Applications of fMRI to Psychiatry

Chapter

Abstract

The application of functional neuroimaging to characterize cortical dysfunction in patients with psychiatric disorders provides one of the most exciting in vivo techniques for the identification of both pathophysiologic factors and treatment effects. Functional magnetic resonance imaging (fMRI) refers to a noninvasive method to assess cortical activation by measuring changes in oxidation and regional blood flow. The most frequently used fMRI paradigms involve primary sensory stimulation, including visual stimulation and motor sequencing, and affective and cognitive paradigms. Functional brain imaging studies have historically been limited both by the need to use radioactive tracers and by poor temporal resolution. Developments in the area of magnetic resonance imaging (MRI) may largely surmount these limitations. First, the development of high-speed, echo-planar imaging devices has greatly enhanced the temporal resolution of MRI. With echo-planar imaging, single image planes can be acquired in 50–100 ms or multiple image planes can be acquired each second. Studies, which may be performed with or without a high-speed MR scanner, selectively detect image parameters that are proportional to cerebral blood flow (CBF) or blood volume (CBV). This strategy capitalizes on the fact that in general, focal changes in neuronal activity are coupled closely to changes in CBF and CBV.

Keywords

Migration Anisotropy Depression Nicotine Schizophrenia 

References

  1. 1.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89(12):5675–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, et al. Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med. 1990;14(3):538–46.PubMedCrossRefGoogle Scholar
  3. 3.
    Yurgelun-Todd DA, Renshaw PF. Applications of functional MR imaging to research in psychiatry. Neuroimaging Clin N Am. 1999;9(2):295–308.PubMedGoogle Scholar
  4. 4.
    Ross MH, Yurgelun-Todd DA, Renshaw PF, Maas LC, Mendelson JH, Mello NK, et al. Age-related reduction in functional MRI response to photic stimulation. Neurology. 1997;48(1):173–6.PubMedGoogle Scholar
  5. 5.
    American Psychiatric Association, Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders: DSM-IV. 4th ed. Washington, DC: American Psychiatric Association; 1994.Google Scholar
  6. 6.
    Filipek PA, Accardo PJ, Ashwal S, Baranek GT, Cook Jr EH, Dawson G, et al. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology. 2000;55(4):468–79.PubMedGoogle Scholar
  7. 7.
    Hill A, Bolte S, Petrova G, Beltcheva D, Tacheva S, Poustka F. Stability and interpersonal agreement of the interview-based diagnosis of autism. Psychopathology. 2001;34(4):187–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Lord C, Risi S, Lambrecht L, Cook Jr EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.PubMedCrossRefGoogle Scholar
  9. 9.
    Bookheimer SY, Wang AT, Scott A, Sigman M, Dapretto M. Frontal contributions to face processing differences in autism: evidence from fMRI of inverted face processing. J Int Neuropsychol Soc. 2008;14(6):922–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Premack D, Woodruff G. Does the chimpanzee have a theory of mind? Behav Brain Sci. 1978;1:515–26.CrossRefGoogle Scholar
  11. 11.
    Verhoeven JS, De Cock P, Lagae L, Sunaert S. Neuroimaging of autism. Neuroradiology. 2010;52(1):3–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport. 1999;10(8):1647–51.PubMedCrossRefGoogle Scholar
  13. 13.
    Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO, et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology. 1999;53(9):2145–50.PubMedGoogle Scholar
  14. 14.
    Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, et al. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport. 2000;11(13):2931–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002;59(2):184–92.PubMedGoogle Scholar
  16. 16.
    Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A, et al. Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci. 1999;11(6):1891–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Critchley HD, Daly EM, Bullmore ET, Williams SC, Van Amelsvoort T, Robertson DM, et al. The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain. 2000;123(Pt 11):2203–12.PubMedCrossRefGoogle Scholar
  18. 18.
    Grezes J, Wicker B, Berthoz S, de Gelder B. A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia. 2009;47(8–9):1816–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Hadjikhani N, Joseph RM, Manoach DS, Naik P, Snyder J, Dominick K, et al. Body expressions of emotion do not trigger fear contagion in autism spectrum disorder. Soc Cogn Affect Neurosci. 2009;4(1):70–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Pierce K, Muller RA, Ambrose J, Allen G, Courchesne E. Face processing occurs outside the fusiform ‘face area’ in autism: evidence from functional MRI. Brain. 2001;124(Pt 10):2059–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Silani G, Bird G, Brindley R, Singer T, Frith C, Frith U. Levels of emotional awareness and autism: an fMRI study. Soc Neurosci. 2008;3(2):97–112.PubMedCrossRefGoogle Scholar
  22. 22.
    Uddin LQ, Davies MS, Scott AA, Zaidel E, Bookheimer SY, Iacoboni M, et al. Neural basis of self and other representation in autism: an FMRI study of self-face recognition. PLoS ONE. 2008;3(10):e3526.PubMedCrossRefGoogle Scholar
  23. 23.
    Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(Pt 8):1811–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Gaffrey MS, Kleinhans NM, Haist F, Akshoomoff N, Campbell A, Courchesne E, et al. Atypical [corrected] participation of visual cortex during word processing in autism: an fMRI study of semantic decision. Neuropsychologia. 2007;45(8):1672–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Groen WB, Tesink C, Petersson KM, van Berkum J, van der Gaag RJ, Hagoort P, et al. Semantic, factual, and social language comprehension in adolescents with autism: an FMRI study. Cereb Cortex. 2010;20(8):1937–45.PubMedCrossRefGoogle Scholar
  26. 26.
    Harris GJ, Chabris CF, Clark J, Urban T, Aharon I, Steele S, et al. Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain Cogn. 2006;61(1):54–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006;129(Pt 9):2484–93.PubMedCrossRefGoogle Scholar
  28. 28.
    Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005;24(3):810–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Muller JL, Roder CH, Schuierer G, Klein H. Motor-induced brain activation in cortical, subcortical and cerebellar regions in schizophrenic inpatients. A whole brain fMRI fingertapping study. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):421–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Schmitz N, Rubia K, Daly E, Smith A, Williams S, Murphy DG. Neural correlates of executive function in autistic spectrum disorders. Biol Psychiatry. 2006;59(1):7–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Shafritz KM, Dichter GS, Baranek GT, Belger A. The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biol Psychiatry. 2008;63(10):974–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Solomon M, Ozonoff SJ, Ursu S, Ravizza S, Cummings N, Ly S, et al. The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia. 2009;47(12):2515–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Office of Applied Studies. Results from the 2008 National Survey on Drug Use and Health: National Findings. MD: Rockville; 2009.Google Scholar
  35. 35.
  36. 36.
    Pillay SS, Rogowska J, Kanayama G, Jon DI, Gruber S, Simpson N, et al. Neurophysiology of motor function following cannabis discontinuation in chronic cannabis smokers: an fMRI study. Drug Alcohol Depend. 2004;76(3):261–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Yurgelun-Todd DA, Gruber SA, Hanson RA et al. (1998). Residual effects of marijuana use: an fMRI study. Paper presented at the College on Problems of Drug Dependence, Sixtieth Annual Scientific Meeting.Google Scholar
  38. 38.
    Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacol (Berl). 2004;176(3–4):239–47.CrossRefGoogle Scholar
  39. 39.
    Chang L, Yakupov R, Cloak C, Ernst T. Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain. 2006;129(Pt 5):1096–112.PubMedCrossRefGoogle Scholar
  40. 40.
    Gruber SA, Yurgelun-Todd DA. Neuroimaging of marijuana smokers during inhibitory processing: a pilot investigation. Brain Res Cogn Brain Res. 2005;23(1):107–18.PubMedCrossRefGoogle Scholar
  41. 41.
    Jager G, Kahn RS, Van Den Brink W, Van Ree JM, Ramsey NF. Long-term effects of frequent cannabis use on working memory and attention: an fMRI study. Psychopharmacol (Berl). 2006;185(3):358–68.CrossRefGoogle Scholar
  42. 42.
    Bechara A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci. 2005;8(11):1458–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Hartz DT, Frederick-Osborne SL, Galloway GP. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis. Drug Alcohol Depend. 2001;63(3):269–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Nakama H, Chang L, Cloak C, Jiang C, Alicata D, Haning W. Association between psychiatric symptoms and craving in methamphetamine users. Am J Addict. 2008;17(5):441–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Schonfeld L, Rohrer GE, Dupree LW, Thomas M. Antecedents of relapse and recent substance use. Community Ment Health J. 1989;25(3):245–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA. Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry. 2003;53(1):65–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology. 2002;26(1):53–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C. Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry. 2009;65(8):706–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoffman WF, Moore M, Templin R, McFarland B, Hitzemann RJ, Mitchell SH. Neuropsychological function and delay discounting in methamphetamine-dependent individuals. Psychopharmacol (Berl). 2006;188(2):162–70.CrossRefGoogle Scholar
  50. 50.
    Hoffman WF, Schwartz DL, Huckans MS, McFarland BH, Meiri G, Stevens AA, et al. Cortical activation during delay discounting in abstinent methamphetamine dependent individuals. Psychopharmacol (Berl). 2008;201(2):183–93.CrossRefGoogle Scholar
  51. 51.
    Monterosso JR, Ainslie G, Xu J, Cordova X, Domier CP, London ED. Frontoparietal cortical activity of methamphetamine-­dependent and comparison subjects performing a delay discounting task. Hum Brain Mapp. 2007;28(5):383–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Payer DE, Lieberman MD, Monterosso JR, Xu J, Fong TW, London ED. Differences in cortical activity between methamphetamine-dependent and healthy individuals performing a facial affect matching task. Drug Alcohol Depend. 2008;93(1–2):93–102.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim YT, Lee JJ, Song HJ, Kim JH, Kwon DH, Kim MN, et al. Alterations in cortical activity of male methamphetamine abusers performing an empathy task: fMRI study. Hum Psychopharmacol. 2010;25(1):63–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Paulus MP, Tapert SF, Schuckit MA. Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry. 2005;62(7):761–8.PubMedCrossRefGoogle Scholar
  55. 55.
    World Health Organization, www.who.int, last accessed October 1, 2010.
  56. 56.
    Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19(3):591–611.PubMedCrossRefGoogle Scholar
  57. 57.
    Hanlon CA, Wesley MJ, Roth AJ, Miller MD, Porrino LJ. Loss of laterality in chronic cocaine users: An fMRI investigation of sensorimotor control. Psychiatry Res. 2010;181(1):15–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Kufahl P, Li Z, Risinger R, Rainey C, Piacentine L, Wu G, et al. Expectation modulates human brain responses to acute cocaine: a functional magnetic resonance imaging study. Biol Psychiatry. 2008;63(2):222–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ, et al. Functional magnetic resonance imaging of cocaine craving. Am J Psychiatry. 2001;158(1):86–95.PubMedCrossRefGoogle Scholar
  60. 60.
    Goldstein RZ, Tomasi D, Alia-Klein N, Cottone LA, Zhang L, Telang F, et al. Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend. 2007;87(2–3):233–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Kosten TR, Scanley BE, Tucker KA, Oliveto A, Prince C, Sinha R, et al. Cue-induced brain activity changes and relapse in cocaine-­dependent patients. Neuropsychopharmacology. 2006;31(3):644–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, et al. Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage. 2005;28(4):904–14.PubMedCrossRefGoogle Scholar
  63. 63.
    Goldstein RZ, Tomasi D, Alia-Klein N, Honorio Carrillo J, Maloney T, Woicik PA, et al. Dopaminergic response to drug words in cocaine addiction. J Neurosci. 2009;29(18):6001–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Myrick H, Anton RF, Li X, Henderson S, Drobes D, Voronin K, et al. Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving. Neuropsychopharmacology. 2004;29(2):393–402.PubMedCrossRefGoogle Scholar
  65. 65.
    Yoon HW, Chung JY, Oh JH, Min HK, Kim DJ, Cheon Y, et al. Differential activation of face memory encoding tasks in alcohol-dependent patients compared to healthy subjects: an fMRI study. Neurosci Lett. 2009;450(3):311–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Bragulat V, Dzemidzic M, Talavage T, Davidson D, O’Connor SJ, Kareken DA. Alcohol sensitizes cerebral responses to the odors of alcoholic drinks: an fMRI study. Alcohol Clin Exp Res. 2008;32(7):1124–34.PubMedCrossRefGoogle Scholar
  67. 67.
    Park MS, Sohn JH, Suk JA, Kim SH, Sohn S, Sparacio R. Brain substrates of craving to alcohol cues in subjects with alcohol use disorder. Alcohol Alcohol. 2007;42(5):417–22.PubMedGoogle Scholar
  68. 68.
    Gilman JM, Ramchandani VA, Davis MB, Bjork JM, Hommer DW. Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci. 2008;28(18):4583–91.PubMedCrossRefGoogle Scholar
  69. 69.
    Heinz A, Wrase J, Kahnt T, Beck A, Bromand Z, Grusser SM, et al. Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res. 2007;31(7):1138–47.PubMedCrossRefGoogle Scholar
  70. 70.
    Yan P, Li CS. Decreased Amygdala activation during risk taking in non-dependent habitual alcohol users: a preliminary fMRI study of the stop signal task. Am J Drug Alcohol Abuse. 2009;35(5):284–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Beck A, Schlagenhauf F, Wustenberg T, Hein J, Kienast T, Kahnt T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66(8):734–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage. 2007;35(2):787–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Gundersen H, Gruner R, Specht K, Hugdahl K. The effects of alcohol intoxication on neuronal activation at different levels of cognitive load. Open Neuroimag J. 2008;2:65–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Soderlund H, Grady CL, Easdon C, Tulving E. Acute effects of alcohol on neural correlates of episodic memory encoding. Neuroimage. 2007;35(2):928–39.PubMedCrossRefGoogle Scholar
  75. 75.
    Renshaw PF, Yurgelun-Todd DA, Cohen BM. Greater hemodynamic response to photic stimulation in schizophrenic patients: an echo planar MRI study. Am J Psychiatry. 1994;151(10):1493–5.PubMedGoogle Scholar
  76. 76.
    Chen Y, Grossman ED, Bidwell LC, Yurgelun-Todd D, Gruber SA, Levy DL, et al. Differential activation patterns of occipital and prefrontal cortices during motion processing: evidence from normal and schizophrenic brains. Cogn Affect Behav Neurosci. 2008;8(3):293–303.PubMedCrossRefGoogle Scholar
  77. 77.
    Keedy SK, Rosen C, Khine T, Rajarethinam R, Janicak PG, Sweeney JA. An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res. 2009;172(1):16–23.PubMedCrossRefGoogle Scholar
  78. 78.
    Hazlett EA, Buchsbaum MS, Zhang J, Newmark RE, Glanton CF, Zelmanova Y, et al. Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. Neuroimage. 2008;42(3):1164–77.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim DI, Mathalon DH, Ford JM, Mannell M, Turner JA, Brown GG, et al. Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. Schizophr Bull. 2009;35(1):67–81.PubMedCrossRefGoogle Scholar
  80. 80.
    Morey RA, Mitchell TV, Inan S, Lieberman JA, Belger A. Neural correlates of automatic and controlled auditory processing in schizophrenia. J Neuropsychiatry Clin Neurosci. 2008;20(4):419–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Schroder J, Wenz F, Schad LR, Baudendistel K, Knopp MV. Sensorimotor cortex and supplementary motor area changes in schizophrenia. A study with functional magnetic resonance imaging. Br J Psychiatry. 1995;167(2):197–201.PubMedCrossRefGoogle Scholar
  82. 82.
    Yurgelun-Todd DA, Waternaux CM, Cohen BM, Gruber SA, English CD, Renshaw PF. Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production. Am J Psychiatry. 1996;153(2):200–5.PubMedGoogle Scholar
  83. 83.
    Kaladjian A, Jeanningros R, Azorin JM, Grimault S, Anton JL, Mazzola-Pomietto P. Blunted activation in right ventrolateral prefrontal cortex during motor response inhibition in schizophrenia. Schizophr Res. 2007;97(1–3):184–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Snitz BE, MacDonald 3rd A, Cohen JD, Cho RY, Becker T, Carter CS. Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry. 2005;162(12):2322–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Vink M, Ramsey NF, Raemaekers M, Kahn RS. Striatal dysfunction in schizophrenia and unaffected relatives. Biol Psychiatry. 2006;60(1):32–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Elsabagh S, Premkumar P, Anilkumar AP, Kumari V. A longer duration of schizophrenic illness has sex-specific associations within the working memory neural network in schizophrenia. Behav Brain Res. 2009;201(1):41–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Hamilton LS, Altshuler LL, Townsend J, Bookheimer SY, Phillips OR, Fischer J, et al. Alterations in functional activation in euthymicbipolar disorder and schizophrenia during a working memory task. Hum Brain Mapp. 2009;30(12):3958–69.PubMedCrossRefGoogle Scholar
  88. 88.
    Karlsgodt KH, Sanz J, van Erp TG, Bearden CE, Nuechterlein KH, Cannon TD. Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia. Schizophr Res. 2009;108(1–3):143–50.PubMedCrossRefGoogle Scholar
  89. 89.
    Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, et al. Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry. 1999;45(9):1128–37.PubMedCrossRefGoogle Scholar
  90. 90.
    Meda SA, Stevens MC, Folley BS, Calhoun VD, Pearlson GD. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. PLoS ONE. 2009;4(11):e7911.PubMedCrossRefGoogle Scholar
  91. 91.
    Karch S, Leicht G, Giegling I, Lutz J, Kunz J, Buselmeier M, et al. Inefficient neural activity in patients with schizophrenia and nonpsychotic relatives of schizophrenic patients: evidence from a working memory task. J Psychiatr Res. 2009;43(15):1185–94.PubMedCrossRefGoogle Scholar
  92. 92.
    Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M, et al. Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiatry. 2007;164(3):442–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Reske M, Kellermann T, Habel U, Jon Shah N, Backes V, von Wilmsdorff M, et al. Stability of emotional dysfunctions? A long-term fMRI study in first-episode schizophrenia. J Psychiatr Res. 2007;41(11):918–27.PubMedCrossRefGoogle Scholar
  94. 94.
    Jardri R, Pins D, Bubrovszky M, Lucas B, Lethuc V, Delmaire C, et al. Neural functional organization of hallucinations in schizophrenia: multisensory dissolution of pathological emergence in consciousness. Conscious Cogn. 2009;18(2):449–57.PubMedCrossRefGoogle Scholar
  95. 95.
    Raij TT, Valkonen-Korhonen M, Holi M, Therman S, Lehtonen J, Hari R. Reality of auditory verbal hallucinations. Brain. 2009;132(Pt 11):2994–3001.PubMedCrossRefGoogle Scholar
  96. 96.
    Sommer IE, Diederen KM, Blom JD, Willems A, Kushan L, Slotema K, et al. Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain. 2008;131(Pt 12):3169–77.PubMedCrossRefGoogle Scholar
  97. 97.
    van de Ven VG, Formisano E, Roder CH, Prvulovic D, Bittner RA, Dietz MG, et al. The spatiotemporal pattern of auditory cortical responses during verbal hallucinations. Neuroimage. 2005;27(3):644–55.PubMedCrossRefGoogle Scholar
  98. 98.
    Wible CG, Lee K, Molina I, Hashimoto R, Preus AP, Roach BJ, et al. fMRI activity correlated with auditory hallucinations during performance of a working memory task: data from the FBIRN consortium study. Schizophr Bull. 2009;35(1):47–57.PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang Z, Shi J, Yuan Y, Hao G, Yao Z, Chen N. Relationship of auditory verbal hallucinations with cerebral asymmetry in patients with schizophrenia: an event-related fMRI study. J Psychiatr Res. 2008;42(6):477–86.PubMedCrossRefGoogle Scholar
  100. 100.
    Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206–19.PubMedCrossRefGoogle Scholar
  101. 101.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry. 2005;57(10):1079–88.PubMedCrossRefGoogle Scholar
  102. 102.
    Beauregard M, Leroux JM, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P, et al. The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport. 1998;9(14):3253–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Dichter GS, Felder JN, Smoski MJ. Affective context interferes with cognitive control in unipolar depression: an fMRI investigation. J Affect Disord. 2009;114(1–3):131–42.PubMedCrossRefGoogle Scholar
  104. 104.
    Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ, Cohen JD, et al. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biol Psychiatry. 2008;63(4):377–84.PubMedCrossRefGoogle Scholar
  105. 105.
    Frodl T, Scheuerecker J, Albrecht J, Kleemann AM, Muller-Schunk S, Koutsouleris N, et al. Neuronal correlates of emotional processing in patients with major depression. World J Biol Psychiatry. 2009;10(3):202–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci. 2007;27(33):8877–84.PubMedCrossRefGoogle Scholar
  107. 107.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.PubMedGoogle Scholar
  108. 108.
    Peluso MA, Glahn DC, Matsuo K, Monkul ES, Najt P, Zamarripa F, et al. Amygdala hyperactivation in untreated depressed individuals. Psychiatry Res. 2009;173(2):158–61.PubMedCrossRefGoogle Scholar
  109. 109.
    Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.PubMedCrossRefGoogle Scholar
  110. 110.
    Surguladze S, Brammer MJ, Keedwell P, Giampietro V, Young AW, Travis MJ, et al. A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biol Psychiatry. 2005;57(3):201–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen CH, Suckling J, Ooi C, Fu CH, Williams SC, Walsh ND, et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology. 2008;33(8):1909–18.PubMedCrossRefGoogle Scholar
  112. 112.
    Chen CH, Ridler K, Suckling J, Williams S, Fu CH, Merlo-Pich E, et al. Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry. 2007;62(5):407–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry. 2003;160(1):64–75.PubMedCrossRefGoogle Scholar
  114. 114.
    Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-­related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61(9):877–89.PubMedCrossRefGoogle Scholar
  115. 115.
    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50(9):651–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Anand A, Li Y, Wang Y, Gardner K, Lowe MJ. Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. J Neuropsychiatry Clin Neurosci. 2007;19(3):274–82.PubMedCrossRefGoogle Scholar
  117. 117.
    Videbech P, Petersen TH. Depression, stress and brain function. Ugeskr Laeger. 2001;163(47):6568–72.PubMedGoogle Scholar
  118. 118.
    Kennedy SH, Evans KR, Kruger S, Mayberg HS, Meyer JH, McCann S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry. 2001;158(6):899–905.PubMedCrossRefGoogle Scholar
  119. 119.
    Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol. 2001;11(2):240–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Fitzgerald PB, Srithiran A, Benitez J, Daskalakis ZZ, Oxley TJ, Kulkarni J, et al. An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp. 2008;29(4):490–501.PubMedCrossRefGoogle Scholar
  121. 121.
    Harvey PO, Fossati P, Pochon JB, Levy R, Lebastard G, Lehericy S, et al. Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage. 2005;26(3):860–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Matsuo K, Glahn DC, Peluso MAM, Hatch JP, Monkul ES, Najt P, et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry. 2007;12(2):158–66.PubMedCrossRefGoogle Scholar
  123. 123.
    Rose EJ, Simonotto E, Ebmeier KP. Limbic over-activity in depression during preserved performance on the n-back task. Neuroimage. 2006;29(1):203–15.PubMedCrossRefGoogle Scholar
  124. 124.
    Schoning S, Zwitserlood P, Engelien A, Behnken A, Kugel H, Schiffbauer H, et al. Working-memory fMRI reveals cingulate hyperactivation in euthymic major depression. Hum Brain Mapp. 2009;30(9):2746–56.PubMedCrossRefGoogle Scholar
  125. 125.
    Matthews S, Simmons A, Strigo I, Gianaros P, Yang T, Paulus M. Inhibition-related activity in subgenual cingulate is associated with symptom severity in major depression. Psychiatry Res. 2009;172(1):1–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Wagner G, Sinsel E, Sobanski T, Kohler S, Marinou V, Mentzel HJ, et al. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry. 2006;59(10):958–65.PubMedCrossRefGoogle Scholar
  127. 127.
    Smoski MJ, Felder J, Bizzell J, Green SR, Ernst M, Lynch TR, et al. fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord. 2009;118(1–3):69–78.PubMedCrossRefGoogle Scholar
  128. 128.
    Coffman JA, Bornstein RA, Olson SC, Schwarzkopf SB, Nasrallah HA. Cognitive impairment and cerebral structure by MRI in bipolar disorder. Biol Psychiatry. 1990;27(11):1188–96.PubMedCrossRefGoogle Scholar
  129. 129.
    Joseph R. Frontal lobe psychopathology: mania, depression, confabulation, catatonia, perseveration, obsessive compulsions, and schizophrenia. Psychiatry. 1999;62(2):138–72.PubMedGoogle Scholar
  130. 130.
    Murphy FC, Sahakian BJ. Neuropsychology of bipolar disorder. Br J Psychiatry Suppl. 2001;41:s120–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Murphy FC, Sahakian BJ. Neuropsychology of bipolar disorder. Br J Psychiatry. 2001;178 Suppl 41:S120–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.PubMedCrossRefGoogle Scholar
  133. 133.
    Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):829, 833–57.Google Scholar
  134. 134.
    Blumberg HP, Donegan NH, Sanislow CA, Collins S, Lacadie C, Skudlarski P, et al. Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacol (Berl). 2005;183(3):308–13.CrossRefGoogle Scholar
  135. 135.
    Hassel S, Almeida JR, Frank E, Versace A, Nau SA, Klein CR, et al. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder. J Affect Disord. 2009;118(1–3):19–27.PubMedCrossRefGoogle Scholar
  136. 136.
    Hassel S, Almeida JR, Kerr N, Nau S, Ladouceur CD, Fissell K, et al. Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: no associations with psychotropic medication load. Bipolar Disord. 2008;10(8):916–27.PubMedCrossRefGoogle Scholar
  137. 137.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry. 2004;55(6):578–87.PubMedCrossRefGoogle Scholar
  138. 138.
    Robinson JL, Monkul ES, Tordesillas-Gutierrez D, Franklin C, Bearden CE, Fox PT, et al. Fronto-limbic circuitry in euthymic bipolar disorder: evidence for prefrontal hyperactivation. Psychiatry Res. 2008;164(2):106–13.PubMedCrossRefGoogle Scholar
  139. 139.
    Yurgelun-Todd DA, Gruber SA, Kanayama G, Killgore WD, Baird AA, Young AD. fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord. 2000;2(3 Pt 2):237–48.PubMedCrossRefGoogle Scholar
  140. 140.
    Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB, et al. Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci. 2004;19(3):741–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Altshuler L, Bookheimer S, Proenza MA, Townsend J, Sabb F, Firestine A, et al. Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am J Psychiatry. 2005;162(6):1211–3.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen CH, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, et al. Explicit and implicit facial affect recognition in manic and depressed States of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry. 2006;59(1):31–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Elliott R, Ogilvie A, Rubinsztein JS, Calderon G, Dolan RJ, Sahakian BJ. Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania. Biol Psychiatry. 2004;55(12):1163–70.PubMedCrossRefGoogle Scholar
  144. 144.
    Malhi GS, Lagopoulos J, Sachdev P, Mitchell PB, Ivanovski B, Parker GB. Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disord. 2004;6(4):271–85.PubMedCrossRefGoogle Scholar
  145. 145.
    Jogia J, Haldane M, Cobb A, Kumari V, Frangou S. Pilot investigation of the changes in cortical activation during facial affect recognition with lamotrigine monotherapy in bipolar disorder. Br J Psychiatry. 2008;192(3):197–201.PubMedCrossRefGoogle Scholar
  146. 146.
    Foland LC, Altshuler LL, Bookheimer SY, Eisenberger N, Townsend J, Thompson PM. Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatry Res. 2008;162(1):27–37.PubMedCrossRefGoogle Scholar
  147. 147.
    Wang F, Kalmar JH, He Y, Jackowski M, Chepenik LG, Edmiston EE, et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry. 2009;66(5):516–21.PubMedCrossRefGoogle Scholar
  148. 148.
    Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R. An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord. 2005;7 Suppl 5:58–69.PubMedCrossRefGoogle Scholar
  149. 149.
    Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R, Ketter T. Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disord. 2007;9(4):345–57.PubMedCrossRefGoogle Scholar
  150. 150.
    Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, et al. Decision-making in mania: a PET study. Brain J Neurol. 2001;124(12):2550–63.Google Scholar
  151. 151.
    Almeida JR, Mechelli A, Hassel S, Versace A, Kupfer DJ, Phillips ML. Abnormally increased effective connectivity between parahippocampal gyrus and ventromedial prefrontal regions during emotion labeling in bipolar disorder. Psychiatry Res. 2009;174(3):195–201.PubMedCrossRefGoogle Scholar
  152. 152.
    Kaladjian A, Jeanningros R, Azorin JM, Nazarian B, Roth M, Anton JL, et al. Remission from mania is associated with a decrease in amygdala activation during motor response inhibition. Bipolar Disord. 2009;11(5):530–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Kaladjian A, Jeanningros R, Azorin JM, Nazarian B, Roth M, Mazzola-Pomietto P. Reduced brain activation in euthymic bipolar patients during response inhibition: an event-related fMRI study. Psychiatry Res. 2009;173(1):45–51.PubMedCrossRefGoogle Scholar
  154. 154.
    Mazzola-Pomietto P, Kaladjian A, Azorin J-M, Anton J-L, Jeanningros R. Bilateral decrease in ventrolateral prefrontal cortex activation during motor response inhibition in mania. J Psychiatr Res. 2009;43(4):432–41.PubMedCrossRefGoogle Scholar
  155. 155.
    Wessa M, Houenou J, Paillere-Martinot ML, Berthoz S, Artiges E, Leboyer M, et al. Fronto-striatal overactivation in euthymic bipolar patients during an emotional go/nogo task. Am J Psychiatry. 2007;164(4):638–46.PubMedCrossRefGoogle Scholar
  156. 156.
    Gruber SA, Rogowska J, Yurgelun-Todd DA. Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord. 2004;82(2):191–201.PubMedCrossRefGoogle Scholar
  157. 157.
    Adler CM, Holland SK, Schmithorst V, Tuchfarber MJ, Strakowski SM. Changes in neuronal activation in patients with bipolar disorder during performance of a working memory task. Bipolar Disord. 2004;6(6):540–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Frangou S, Kington J, Raymont V, Shergill SS. Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. Eur Psychiatry. 2008;23(4):300–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Gruber O, Tost H, Henseler I, Schmael C, Scherk H, Ende G, et al. Pathological amygdala activation during working memory performance: Evidence for a pathophysiological trait marker in bipolar affective disorder. Hum Brain Mapp. 2010;31(1):115–25.PubMedGoogle Scholar
  160. 160.
    Lagopoulos J, Ivanovski B, Malhi GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci. 2007;32(3):174–84.PubMedGoogle Scholar
  161. 161.
    Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SC, et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord. 2004;6(6):550–64.PubMedCrossRefGoogle Scholar
  162. 162.
    Strakowski SM, Adler CM, Holland SK, Mills N, DelBello MP. A preliminary FMRI study of sustained attention in euthymic, unmedicated bipolar disorder. Neuropsychopharmacology. 2004;29(9):1734–40.PubMedCrossRefGoogle Scholar
  163. 163.
    Haldane M, Jogia J, Cobb A, Kozuch E, Kumari V, Frangou S. Changes in brain activation during working memory and facial recognition tasks in patients with bipolar disorder with Lamotrigine monotherapy. Eur Neuropsychopharmacol. 2008;18(1):48–54.PubMedCrossRefGoogle Scholar
  164. 164.
    Thermenos HW, Goldstein JM, Milanovic SM, Whitfield-Gabrieli S, Makris N, Laviolette P, et al. An fMRI study of working memory in persons with bipolar disorder or at genetic risk for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):120–31.PubMedGoogle Scholar
  165. 165.
    Deckersbach T, Rauch SL, Buhlmann U, Ostacher MJ, Beucke JC, Nierenberg AA, et al. An fMRI investigation of working memory and sadness in females with bipolar disorder: a brief report. Bipolar Disord. 2008;10(8):928–42.PubMedCrossRefGoogle Scholar
  166. 166.
    Caligiuri MP, Brown GG, Meloy MJ, Eberson SC, Kindermann SS, Frank LR, et al. An fMRI study of affective state and medication on cortical and subcortical brain regions during motor performance in bipolar disorder. Psychiatry Res. 2003;123(3):171–82.PubMedCrossRefGoogle Scholar
  167. 167.
    Caligiuri MP, Brown GG, Meloy MJ, Eyler LT, Kindermann SS, Eberson S, et al. A functional magnetic resonance imaging study of cortical asymmetry in bipolar disorder. Bipolar Disord. 2004;6(3):183–96.PubMedCrossRefGoogle Scholar
  168. 168.
    Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol. 1993;50(8):873–80.PubMedGoogle Scholar
  169. 169.
    Woon FL, Hedges DW. Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus. 2008;18(8):729–36.PubMedCrossRefGoogle Scholar
  170. 170.
    Driessen M, Beblo T, Mertens M, Piefke M, Rullkoetter N, Silva-Saavedra A, et al. Posttraumatic stress disorder and fMRI activation patterns of traumatic memory in patients with borderline personality disorder. Biol Psychiatry. 2004;55(6):603–11.PubMedCrossRefGoogle Scholar
  171. 171.
    Protopopescu X, Pan H, Tuescher O, Cloitre M, Goldstein M, Engelien W, et al. Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol Psychiatry. 2005;57(5):464–73.PubMedCrossRefGoogle Scholar
  172. 172.
    Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry. 2000;47(9):769–76.PubMedCrossRefGoogle Scholar
  173. 173.
    Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry. 2005;62(3):273–81.PubMedCrossRefGoogle Scholar
  174. 174.
    Shin LM, Whalen PJ, Pitman RK, Bush G, Macklin ML, Lasko NB, et al. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry. 2001;50(12):932–42.PubMedCrossRefGoogle Scholar
  175. 175.
    Thomaes K, Dorrepaal E, Draijer NP, de Ruiter MB, Elzinga BM, van Balkom AJ, et al. Increased activation of the left hippocampus region in Complex PTSD during encoding and recognition of emotional words: a pilot study. Psychiatry Res. 2009;171(1):44–53.PubMedCrossRefGoogle Scholar
  176. 176.
    Werner NS, Meindl T, Engel RR, Rosner R, Riedel M, Reiser M, et al. Hippocampal function during associative learning in patients with posttraumatic stress disorder. J Psychiatr Res. 2009;43(3):309–18.PubMedCrossRefGoogle Scholar
  177. 177.
    Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67–79.PubMedCrossRefGoogle Scholar
  178. 178.
    Lanius RA, Williamson PC, Densmore M, Boksman K, Neufeld RW, Gati JS, et al. The nature of traumatic memories: a 4-T FMRI functional connectivity analysis. Am J Psychiatry. 2004;161(1): 36–44.PubMedCrossRefGoogle Scholar
  179. 179.
    Koenigs M, Grafman J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist. 2009;15(5):540–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry. 2006;60(4):376–82.PubMedCrossRefGoogle Scholar
  181. 181.
    Adler CM, McDonough-Ryan P, Sax KW, Holland SK, Arndt S, Strakowski SM. fMRI of neuronal activation with symptom provocation in unmedicated patients with obsessive compulsive disorder. J Psychiatr Res. 2000;34(4–5):317–24.PubMedCrossRefGoogle Scholar
  182. 182.
    Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN, et al. Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry. 1996;53(7):595–606.PubMedGoogle Scholar
  183. 183.
    Rotge JY, Guehl D, Dilharreguy B, Cuny E, Tignol J, Bioulac B, et al. Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J Psychiatry Neurosci. 2008;33(5):405–12.PubMedGoogle Scholar
  184. 184.
    An SK, Mataix-Cols D, Lawrence NS, Wooderson S, Giampietro V, Speckens A, et al. To discard or not to discard: the neural basis of hoarding symptoms in obsessive-compulsive disorder. Mol Psychiatry. 2009;14(3):318–31.PubMedCrossRefGoogle Scholar
  185. 185.
    Schienle A, Schafer A, Stark R, Walter B, Vaitl D. Neural responses of OCD patients towards disorder-relevant, generally disgust-inducing and fear-inducing pictures. Int J Psychophysiol. 2005;57(1):69–77.PubMedCrossRefGoogle Scholar
  186. 186.
    Nakao T, Nakagawa A, Nakatani E, Nabeyama M, Sanematsu H, Yoshiura T, et al. Working memory dysfunction in obsessive-compulsive disorder: a neuropsychological and functional MRI study. J Psychiatr Res. 2009;43(8):784–91.PubMedCrossRefGoogle Scholar
  187. 187.
    Phillips ML, Marks IM, Senior C, Lythgoe D, O’Dwyer AM, Meehan O, et al. A differential neural response in obsessive-compulsive disorder patients with washing compared with checking symptoms to disgust. Psychol Med. 2000;30(5):1037–50.PubMedCrossRefGoogle Scholar
  188. 188.
    Henseler I, Gruber O, Kraft S, Krick C, Reith W, Falkai P. Compensatory hyperactivations as markers of latent working memory dysfunctions in patients with obsessive-compulsive disorder: an fMRI study. J Psychiatry Neurosci. 2008;33(3):209–15.PubMedGoogle Scholar
  189. 189.
    Roth RM, Saykin AJ, Flashman LA, Pixley HS, West JD, Mamourian AC. Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biol Psychiatry. 2007;62(8):901–9.PubMedCrossRefGoogle Scholar
  190. 190.
    den Braber A, Ent D, Blokland GA, van Grootheest DS, Cath DC, Veltman DJ, et al. An fMRI study in monozygotic twins discordant for obsessive-compulsive symptoms. Biol Psychol. 2008;79(1):91–102.CrossRefGoogle Scholar
  191. 191.
    Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Yoshizato C, et al. A functional MRI comparison of patients with obsessive-compulsive disorder and normal controls during a Chinese character Stroop task. Psychiatry Res. 2005;139(2):101–14.PubMedCrossRefGoogle Scholar
  192. 192.
    Rauch SL, Wedig MM, Wright CI, Martis B, McMullin KG, Shin LM, et al. Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biol Psychiatry. 2007;61(3):330–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Remijnse PL, Nielen MM, van Balkom AJ, Hendriks GJ, Hoogendijk WJ, Uylings HB, et al. Differential frontal-striatal and paralimbic activity during reversal learning in major depressive disorder and obsessive-compulsive disorder. Psychol Med. 2009;39(9):1503–18.PubMedCrossRefGoogle Scholar
  194. 194.
    Ursu S, Carter CS. An initial investigation of the orbitofrontal cortex hyperactivity in obsessive-compulsive disorder: exaggerated representations of anticipated aversive events? Neuropsychologia. 2009;47(10):2145–8.PubMedCrossRefGoogle Scholar
  195. 195.
    Levine JB, Gruber SA, Baird AA, Yurgelun-Todd D. Obsessive-compulsive disorder among schizophrenic patients: an exploratory study using functional magnetic resonance imaging data. Compr Psychiatry. 1998;39(5):308–11.PubMedCrossRefGoogle Scholar
  196. 196.
    Fitzgerald KD, Welsh RC, Gehring WJ, Abelson JL, Himle JA, Liberzon I, et al. Error-Related Hyperactivity of the Anterior Cingulate Cortex in Obsessive-Compulsive Disorder. Biol Psychiatry. 2005;57(3):287–94.PubMedCrossRefGoogle Scholar
  197. 197.
    Heinz A, Siessmeier T, Wrase J, Hermann D, Klein S, Grusser SM, et al. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry. 2004;161(10):1783–9.PubMedCrossRefGoogle Scholar
  198. 198.
    Tesink CM, Buitelaar JK, Petersson KM, van der Gaag RJ, Kan CC, Tendolkar I, et al. Neural correlates of pragmatic language comprehension in autism spectrum disorders. Brain. 2009;132(Pt 7):1941–52.Google Scholar
  199. 199.
    Belmonte MK, Yurgelun-Todd DA. Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Res Cogn Brain Res. 2003;17(3):651–64.Google Scholar
  200. 200.
    Li CS, Huang C, Yan P, Bhagwagar Z, Milivojevic V, Sinha R. Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology. 2008;33(8):1798–806.Google Scholar
  201. 201.
    Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, et al. Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res. 2007;1171:83–92.Google Scholar
  202. 202.
    Sinha R, Lacadie C, Skudlarski P, Fulbright RK, Rounsaville BJ, Kosten TR, et al. Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study. Psychopharmacology (Berl). 2005;183(2):171–80.Google Scholar
  203. 203.
    Kubler A, Murphy K, Garavan H. Cocaine dependence and attention switching within and between verbal and visuospatial working memory. Eur J Neurosci. 2005;21(7):1984–92.Google Scholar
  204. 204.
    Szycik GR, Munte TF, Dillo W, Mohammadi B, Samii A, Emrich HM, et al. Audiovisual integration of speech is disturbed in schizophrenia: an fMRI study. Schizophr Res. 2009;110(1–3):111–18.Google Scholar
  205. 205.
    Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain. 2009;132(Pt 9):2426–36.Google Scholar
  206. 206.
    Rametti G, Junque C, Vendrell P, Catalan R, Penades R, Bargallo N, et al. Hippocampal underactivation in an fMRI study of word and face memory recognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2009;259(4):203–11.Google Scholar
  207. 207.
    Weiss AP, Ellis CB, Roffman JL, Stufflebeam S, Hamalainen MS, Duff M, et al. Aberrant frontoparietal function during recognition memory in schizophrenia: a multimodal neuroimaging investigation. J Neurosci. 2009;29(36):11347–59.Google Scholar
  208. 208.
    Benedetti F, Bernasconi A, Bosia M, Cavallaro R, Dallaspezia S, Falini A, et al. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia. Schizophr Res. 2009;114(1–3):154–60.Google Scholar
  209. 209.
    Park IH, Park HJ, Chun JW, Kim EY, Kim JJ. Dysfunctional modulation of emotional interference in the medial prefrontal cortex in patients with schizophrenia. Neurosci Lett. 2008;440(2):119–24.Google Scholar
  210. 210.
    Reske M, Habel U, Kellermann T, Backes V, Jon Shah N, von Wilmsdorff M, et al. Differential brain activation during facial emotion discrimination in first-episode schizophrenia. J Psychiatr Res. 2009;43(6):592–9.Google Scholar
  211. 211.
    Whalley HC, McKirdy J, Romaniuk L, Sussmann J, Johnstone EC, Wan HI, et al. Functional imaging of emotional memory in bipolar disorder and schizophrenia. Bipolar Disord. 2009;11(8):840–56.Google Scholar
  212. 212.
    Kang JI, Kim JJ, Seok JH, Chun JW, Lee SK, Park HJ. Abnormal brain response during the auditory emotional processing in schizophrenic patients with chronic auditory hallucinations. Schizophr Res. 2009;107(1):83–91.Google Scholar
  213. 213.
    Plaze M, Bartres-Faz D, Martinot JL, Januel D, Bellivier F, De Beaurepaire R, et al. Left superior temporal gyrus activation during sentence perception negatively correlates with auditory hallucination severity in schizophrenia patients. Schizophr Res. 2006;87(1–3):109–15.Google Scholar
  214. 214.
    Canli T, Sivers H, Thomason ME, Whitfield-Gabrieli S, Gabrieli JD, Gotlib IH. Brain activation to emotional words in depressed vs healthy subjects. Neuroreport. 2004;15(17):2585–8.Google Scholar
  215. 215.
    Bermpohl F, Dalanay U, Kahnt T, Sajonz B, Heimann H, Ricken R, et al. A preliminary study of increased amygdala activation to positive affective stimuli in mania. Bipolar Disord. 2009;11(1):70–75.Google Scholar
  216. 216.
    Killgore WD, Gruber SA, Yurgelun-Todd DA. Abnormal corticostriatal activity during fear perception in bipolar disorder. Neuroreport. 2008;19(15):1523–7.Google Scholar
  217. 217.
    An SK, Mataix-Cols D, Lawrence NS, Wooderson S, Giampietro V, Speckens A, et al. To discard or not to discard: the neural basis of hoarding symptoms in obsessive-compulsive disorder. Mol Psychiatry. 2009;14(3):318–31.Google Scholar
  218. 218.
    Schienle A, Schafer A, Stark R, Walter B, Vaitl D. Neural responses of OCD patients towards disorder-relevant, generally disgust-inducing and fear-inducing pictures. Int J Psychophysiol. 2005;57(1):69–77.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Melissa Lopez-Larson
    • 1
  • Deborah A. Yurgelun-Todd
    • 1
  1. 1.Department of Psychiatry, The Brain InstituteUniversity of UtahSalt Lake CityUSA

Personalised recommendations