4):1450–9.

    Article  PubMed  Google Scholar 

  141. Goekoop R, Scheltens P, Barkhof F, Rombouts SA. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation – a pharmacological fMRI study. Brain. 2006;129(Pt 1):141–57.

    PubMed  Google Scholar 

  142. Grön G, Brandenburg I, Wunderlich AP, Riepe MW. Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging. 2006;27(1):78–87.

    Article  PubMed  CAS  Google Scholar 

  143. Shanks MF, McGeown WJ, Forbes-McKay KE, Waiter GD, Ries M, Venneri A. Regional brain activity after prolonged cholinergic enhancement in early Alzheimer’s disease. Magn Reson Imaging. 2007;25(6):848–59.

    Article  PubMed  CAS  Google Scholar 

  144. Rombouts SA, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73(6):665–71.

    Article  PubMed  CAS  Google Scholar 

  145. Pihlajamäki M, Sperling RA. fMRI: use in early Alzheimer’s disease and in clinical trials. Future Neurol. 2008;3(4):409–21.

    Article  CAS  Google Scholar 

  146. Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Witter MP. FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp. 2000;9(3):156–64.

    Article  PubMed  CAS  Google Scholar 

  147. Diamond EL, Miller S, Dickerson BC, et al. Relationship of fMRI activation to clinical trial memory measures in Alzheimer disease. Neurology. 2007;69(13):1331–41.

    Article  PubMed  CAS  Google Scholar 

  148. Johnson SC, Saykin AJ, Flashman LA, McAllister TW, Sparling MB. Brain activation on fMRI and verbal memory ability: functional neuroanatomic correlates of CVLT performance. J Int Neuropsychol Soc. 2001;7(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  149. Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain. 2006;129(Pt 11):2908–22.

    Article  PubMed  Google Scholar 

  150. Braskie MN, Small GW, Bookheimer SY. Entorhinal cortex structure and functional MRI response during an associative verbal memory task. Hum Brain Mapp. 2009;30(12):3981–92.

    Article  PubMed  Google Scholar 

  151. Hodges JR, Davies RR, Xuereb JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56(3):399–406.

    Article  PubMed  Google Scholar 

  152. McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol. 2001;58(11):1803–9.

    Article  PubMed  CAS  Google Scholar 

  153. Mott RT, Dickson DW, Trojanowski JQ, et al. Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J Neuropathol Exp Neurol. 2005;64(5):420–8.

    PubMed  CAS  Google Scholar 

  154. Kertesz A, Munoz DG. Frontotemporal dementia. Med Clin North Am. 2002;86(3):501–18. vi.

    Article  PubMed  Google Scholar 

  155. Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol. 2006;59(6):952–62.

    Article  PubMed  Google Scholar 

  156. Josephs KA, Petersen RC, Knopman DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006;66(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  157. Mendez MF, Lauterbach EC, Sampson SM. An evidence-based review of the psychopathology of frontotemporal dementia: a report of the ANPA Committee on Research. J Neuropsychiatry Clin Neurosci. 2008;20(2):130–49.

    Article  PubMed  Google Scholar 

  158. Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62(6):925–30.

    Article  PubMed  Google Scholar 

  159. Mendez MF, Selwood A, Mastri AR, Frey 2nd WH. Pick’s disease versus Alzheimer’s disease: a comparison of clinical characteristics. Neurology. 1993;43(2):289–92.

    PubMed  CAS  Google Scholar 

  160. Pasquier F, Delacourte A. Non-Alzheimer degenerative dementias. Curr Opin Neurol. 1998;11(5):417–27.

    Article  PubMed  CAS  Google Scholar 

  161. The Lund and Manchester Groups. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1994;57(4):416–8.

    Article  Google Scholar 

  162. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615–21.

    PubMed  CAS  Google Scholar 

  163. Robert PH, Lafont V, Snowden JS, Lebert F. Diagnostic criteria for fronto-temporal lobe degeneration. Encephale. 1999;25(6):612–21.

    PubMed  CAS  Google Scholar 

  164. Mychack P, Kramer JH, Boone KB, Miller BL. The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology. 2001;56(11 Suppl 4):S11–5.

    PubMed  CAS  Google Scholar 

  165. Edwards-Lee T, Miller BL, Benson DF, et al. The temporal variant of frontotemporal dementia. Brain. 1997;120(Pt 6):1027–40.

    Article  PubMed  Google Scholar 

  166. Liu W, Miller BL, Kramer JH, et al. Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology. 2004;62(5):742–8.

    PubMed  CAS  Google Scholar 

  167. Miller BL, Cummings J, Mishkin F, et al. Emergence of artistic talent in frontotemporal dementia. Neurology. 1998;51(4):978–82.

    PubMed  CAS  Google Scholar 

  168. Rankin KP, Kramer JH, Mychack P, Miller BL. Double dissociation of social functioning in frontotemporal dementia. Neurology. 2003;60(2):266–71.

    PubMed  Google Scholar 

  169. Rosen HJ, Hartikainen KM, Jagust W, et al. Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology. 2002;58(11):1608–15.

    PubMed  Google Scholar 

  170. Berthoz S, Armony JL, Blair RJ, Dolan RJ. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain. 2002;125(Pt 8):1696–708.

    Article  PubMed  CAS  Google Scholar 

  171. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60(12):1904–8.

    PubMed  CAS  Google Scholar 

  172. Werner KH, Roberts NA, Rosen HJ, et al. Emotional reactivity and emotion recognition in frontotemporal lobar degeneration. Neurology. 2007;69(2):148–55.

    Article  PubMed  CAS  Google Scholar 

  173. Whitehouse PJ, Sciulli CG, Mason RM. Dementia drug development: use of information systems to harmonize global drug development. Psychopharmacol Bull. 1997;33(1):129–33.

    PubMed  CAS  Google Scholar 

  174. Braskie MN, Small GW, Bookheimer SY. Vascular health risks and fMRI activation during a memory task in older adults. Neurobiol Aging. 2010;31(9):1532–42. Epub 2008 Oct 1.

    Article  PubMed  Google Scholar 

  175. Haley AP, Sweet LH, Gunstad J, et al. Verbal working memory and atherosclerosis in patients with cardiovascular disease: an fMRI study. J Neuroimaging. 2007;17(3):227–33.

    Article  PubMed  Google Scholar 

  176. Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 2007;6(1):63–74.

    Article  PubMed  Google Scholar 

  177. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–26.

    Article  PubMed  CAS  Google Scholar 

  178. Tullberg M, Hultin L, Ekholm S, Månsson JE, Fredman P, Wikkelsø C. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand. 2002;105(6):417–26.

    Article  PubMed  CAS  Google Scholar 

  179. Malm J, Eklund A. Idiopathic normal pressure hydrocephalus. Pract Neurol. 2006;6(1):14–27.

    Article  Google Scholar 

  180. Malm J, Kristensen B, Stegmayr B, Fagerlund M, Koskinen LO. Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. Neurology. 2000;55(4):576–8.

    PubMed  CAS  Google Scholar 

  181. Lenfeldt N, Larsson A, Nyberg L, et al. Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain. 2008;131(Pt 11):2904–12.

    Article  PubMed  Google Scholar 

  182. McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging. 2006;27(4):530–45.

    Article  PubMed  CAS  Google Scholar 

  183. Miyasaki JM, Shannon K, Voon V, et al. Practice Parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2006;66(7):996–1002.

    Article  PubMed  CAS  Google Scholar 

  184. Rao SS, Hofmann LA, Shakil A. Parkinson’s disease: diagnosis and treatment. Am Fam Physician. 2006;74(12):2046–54.

    PubMed  Google Scholar 

  185. Leibson CL, Long KH, Maraganore DM, et al. Direct medical costs associated with Parkinson’s disease: a population-based study. Mov Disord. 2006;21(11):1864–71.

    Article  PubMed  Google Scholar 

  186. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–45.

    Article  PubMed  Google Scholar 

  187. Poewe W. The natural history of Parkinson’s disease. J Neurol. 2006;253 Suppl 7:VII2–6.

    Article  PubMed  Google Scholar 

  188. Dowding CH, Shenton CL, Salek SS. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging. 2006;23(9):693–721.

    Article  PubMed  Google Scholar 

  189. Huse DM, Schulman K, Orsini L, Castelli-Haley J, Kennedy S, Lenhart G. Burden of illness in Parkinson’s disease. Mov Disord. 2005;20(11):1449–54.

    Article  PubMed  Google Scholar 

  190. Weintraub D, Comella CL, Horn S. Parkinson’s disease – Part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care. 2008;14(2 Suppl):S40–8.

    PubMed  Google Scholar 

  191. Pallone JA. Introduction to Parkinson’s disease. Dis Mon. 2007;53(4):195–9.

    Article  PubMed  Google Scholar 

  192. Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology. 2006;66(10 Suppl 4):S24–36.

    PubMed  Google Scholar 

  193. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  PubMed  CAS  Google Scholar 

  194. Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20(6):2369–82.

    PubMed  CAS  Google Scholar 

  195. Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci. 1990;13(7):254–8.

    Article  PubMed  CAS  Google Scholar 

  196. Dagher A, Nagano-Saito A. Functional and anatomical magnetic resonance imaging in Parkinson’s disease. Mol Imaging Biol. 2007;9(4):234–42.

    Article  PubMed  Google Scholar 

  197. Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

    Article  PubMed  Google Scholar 

  198. Haslinger B, Erhard P, Kämpfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124(Pt 3):558–70.

    Article  PubMed  CAS  Google Scholar 

  199. Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain. 2000;123(Pt 2):394–403.

    Article  PubMed  Google Scholar 

  200. Buhmann C, Glauche V, Stürenburg HJ, Oechsner M, Weiller C, Büchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126(Pt 2):451–61.

    Article  PubMed  CAS  Google Scholar 

  201. Rowe J, Stephan KE, Friston K, Frackowiak R, Lees A, Passingham R. Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain. 2002;125(Pt 2):276–89.

    Article  PubMed  Google Scholar 

  202. Dirnberger G, Frith CD, Jahanshahi M. Executive dysfunction in Parkinson’s disease is associated with altered pallidal-frontal processing. Neuroimage. 2005;25(2):588–99.

    Article  PubMed  Google Scholar 

  203. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.

    Article  PubMed  CAS  Google Scholar 

  204. van Nuenen BF, van Eimeren T, van der Vegt JP, et al. Mapping preclinical compensation in Parkinson’s disease: an imaging genomics approach. Mov Disord. 2009;24 Suppl 2:S703–10.

    Article  PubMed  Google Scholar 

  205. Thobois S, Dominey P, Decety J, Pollak P, Gregoire MC, Broussolle E. Overactivation of primary motor cortex is asymmetrical in hemiparkinsonian patients. Neuroreport. 2000;11(4):785–9.

    Article  PubMed  CAS  Google Scholar 

  206. Palmer SJ, Ng B, Abugharbieh R, Eigenraam L, McKeown MJ. Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson’s disease. Eur J Neurosci. 2009;29(11):2187–96.

    Article  PubMed  Google Scholar 

  207. Peters S, Suchan B, Rusin J, et al. Apomorphine reduces BOLD signal in fMRI during voluntary movement in Parkinsonian patients. Neuroreport. 2003;14(6):809–12.

    Article  PubMed  CAS  Google Scholar 

  208. Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage. 2010;49(3):2581–7. Epub 2009 Oct 22.

    Article  PubMed  CAS  Google Scholar 

  209. Wu T, Wang L, Chen Y, Zhao C, Li K, Chan P. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett. 2009;460(1):6–10.

    Article  PubMed  CAS  Google Scholar 

  210. Palmer SJ, Eigenraam L, Hoque T, McCaig RG, Troiano A, McKeown MJ. Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson’s disease. Neuroscience. 2009;158(2):693–704.

    Article  PubMed  CAS  Google Scholar 

  211. Kraft E, Loichinger W, Diepers M, et al. Levodopa-induced striatal activation in Parkinson’s disease: a functional MRI study. Parkinsonism Relat Disord. 2009;15(8):558–63.

    Article  PubMed  Google Scholar 

  212. Hesselmann V, Sorger B, Girnus R, et al. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson’s disease. Eur Radiol. 2004;14(4):686–90.

    Article  PubMed  Google Scholar 

  213. Phillips MD, Baker KB, Lowe MJ, et al. Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus – initial experience. Radiology. 2006;239(1):209–16.

    Article  PubMed  Google Scholar 

  214. Stefurak T, Mikulis D, Mayberg H, et al. Deep brain stimulation for Parkinson’s disease dissociates mood and motor circuits: a functional MRI case study. Mov Disord. 2003;18(12):1508–16.

    Article  PubMed  Google Scholar 

  215. Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry. 2000;69(3):308–12.

    Article  PubMed  CAS  Google Scholar 

  216. Weintraub D, Moberg PJ, Duda JE, Katz IR, Stern MB. Effect of psychiatric and other nonmotor symptoms on disability in Parkinson’s disease. J Am Geriatr Soc. 2004;52(5):784–8.

    Article  PubMed  Google Scholar 

  217. Owen AM, James M, Leigh PN, et al. Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain. 1992;115(Pt 6):1727–51.

    Article  PubMed  Google Scholar 

  218. Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sørensen P. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology. 2001;56(6):730–6.

    PubMed  CAS  Google Scholar 

  219. Monchi O, Petrides M, Petre V, Worsley K, Dagher A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci. 2001;21(19):7733–41.

    PubMed  CAS  Google Scholar 

  220. Dagher A, Owen AM, Boecker H, Brooks DJ. Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain. 1999;122(Pt 10):1973–87.

    Article  PubMed  Google Scholar 

  221. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci. 2003;23(15):6351–6.

    PubMed  CAS  Google Scholar 

  222. Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol. 2002;51(2):156–64.

    Article  PubMed  CAS  Google Scholar 

  223. Sawaguchi T, Matsumura M, Kubota K. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol. 1990;63(6):1385–400.

    PubMed  CAS  Google Scholar 

  224. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.

    Article  PubMed  CAS  Google Scholar 

  225. Jubault T, Monetta L, Strafella AP, Lafontaine AL, Monchi O. L-dopa medication in Parkinson’s disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS One. 2009;4(7):e6154.

    Article  PubMed  CAS  Google Scholar 

  226. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology. 2007;32(1):180–9.

    Article  PubMed  CAS  Google Scholar 

  227. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.

    Article  PubMed  CAS  Google Scholar 

  228. Gotham AM, Brown RG, Marsden CD. ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain. 1988;111(Pt 2):299–321.

    Article  PubMed  Google Scholar 

  229. Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci. 2004;24(3):702–10.

    Article  PubMed  CAS  Google Scholar 

  230. Monchi O, Petrides M, Mejia-Constain B, Strafella AP. Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain. 2007;130(Pt 1):233–44.

    PubMed  Google Scholar 

  231. Grossman M, Cooke A, DeVita C, et al. Grammatical and resource components of sentence processing in Parkinson’s disease: an fMRI study. Neurology. 2003;60(5):775–81.

    PubMed  CAS  Google Scholar 

  232. Barnes J, David AS. Visual hallucinations in Parkinson’s disease: a review and phenomenological survey. J Neurol Neurosurg Psychiatry. 2001;70(6):727–33.

    Article  PubMed  CAS  Google Scholar 

  233. Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen FW, van Laar T. Impaired visual processing preceding image recognition in Parkinson’s disease patients with visual hallucinations. Brain. 2008;132(Pt 11):2980–93.

    Article  PubMed  Google Scholar 

  234. Ramírez-Ruiz B, Martí MJ, Tolosa E, et al. Brain response to complex visual stimuli in Parkinson’s patients with hallucinations: a functional magnetic resonance imaging study. Mov Disord. 2009;23(16):2335–43.

    Article  PubMed  Google Scholar 

  235. Welge-Lüssen A, Wattendorf E, Schwerdtfeger U, et al. Olfactory-induced brain activity in Parkinson’s disease relates to the expression of event-related potentials: a functional magnetic resonance imaging study. Neuroscience. 2009;162(2):537–43.

    Article  PubMed  CAS  Google Scholar 

  236. Westermann B, Wattendorf E, Schwerdtfeger U, et al. Functional imaging of the cerebral olfactory system in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2008;79(1):19–24.

    Article  PubMed  CAS  Google Scholar 

  237. Sen S, Kawaguchi A, Truong Y, Lewis MM, Huang X. Dynamic changes in cerebello-thalamo-cortical motor circuitry during progression of Parkinson’s disease. Neuroscience. 2010;166(2):712–9. Epub 2009 Dec 24.

    Article  PubMed  CAS  Google Scholar 

  238. Péran P, Cardebat D, Cherubini A, et al. Object naming and action-verb generation in Parkinson’s disease: a fMRI study. Cortex. 2009;45(8):960–71.

    Article  PubMed  Google Scholar 

  239. Cardoso EF, Maia FM, Fregni F, et al. Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. Neuroimage. 2009;47(2):467–72.

    Article  PubMed  Google Scholar 

  240. Williams-Gray CH, Hampshire A, Barker RA, Owen AM. Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain. 2008;131(Pt 2):397–408.

    Article  PubMed  Google Scholar 

  241. Tinaz S, Schendan HE, Stern CE. Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiol Aging. 2008;29(3):397–407.

    Article  PubMed  Google Scholar 

  242. Rowe JB, Hughes L, Ghosh BC, et al. Parkinson’s disease and dopaminergic therapy – differential effects on movement, reward and cognition. Brain. 2008;131(Pt 8):2094–105.

    Article  PubMed  CAS  Google Scholar 

  243. Gusella JF, McNeil S, Persichetti F, et al. Huntington’s disease. Cold Spring Harb Symp Quant Biol. 1996;61:615–26.

    PubMed  CAS  Google Scholar 

  244. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  245. Duyao M, Ambrose C, Myers R, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387–92.

    Article  PubMed  CAS  Google Scholar 

  246. Gutekunst CA, Li SH, Yi H, et al. Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci. 1999;19(7):2522–34.

    PubMed  CAS  Google Scholar 

  247. Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369–84.

    Article  PubMed  CAS  Google Scholar 

  248. Myers RH, Sax DS, Koroshetz WJ, et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol. 1991;48(8):800–4.

    PubMed  CAS  Google Scholar 

  249. Rosas HD, Salat DH, Lee SY, et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain. 2008;131(Pt 4):1057–68.

    Article  PubMed  Google Scholar 

  250. Sax DS, O’Donnell B, Butters N, Menzer L, Montgomery K, Kayne HL. Computed tomographic, neurologic, and ­neuropsychological correlates of Huntington’s disease. Int J Neurosci. 1983;18(1–2):21–36.

    Article  PubMed  CAS  Google Scholar 

  251. Starkstein SE, Brandt J, Folstein S, et al. Neuropsychological and neuroradiological correlates in Huntington’s disease. J Neurol Neurosurg Psychiatry. 1988;51(10):1259–63.

    Article  PubMed  CAS  Google Scholar 

  252. Starkstein SE, Brandt J, Bylsma F, Peyser C, Folstein M, Folstein SE. Neuropsychological correlates of brain atrophy in Huntington’s disease: a magnetic resonance imaging study. Neuroradiology. 1992;34(6):487–9.

    Article  PubMed  CAS  Google Scholar 

  253. Aylward EH, Li Q, Stine OC, Ranen N, et al. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology. 1997;48(2):394–9.

    PubMed  CAS  Google Scholar 

  254. Rosas HD, Goodman J, Chen YI, et al. Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology. 2001;57(6):1025–8.

    PubMed  CAS  Google Scholar 

  255. Aylward EH, Codori AM, Barta PE, Pearlson GD, Harris GJ, Brandt J. Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol. 1996;53(12):1293–6.

    PubMed  CAS  Google Scholar 

  256. Paulsen JS, Langbehn DR, Stout JC, et al. Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry. 2008;79(8):874–80.

    Article  PubMed  CAS  Google Scholar 

  257. Paulsen JS. Functional imaging in Huntington’s disease. Exp Neurol. 2009;216(2):272–7.

    Article  PubMed  Google Scholar 

  258. Clark VP, Lai S, Deckel AW. Altered functional MRI responses in Huntington’s disease. Neuroreport. 2002;13(5):703–6.

    Article  PubMed  Google Scholar 

  259. Dierks T, Linden DE, Hertel A, et al. Multimodal imaging of residual function and compensatory resource allocation in cortical atrophy: a case study of parietal lobe function in a patient with Huntington’s disease. Psychiatry Res. 1999;90(1):67–75.

    PubMed  CAS  Google Scholar 

  260. Georgiou-Karistianis N, Sritharan A, Farrow M, et al. Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia. 2007;45(8):1791–800.

    Article  PubMed  Google Scholar 

  261. Thiruvady DR, Georgiou-Karistianis N, Egan GF, et al. Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry. 2007;78(2):127–33.

    Article  PubMed  CAS  Google Scholar 

  262. Kim JS, Reading SA, Brashers-Krug T, Calhoun VD, Ross CA, Pearlson GD. Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res. 2004;131(1):23–30.

    Article  PubMed  Google Scholar 

  263. Wolf RC, Sambataro F, Vasic N, Schönfeldt-Lecuona C, Ecker D, Landwehrmeyer B. Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Exp Neurol. 2008;213(1):137–44.

    Article  PubMed  CAS  Google Scholar 

  264. Wolf RC, Vasic N, Schönfeldt-Lecuona C, Ecker D, Landwehrmeyer GB. Functional imaging of cognitive processes in Huntington’s disease and its presymptomatic mutation carriers. Nervenarzt. 2008;79(4):408–20.

    Article  PubMed  CAS  Google Scholar 

  265. Paulsen JS, Zimbelman JL, Hinton SC, et al. fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s disease. AJNR Am J Neuroradiol. 2004;25(10):1715–21.

    PubMed  Google Scholar 

  266. Reading SA, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol. 2004;55(6):879–83.

    Article  PubMed  Google Scholar 

  267. Zimbelman JL, Paulsen JS, Mikos A, Reynolds NC, Hoffmann RG, Rao SM. fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc. 2007;13(5):758–69.

    Article  PubMed  Google Scholar 

  268. Wolf RC, Vasic N, Schönfeldt-Lecuona C, Landwehrmeyer GB, Ecker D. Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain. 2007;130(Pt 11):2845–57.

    Article  PubMed  Google Scholar 

  269. Brooks BR, Bushara K, Khan A, et al. Functional magnetic resonance imaging (fMRI) clinical studies in ALS – paradigms, problems and promises. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1 Suppl 2:S23–32.

    Article  PubMed  Google Scholar 

  270. Lule D, Ludolph AC, Kassubek J. MRI-based functional neuroimaging in ALS: an update. Amyotroph Lateral Scler. 2009;10(5–6):258–68.

    Article  PubMed  Google Scholar 

  271. Konrad C, Henningsen H, Bremer J, et al. Pattern of cortical ­reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res. 2002;143(1):51–6.

    Article  PubMed  Google Scholar 

  272. Han J, Ma L. Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chin Med Sci J. 2006;21(4):228–33.

    PubMed  Google Scholar 

  273. Stanton BR, Williams VC, Leigh PN, et al. Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol. 2007;254(9):1260–7.

    Article  PubMed  Google Scholar 

  274. Schoenfeld MA, Tempelmann C, Gaul C, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol. 2005;252(8):944–52.

    Article  PubMed  Google Scholar 

  275. Weiller C, May A, Sach M, Buhmann C, Rijntjes M. Role of functional imaging in neurological disorders. J Magn Reson Imaging. 2006;23(6):840–50.

    Article  PubMed  Google Scholar 

  276. Kew JJ, Leigh PN, Playford ED, et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain. 1993;116(Pt 3):655–80.

    Article  PubMed  Google Scholar 

  277. Kew JJ, Brooks DJ, Passingham RE, Rothwell JC, Frackowiak RS, Leigh PN. Cortical function in progressive lower motor neuron disorders and amyotrophic lateral sclerosis: a comparative PET study. Neurology. 1994;44(6):1101–10.

    PubMed  CAS  Google Scholar 

  278. Lulé D, Diekmann V, Kassubek J, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. Neurorehabil Neural Repair. 2007;21(6):518–26.

    Article  PubMed  Google Scholar 

  279. Konrad C, Jansen A, Henningsen H, et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res. 2006;172(3):361–9.

    Article  PubMed  CAS  Google Scholar 

  280. Stanton BR, Williams VC, Leigh PN, et al. Cortical activation during motor imagery is reduced in Amyotrophic Lateral Sclerosis. Brain Res. 2007;1172:145–51.

    Article  PubMed  CAS  Google Scholar 

  281. Tessitore A, Esposito F, Monsurrò MR, et al. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull. 2006;69(5):489–94.

    Article  PubMed  CAS  Google Scholar 

  282. Isaacs JD, Dean AF, Shaw CE, Al-Chalabi A, Mills KR, Leigh PN. Amyotrophic lateral sclerosis with sensory neuropathy: part of a multisystem disorder? J Neurol Neurosurg Psychiatry. 2007;78(7):750–3.

    Article  PubMed  Google Scholar 

  283. Mai R, Facchetti D, Micheli A, Poloni M. Quantitative electroencephalography in amyotrophic lateral sclerosis. Electroencephalogr Clin Neurophysiol. 1998;106(4):383–6.

    Article  PubMed  CAS  Google Scholar 

  284. Pugdahl K, Fuglsang-Frederiksen A, de Carvalho M, et al. Generalised sensory system abnormalities in amyotrophic lateral sclerosis: a European multicentre study. J Neurol Neurosurg Psychiatry. 2007;78(7):746–9.

    Article  PubMed  CAS  Google Scholar 

  285. Pekkonen E, Osipova D, Laaksovirta H. Magnetoencephalographic evidence of abnormal auditory processing in amyotrophic lateral sclerosis with bulbar signs. Clin Neurophysiol. 2004;115(2):309–15.

    Article  PubMed  Google Scholar 

  286. Münte TF, Tröger MC, Nusser I, et al. Alteration of early components of the visual evoked potential in amyotrophic lateral sclerosis. J Neurol. 1998;245(4):206–10.

    Article  PubMed  Google Scholar 

  287. Vieregge P, Wauschkuhn B, Heberlein I, Hagenah J, Verleger R. Selective attention is impaired in amyotrophic lateral sclerosis–a study of event-related EEG potentials. Brain Res Cogn Brain Res. 1999;8(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  288. Pinkhardt EH, Jürgens R, Becker W, et al. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol. 2008;255(4):532–8.

    Article  PubMed  Google Scholar 

  289. Ludolph AC, Langen KJ, Regard M, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992;85(2):81–9.

    Article  PubMed  CAS  Google Scholar 

  290. Kew JJ, Goldstein LH, Leigh PN, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain. 1993;116(Pt 6):1399–423.

    Article  PubMed  Google Scholar 

  291. Abrahams S, Goldstein LH, Kew JJ, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. 1996;119(Pt 6):2105–20.

    Article  PubMed  Google Scholar 

  292. Abrahams S, Goldstein LH, Al-Chalabi A, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997;62(5):464–72.

    Article  PubMed  CAS  Google Scholar 

  293. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999;53(8):1665–70.

    PubMed  CAS  Google Scholar 

  294. Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59(7):1077–9.

    PubMed  Google Scholar 

  295. Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U, et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J Neurol. 2005;252(7):772–81.

    Article  PubMed  Google Scholar 

  296. Piquard A, Le Forestier N, Baudoin-Madec V, et al. Neuropsychological changes in patients with primary lateral sclerosis. Amyotroph Lateral Scler. 2006;7(3):150–60.

    Article  PubMed  Google Scholar 

  297. Anzai E, Shiozawa Z, Shindo K, Tsunoda S, Koizumi K, Uchiyama G. 123I-iodoamphetamine single photon emission computed tomography in three patients with amyotrophic lateral sclerosis. Kaku Igaku. 1990;27(8):863–7.

    PubMed  CAS  Google Scholar 

  298. Tanaka M, Kondo S, Hirai S, Sun X, Yamagishi T, Okamoto K. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J Neurol Sci. 1993;120(1):22–8.

    Article  PubMed  CAS  Google Scholar 

  299. Abrahams S, Goldstein LH, Simmons A, et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain. 2004;127(Pt 7):1507–17.

    Article  PubMed  CAS  Google Scholar 

  300. Lulé D, Diekmann V, Anders S, et al. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol. 2007;254(4):519–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamseldeen Y. Mahmoud MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mahmoud, S.Y., Jones, S.E., Phillips, M.D. (2011). Applications of fMRI to Neurodegenerative Disease. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_32

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics