fMRI of Epilepsy



This review concentrates on functional MRI (fMRI) methods to identify the epileptic focus; i.e., ictal and interictal fMRI. First, established clinical applications of fMRI in the field of epilepsy are briefly introduced: fMRI of sensorimotor, language, and memory functions can be considered already as clinically relevant tools to identify eloquent cortex and to predict postoperative functional deficits in patients considered for epilepsy surgery. Functional MRI offers a valid alternative to invasive methods such as the Wada test for establishing language dominance, and it is likely that it will also replace the Wada test for assessing presurgical memory function in the nearer future.

Ictal fMRI (fMRI studies of epileptic seizures) will remain limited to exceptional cases due to practical limitations. The generators of interictal epileptiform discharges (IED) can be studied with EEG-correlated fMRI. Despite its technical challenges, it has proved useful to provide insights into the generation of IED in patients with focal and generalized epilepsy. In selected patients with focal IED, EEG-correlated fMRI has the potential to reproducibly identify cortical areas involved in generating IED; i.e., the irritative zone. In patients with generalized IED, suspension of functional networks due to the IED can be demonstrated.

The utility of EEG-correlated fMRI in clinical epileptology cannot be definitely determined yet.


Temporal Lobe Epilepsy Epilepsy Surgery Focal Epilepsy fMRI Activation Bold Signal Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain. 2001;124:1683–700.PubMedCrossRefGoogle Scholar
  2. 2.
    Melendez JC, McCrank E. Anxiety-related reactions associated with magnetic resonance imaging examinations. JAMA. 1993;270:745–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Thorp D, Owens RG, Whitehouse G, Dewey ME. Subjective experiences of magnetic resonance imaging. Clin Radiol. 1990;41:276–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Jokeit H, Okujava M, Woermann FG. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study. BMC Neurol. 2001;1:6.PubMedCrossRefGoogle Scholar
  5. 5.
    Jokeit H, Okujava M, Woermann FG. Memory fMRI lateralizes temporal lobe epilepsy. Neurology. 2001;57:1786–93.PubMedGoogle Scholar
  6. 6.
    Janszky J, Ollech I, Jokeit H, Kontopoulou K, Mertens M, Pohlmann-Eden B, et al. Epileptic activity influences the lateralization of mesiotemporal fMRI activity. Neurology. 2004;63:1813–7.PubMedGoogle Scholar
  7. 7.
    Jayakar P, Bernal B, Santiago Medina L, Altman N. False lateralization of language cortex on functional MRI after a cluster of focal seizures. Neurology. 2002;58:490–2.PubMedGoogle Scholar
  8. 8.
    Federico P, Abbott DF, Briellmann RS, Harvey AS, Jackson GD. Functional MRI of the pre-ictal state. Brain. 2005;128:1811–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandez G, de Greiff A, von Oertzen J, et al. Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage. 2001;14:585–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Morris 3rd GL, Mueller WM, Yetkin FZ, et al. Functional magnetic resonance imaging in partial epilepsy. Epilepsia. 1994;35:1194–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Hermann BP, Perrine K, Chelune GJ, et al. Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology. 1999;13:3–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Haag A, Knake S, Hamer HM, Boesebeck F, Freitag H, Schulz R, et al. The Wada test in Austrian, Dutch, German, and Swiss epilepsy centers from 2000 to 2005: a review of 1421 procedures. Epilepsy Behav. 2008;13:83–9.PubMedCrossRefGoogle Scholar
  13. 13.
    McGaugh JL. Memory–a century of consolidation. Science. 2000;287:248–51.PubMedCrossRefGoogle Scholar
  14. 14.
    Sass KJ, Spencer DD, Kim JH, Westerveld M, Novelly RA, Lencz T. Verbal memory impairment correlates with hippocampal pyramidal cell density. Neurology. 1990;40:1694–7.PubMedGoogle Scholar
  15. 15.
    Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. 1957. J Neuropsychiatry Clin Neurosci. 2000;12:103–13.PubMedGoogle Scholar
  16. 16.
    Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 1992;99:195–231.PubMedCrossRefGoogle Scholar
  17. 17.
    Fernandez G, Weyerts H, Schrader-Bolsche M, et al. Successful verbal encoding into episodic memory engages the posterior hippocampus: a parametrically analyzed functional magnetic resonance imaging study. J Neurosci. 1998;18:1841–7.PubMedGoogle Scholar
  18. 18.
    Gabrieli JD, Brewer JB, Desmond JE, Glover GH. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science. 1997;276:264–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93:8660–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Bellgowan PS, Binder JR, Swanson SJ, et al. Side of seizure focus predicts left medial temporal lobe activation during verbal encoding. Neurology. 1998;51:479–84.PubMedGoogle Scholar
  21. 21.
    Detre JA, Maccotta L, King D, et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology. 1998;50:926–32.PubMedGoogle Scholar
  22. 22.
    Dupont S, Samson Y, Van de Moortele PF, et al. Delayed verbal memory retrieval: a functional MRI study in epileptic patients with structural lesions of the left medial temporal lobe. Neuroimage. 2001;14:995–1003.PubMedCrossRefGoogle Scholar
  23. 23.
    Dupont S, Van de Moortele PF, Samson S, et al. Episodic memory in left temporal lobe epilepsy: a functional MRI study. Brain. 2000;123:1722–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JD. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia. 2002;43:855–63.PubMedCrossRefGoogle Scholar
  25. 25.
    Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G, Tracy JI, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain. 2004;127:2286–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain. 2004;127:2419–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Janszky J, Jokeit H, Kontopoulou K, Mertens M, Ebner A, Pohlmann-Eden B, et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia. 2005;46:244–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS, et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry. 2008;79:686–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Frings L, Wagner K, Halsband U, Schwarzwald R, Zentner J, Schulze-Bonhage A. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res. 2008;78(2–3):161–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol. 1997;18:1311–5.PubMedGoogle Scholar
  31. 31.
    Ruge MI, Victor J, Hosain S, et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg. 1999;72:95–102.PubMedCrossRefGoogle Scholar
  32. 32.
    Jack Jr CR, Thompson RM, Butts RK, et al. Sensory motor cortex: correlation of presurgical mapping with functional MR imaging and invasive cortical mapping. Radiology. 1994;190:85–92.PubMedGoogle Scholar
  33. 33.
    Puce A, Constable RT, Luby ML, et al. Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg. 1995;83:262–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Cosgrove GR, Buchbinder BR, Jiang H. Functional magnetic resonance imaging for intracranial navigation. Neurosurg Clin N Am. 1996;7:313–22.PubMedGoogle Scholar
  35. 35.
    Yousry TA, Schmid UD, Schmidt D, Hagen T, Jassoy A, Reiser MF. The central sulcal vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging. J Neurosurg. 1996;85:608–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Roux FE, Ranjeva JP, Boulanouar K, et al. Motor functional MRI for presurgical evaluation of cerebral tumors. Stereotact Funct Neurosurg. 1997;68:106–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Roux FE, Boulanouar K, Ranjeva JP, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Dymarkowski S, Sunaert S, Van Oostende S, et al. Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol. 1998;8:1573–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Krings T, Reul J, Spetzger U, et al. Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir (Wien). 1998;140:215–22.CrossRefGoogle Scholar
  40. 40.
    Krings T, Reinges MH, Erberich S, et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001;70:749–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Nitschke MF, Melchert UH, Hahn C, et al. Preoperative functional magnetic resonance imaging (fMRI) of the motor system in patients with tumours in the parietal lobe. Acta Neurochir (Wien). 1998;140:1223–9.CrossRefGoogle Scholar
  42. 42.
    Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998;88:863–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Schulder M, Maldjian JA, Liu WC, et al. Functional image-guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurg. 1998;89:412–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Wildforster U, Falk A, Harders A. Operative approach due to results of functional magnetic resonance imaging in central brain tumors. Comput Aided Surg. 1998;3:162–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Achten E, Jackson GD, Cameron JA, Abbott DF, Stella DL, Fabinyi GC. Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology. 1999;210:529–38.PubMedGoogle Scholar
  46. 46.
    Bittar RG, Olivier A, Sadikot AF, Andermann F, Pike GB, Reutens DC. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J Neurosurg. 1999;91:915–21.PubMedCrossRefGoogle Scholar
  47. 47.
    Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg. 1999;91:238–50.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee CC, Ward HA, Sharbrough FW, et al. Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999;20:1511–9.PubMedGoogle Scholar
  49. 49.
    Mueller WM, Yetkin FZ, Hammeke TA, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39:515–20. discussion 520–1.PubMedGoogle Scholar
  50. 50.
    Atlas SW, Howard 2nd RS, Maldjian J, et al. Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery. 1996;38:329–38.PubMedCrossRefGoogle Scholar
  51. 51.
    Rao SM, Binder JR, Bandettini PA, et al. Functional magnetic resonance imaging of complex human movements. Neurology. 1993;43:2311–8.PubMedGoogle Scholar
  52. 52.
    Kleinschmidt A, Nitschke MF, Frahm J. Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci. 1997;9:2178–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Maldjian JA, Gottschalk A, Patel RS, Detre JA, Alsop DC. The sensory somatotopic map of the human hand demonstrated at 4 Tesla. Neuroimage. 1999;10:55–62.PubMedCrossRefGoogle Scholar
  54. 54.
    Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W. fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage. 2000;11:473–81.PubMedCrossRefGoogle Scholar
  55. 55.
    Schlosser MJ, McCarthy G, Fulbright RK, Gore JC, Awad IA. Cerebral vascular malformations adjacent to sensorimotor and visual cortex. Functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke. 1997;28:1130–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Chapman PH, Buchbinder BR, Cosgrove GR, Jiang HJ. Functional magnetic resonance imaging for cortical mapping in pediatric neurosurgery. Pediatr Neurosurg. 1995;23:122–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Sisodiya SM. Surgery for malformations of cortical development causing epilepsy. Brain. 2000;123:1075–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Salek-Haddadi A, Lemieux L, Fish DR. Role of functional magnetic resonance imaging in the evaluation of patients with malformations caused by cortical development. Neurosurg Clin N Am. 2002;13:63–9. viii.PubMedCrossRefGoogle Scholar
  59. 59.
    Spreer J, Martin P, Greenlee MW, et al. Functional MRI in patients with band heterotopia. Neuroimage. 2001;14:357–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Pinard J, Feydy A, Carlier R, Perez N, Pierot L, Burnod Y. Functional MRI in double cortex: functionality of heterotopia. Neurology. 2000;54:1531–3.PubMedGoogle Scholar
  61. 61.
    Innocenti GM, Maeder P, Knyazeva MG, Fornari E, Deonna T. Functional activation of microgyric visual cortex in a human. Ann Neurol. 2001;50:672–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Staudt M, Pieper T, Grodd W, Winkler P, Holthausen H, Krageloh-Mann I. Functional MRI in a 6-year-old boy with unilateral cortical malformation: concordant representation of both hands in the unaffected hemisphere. Neuropediatrics. 2001;32:159–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Schwartz TH, Resor Jr SR, De La Paz R, Goodman RR. Functional magnetic resonance imaging localization of ictal onset to a dysplastic cleft with simultaneous sensorimotor mapping: intraoperative electrophysiological confirmation and postoperative follow-up: technical note. Neurosurgery. 1998;43:639–44. discussion 644–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Krakow K, Wieshmann UC, Woermann FG, et al. Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization-related epilepsy. Epilepsia. 1999;40:1459–62.PubMedCrossRefGoogle Scholar
  65. 65.
    Krakow K, Lemieux L, Messina D, et al. Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord. 2001;3:67–74.PubMedGoogle Scholar
  66. 66.
    Kobayashi E, Bagshaw AP, Jansen A, Andermann F, Andermann E, Gotman J, et al. Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses. Neurology. 2005;64:1263–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Tyvaert L, Hawco C, Kobayashi E, LeVan P, Dubeau F, Gotman J. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study. Brain. 2008;131:2042–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Jackson GD, Connelly A, Cross JH, Gordon I, Gadian DG. Functional magnetic resonance imaging of focal seizures. Neurology. 1994;44:850–6.PubMedGoogle Scholar
  69. 69.
    Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR. Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol. 1994;15:965–8.PubMedGoogle Scholar
  70. 70.
    Detre JA, Sirven JI, Alsop DC, O’Connor MJ, French JA. Localization of subclinical ictal activity by functional magnetic resonance imaging: correlation with invasive monitoring. Ann Neurol. 1995;38:618–24.PubMedCrossRefGoogle Scholar
  71. 71.
    Krings T, Topper R, Reinges MH, et al. Hemodynamic changes in simple partial epilepsy: a functional MRI study. Neurology. 2000;54:524–7.PubMedGoogle Scholar
  72. 72.
    Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR. Simultaneous EEG-correlated ictal fMRI. Neuroimage. 2002;16:32–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Archer JS, Briellmann RS, Syngeniotis A, Abbott DF, Jackson GD. Spike-triggered fMRI in reading epilepsy: Involvement of left frontal cortex working memory area. Neurology. 2003;60:415–21.PubMedGoogle Scholar
  74. 74.
    Salek-Haddadi A, Mayer T, Hamandi K, Symms M, Josephs O, Fluegel D, et al. Imaging seizure activity: a combined EEG/EMG-fMRI study in reading epilepsy. Epilepsia. 2009;50(2):256–64.PubMedCrossRefGoogle Scholar
  75. 75.
    Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993;87:417–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med. 1997;38:943–52.PubMedCrossRefGoogle Scholar
  77. 77.
    Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. 1998;8:229–39.PubMedCrossRefGoogle Scholar
  78. 78.
    Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR. EEG recording during fMRI experiments: image quality. Hum Brain Mapp. 2000;10:10–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. 2000;12:230–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Krakow K, Allen PJ, Lemieux L, Symms MR, Fish DR. Methodology: EEG-correlated fMRI. Adv Neurol. 2000;83:187–201.PubMedGoogle Scholar
  81. 81.
    Bonmassar G, Purdon P, Jaaskelainen I, et al. Motion and Ballistocardiogram Artifact Removal for Interleaved Recording of EEG and EPs during MRI. Neuroimage. 2002;16:1127.PubMedCrossRefGoogle Scholar
  82. 82.
    Salek-Haddadi A, Lemieux L, Merschhemke M, Diehl B, Allen PJ, Fish DR. EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging. 2003;21:1159–66.PubMedCrossRefGoogle Scholar
  83. 83.
    Hoffmann A, Jager L, Werhahn KJ, Jaschke M, Noachtar S, Reiser M. Electroencephalography during functional echo-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med. 2000;44:791–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR. Studying spontaneous EEG activity with fMRI. Brain Res Brain Res Rev. 2003;43:110–33.PubMedCrossRefGoogle Scholar
  85. 85.
    Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD. Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 2000;28:991–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Goldman RI, Stern JM, Engel Jr J, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport. 2002;13:2487–92.PubMedCrossRefGoogle Scholar
  87. 87.
    Bonmassar G, Anami K, Ives J, Belliveau JW. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3 T fMRI. Neuroreport. 1999;10:1893–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28:720–37.PubMedCrossRefGoogle Scholar
  89. 89.
    Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M, ­et al. Stepping stone sampling for retrieving artifact-free ­electroencephalogram during functional magnetic resonance imaging. Neuroimage. 2003;19:281–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Al-Asmi A, Benar CG, Gross DW, Khani YA, Andermann F, Pike B, et al. fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia. 2003;44:1328–39.PubMedCrossRefGoogle Scholar
  91. 91.
    Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmacher T, et al. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129:655–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, et al. EEG-correlated fMRI of human alpha activity. Neuroimage. 2003;19:1463–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Becker R, Ritter P, Moosmann M, Villringer A. Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp. 2005;26:221–30.PubMedCrossRefGoogle Scholar
  94. 94.
    Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, et al. EG-triggered echo-planar functional MRI in epilepsy. Neurology. 1996;47:89–93.PubMedGoogle Scholar
  95. 95.
    Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives J, et al. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroencephalogr Clin Neurophysiol. 1998;106:508–12.PubMedCrossRefGoogle Scholar
  96. 96.
    Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ, et al. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain. 1999;122:1679–88.PubMedCrossRefGoogle Scholar
  97. 97.
    Patel MR, Blum A, Pearlman JD, Yousuf N, Ives JR, Saeteng S, et al. Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring. AJNR Am J Neuroradiol. 1999;20:1916–9.PubMedGoogle Scholar
  98. 98.
    Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging. 2000;12:177–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Krakow K, Lemieux L, Messina D, Scott CA, Symms MR, Duncan JS, et al. Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord. 2001;3:67–74.PubMedGoogle Scholar
  100. 100.
    Jager L, Werhahn KJ, Hoffmann A, Berthold S, Scholz V, Weber J, et al. Focal epileptiform activity in the brain: detection with spike-related functional MR imaging – preliminary results. Radiology. 2002;223:860–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, et al. Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage. 2001;14:780–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Baudewig J, Bittermann HJ, Paulus W, Frahm J. Simultaneous EEG and functional MRI of epileptic activity: a case report. Clin Neurophysiol. 2001;112:1196–200.PubMedCrossRefGoogle Scholar
  103. 103.
    Iannetti GD, Di Bonaventura C, Pantano P, Giallonardo AT, Romanelli PL, Bozzao L, et al. fMRI/EEG in paroxysmal activity elicited by elimination of central vision and fixation. Neurology. 2002;58:976–9.PubMedGoogle Scholar
  104. 104.
    Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain. 2006;129:366–74.PubMedCrossRefGoogle Scholar
  105. 105.
    Archer JS, Briellman RS, Abbott DF, Syngeniotis A, Wellard RM, Jackson GD. Benign epilepsy with centro-temporal spikes: Spike triggered fMRI shows somato-sensory cortex activity. Epilepsia. 2003;44:200–4.PubMedCrossRefGoogle Scholar
  106. 106.
    Boor S, Vucurevic G, Pfleiderer C, Stoeter P, Kutschke G, Boor R. EEG-related functional MRI in benign childhood epilepsy with centrotemporal spikes. Epilepsia. 2003;44:688–92.PubMedCrossRefGoogle Scholar
  107. 107.
    Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage. 2003;20:1915–22.PubMedCrossRefGoogle Scholar
  108. 108.
    Salek-Haddadi A, Lemieux L, Merschhemke M, Friston K, Duncan JS, Fish DR. Functional MRI of human absence seizures. Ann Neurol. 2003;53:663–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127:1127–44.PubMedCrossRefGoogle Scholar
  110. 110.
    Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA. 2005;102:15236–40.PubMedCrossRefGoogle Scholar
  111. 111.
    Laufs H, Lengler U, Khalid H, Kleinschmidt A, Krakow K. Linking generalized spike-and-wave dischrges and resting brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia. 2006;47:444–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamadi K, Guye M, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PLoS ONE. 2009;49:6475.CrossRefGoogle Scholar
  113. 113.
    Federico P, Archer JS, Abbott DF, Jackson GD. Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology. 2005;64:1125–30.PubMedCrossRefGoogle Scholar
  114. 114.
    Salek-Haddadi A, Diehl B, Hamadi K, Merschhemke M, Liston A, Friston K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006;1088:148–66.PubMedCrossRefGoogle Scholar
  115. 115.
    Zijlmans J, Evans A, Fontes F, Katzenschlager R, Gacinovic S, Lees AJ, et al. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007;130:2343–53.PubMedCrossRefGoogle Scholar
  116. 116.
    Morgan VL, Price RR, Arain A, Modur P, Abou-Khalil B. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage. 2004;21:473–81.PubMedCrossRefGoogle Scholar
  117. 117.
    Hamandi K, Salek Haddadi A, Liston A, Laufs H, Fish DR, Lemieux L. fMRI temporal clustering analysis in patients with frequent interictal epileptiform discharges: comparison with EEG-driven analysis. Neuroimage. 2005;26:309–16.PubMedCrossRefGoogle Scholar
  118. 118.
    Krakow K, Messina D, Lemieux L, Duncan JS, Fish DR. Functional MRI activation of individual interictal epileptiform spikes. Neuroimage. 2001;13:502–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Lemieux L, Krakow K, Fish DR. Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. Neuroimage. 2001;14:1097–104.PubMedCrossRefGoogle Scholar
  120. 120.
    Sijbers J, Michiels I, Verhoye M, Van Audekerke J, Van der Linden A, Van Dyck D. Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. Magn Reson Imaging. 1999;17:1383–91.PubMedCrossRefGoogle Scholar
  121. 121.
    Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J. Negative BOLD responses to epileptic spikes. Hum Brain Mapp. 2006;27:488–97.PubMedCrossRefGoogle Scholar
  122. 122.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.PubMedCrossRefGoogle Scholar
  123. 123.
    Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, et al. EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. Neuroimage. 2006;30:1161–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Asklepios Neurologische Klinik FalkensteinKönigsteinGermany

Personalised recommendations