Physical Principles of MR Perfusion and Permeability Imaging: Gadolinium Bolus Technique

  • Mark S. Shiroishi
  • Saulo Lacerda
  • Xiaoli Tang
  • Naira Muradyan
  • Timothy P. L. Roberts
  • Meng Law


The use of dynamic contrast agent-enhanced magnetic resonance imaging (MRI) can provide insight into hemodynamic processes not detectable during static conventional contrast-enhanced MR techniques. These additional data may allow further refinement of differential diagnoses focusing on interpretation in terms of microvascular physiology. The dominant dynamic gadolinium (Gd)-enhanced bolus injection MR techniques currently utilized in brain imaging are (1) T1-weighted dynamic contrast-enhanced (DCE) and (2) T2/T2*-weighted dynamic susceptibility contrast (DSC) imaging. This chapter will provide an overview of general physical principles of these techniques.


Mean Transit Time Arterial Input Function Dynamic Susceptibility Contrast Contrast Agent Concentration Relative Cerebral Blood Volume 


  1. 1.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17(2):357–67.PubMedCrossRefGoogle Scholar
  3. 3.
    Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21(6):728–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol. 2007;28(10):1850–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Jackson A, Jayson GC, Li KL, Zhu XP, Checkley DR, Tessier JJ, et al. Reproducibility of quantitative dynamic contrast-enhanced MRI in newly presenting glioma. Br J Radiol. 2003;76(903):153–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Brix G, Bahner ML, Hoffmann U, Horvath A, Schreiber W. Regional blood flow, capillary permeability, and compartmental volumes: measurement with dynamic CT – initial experience. Radiology. 1999;210(1):269–76.PubMedGoogle Scholar
  7. 7.
    Mayr NA, Yuh WT, Magnotta VA, Ehrhardt JC, Wheeler JA, Sorosky JI, et al. Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys. 1996;36(3):623–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Mayr NA, Yuh WT, Zheng J, Ehrhardt JC, Magnotta VA, Sorosky JI, et al. Prediction of tumor control in patients with cervical cancer: analysis of combined volume and dynamic enhancement pattern by MR imaging. AJR Am J Roentgenol. 1998;170(1):177–82.PubMedGoogle Scholar
  9. 9.
    Fujii K, Fujita N, Hirabuki N, Hashimoto T, Miura T, Kozuka T. Neuromas and meningiomas: evaluation of early enhancement with dynamic MR imaging. AJNR Am J Neuroradiol. 1992;13(4):1215–20.PubMedGoogle Scholar
  10. 10.
    Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med. 2004;51(5):961–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. 1990;113(Pt 1):27–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al. Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol. 2006;27(2):409–17.PubMedGoogle Scholar
  13. 13.
    Padhani AR, Dzik-Jurasz A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging. 2004;15(1):41–57.PubMedCrossRefGoogle Scholar
  14. 14.
    Parks LD, Choma MA, York GE, Moya M, Provenzale JM. Correlation of DCE and rCBV values for patients with high grade glial neoplasms. Proceedings of the Radiological Society of North America. Chicago, IL; 2005. p. 346.Google Scholar
  15. 15.
    Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17(5):509–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Parker G, Padhani AR. T1-W DCE MRI: T1-weighted dynamic contrast-enhanced MRI. In: Tofts PS, editor. Quantitative MRI of the brain: measuring changes caused by disease. Chichester, West Sussex, England: John Wiley & Sons; 2003. p. 341–64.Google Scholar
  17. 17.
    Kovar DA, Lewis M, Karczmar GS. A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging. 1998;8(5):1126–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang C, Karczmar GS, Medved M, Oto A, Zamora M, Stadler WM. Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magn Reson Med. 2009;61(4):851–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Yang C, Karczmar GS, Medved M, Stadler WM. Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med. 2004;52(5):1110–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, et al. Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging. 2005;23(4):519–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr. 1991;15(4):621–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Zierler KL. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. Handbook of physiology. Baltimore: Williams & Wilkins; 1962. p. 585–615.Google Scholar
  23. 23.
    Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Res Med. 1990;14:249–65.CrossRefGoogle Scholar
  24. 24.
    Jochimsen TH, Newbould RD, Skare ST, Clayton DB, Albers GW, Moseley ME, et al. Identifying systematic errors in quantitative dynamic-susceptibility contrast perfusion imaging by high-resolution multi-echo parallel EPI. NMR Biomed. 2007;20(4):429–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med. 1996;36(5):715–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249(2):601–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol. 2006;27(4):859–67.PubMedGoogle Scholar
  28. 28.
    Hu LS, Baxter LC, Pinnaduwage DS, Paine TL, Karis JP, Feuerstein BG, et al. Optimized preload leakage-correction methods to improve the diagnostic accuracy of dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in posttreatment gliomas. AJNR Am J Neuroradiol. 2010;31(1):40–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191(1):41–51.PubMedGoogle Scholar
  31. 31.
    Aronen HJ, Perkio J. Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am. 2002;12:501–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C. Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging. 2000;12(3):411–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Donahue KM, Krouwer HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med. 2000;43(6):845–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Schmainda KM, Rand SD, Joseph AM, Lund R, Ward BD, Pathak AP, et al. Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol. 2004;25(9):1524–32.PubMedGoogle Scholar
  35. 35.
    Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4): 527–57.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mark S. Shiroishi
    • 1
  • Saulo Lacerda
    • 2
  • Xiaoli Tang
    • 3
  • Naira Muradyan
    • 4
  • Timothy P. L. Roberts
    • 5
  • Meng Law
    • 6
  1. 1.Division of Neuroradiology, Department of Radiology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of RadiologyBeneficencia Portuguesa de Sao PauloSao PauloBrazil
  3. 3.Department of RadiologyShekou People HospitalShenzhenChina
  4. 4.Research and DevelopmentiCAD, Inc.NashuaUSA
  5. 5.Department of RadiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  6. 6.Los Angeles County Hospital and USC Medical Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations