fMRI of Human Visual Pathways

  • Edgar A. DeYoe
  • John L. Ulmer
  • Wade Mueller
  • Lotfi Hacein-Bey
  • Viktor Szeder
  • Mary Jo Maciejewski
  • Karen Medler
  • Danielle Reitsma
  • Jedediah Mathis
Chapter

Abstract

Functional magnetic resonance imaging (fMRI) of the human brain provides images of changes in local blood flow and oxygenation that are evoked by sensory, motor, or cognitive events. Functional MRI has been used since 1991 [1] to identify areas of the brain that respond to visual stimulation and the performance of vision-related tasks. Increasingly, fMRI is accompanied by diffusion tensor imaging (DTI), which provides images of the speed and direction of diffusion of water molecules in the brain. Fortuitously, this allows remarkable differentiation of cerebral white mater and the delineation of a variety of major white matter tracts including vision-related pathways such as the optic radiations. This chapter focuses primarily on fMRI, but DTI data are also discussed where relevant. Together, the two methods provide a wealth of information about the anatomical and functional status of key components of the visual system in individual patients even in the presence of pathology. For example, an imaging-based map of the visual system can be helpful for planning and guiding surgical resection of tumors impacting critical vision-related brain structures. This is especially true when mass effects or previous surgeries have distorted the normal anatomy making it difficult to know where key structures are located and if they are still functional. In difficult cases, identifying the region of “closest approach” of a planned resection to the cortical representation of central vision or to the optic radiations can help to minimize the risk to eloquent neural tissue and thereby avoid significant treatment-induced vision loss while still permitting maximum therapeutic effect.

References

  1. 1.
    Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254:716–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Logothetis NK. Neurovascular uncoupling: much ado about nothing. Front Neuroener. 2010;2:1–4.Google Scholar
  5. 5.
    Ulmer JL, Hacein-Bey L, Mathews VP, Mueller WM, DeYoe EA, Prost RW, et al. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery. 2004;55(3):569–79. discussion 580–1.PubMedCrossRefGoogle Scholar
  6. 6.
    Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. 1414.Google Scholar
  7. 7.
    Mustari MJ, Ono S, Das VE. Signal processing and distribution in cortical-brainstem pathways for smooth pursuit eye movements. Ann NY Acad Sci. 2009;1164:147–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Inouye T. Die Sehstorungen bei Schussverletzungen der kortikalen Sehsphare. Leipzig, Germany: W Engelmann; 1909.Google Scholar
  9. 9.
    Holmes G, Lister WT. Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula. Brain. 1916;39:34–73.CrossRefGoogle Scholar
  10. 10.
    Riddoch G. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain. 1917;40:15–57.CrossRefGoogle Scholar
  11. 11.
    Holmes G. Disturbances of vision by cerebral lesions. Br J Ophthalmol. 1918;2:353–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Horton JC. The central visual pathways. In: Hart WH, editor. Adler’s physiology of the eye. St. Louis: Mosby Year book; 1992. p. 728–72.Google Scholar
  13. 13.
    Horton JC, Hoyt WF. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol. 1991;109:816–24.PubMedGoogle Scholar
  14. 14.
    Horton JC, Hoyt WF. Quadrantic visual field defects: a hallmark of lesions in extrastriate (V2/V3) cortex. Brain. 1991;114:1703–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Hubel DH, Wiesel TN. Receptive fields and functional architecture in two nonstriate areas (18 and 19) of the cat. J Neurophysiol. 1965;28:229–89.PubMedGoogle Scholar
  16. 16.
    Allman JM, Kaas JH. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 1971;31:85–105.PubMedCrossRefGoogle Scholar
  17. 17.
    Allman JM, Kaas JH. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res. 1971;35:89–106.PubMedCrossRefGoogle Scholar
  18. 18.
    Fox PT, Miezin FM, Allman JM, Van Essen DC, Raichle ME. Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci. 1987;7(3):913–22.PubMedGoogle Scholar
  19. 19.
    Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Attentional modulation of neural processing of shape, color, and velocity in humans. Science. 1990;248(248):1556–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE. Selective and divided attention during visual discrimination of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci. 1991;11(8):2383–402.PubMedGoogle Scholar
  21. 21.
    Gulyas B, Roland PE. Cortical fields participating in form and colour discrimination in the human brain. Neuroreport. 1991;2(10):585–8.PubMedCrossRefGoogle Scholar
  22. 22.
    DeYoe EA, Bandettini P, Neitz J, Miller D, Winans P. Functional magnetic resonance imaging (FMRI) of the human brain. J Neurosci Meth. 1994;54:171–87.CrossRefGoogle Scholar
  23. 23.
    Shipp S, Watson JD, Frackowiak RS, Zeki S. Retinotopic maps in human prestriate visual cortex: the demarcation of areas V2 and V3. Neuroimage. 1995;2(2):125–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, et al. Borders of multiple visual areas in humans revealed by functional MRI. Science. 1995;268(268):889–93.PubMedCrossRefGoogle Scholar
  25. 25.
    Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci. 1995;15(4):3215–30.PubMedGoogle Scholar
  26. 26.
    DeYoe EA, Carman G, Bandettini P, Glickman S, Wieser J, Cox R, et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA. 1996;93(6):2382–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Engel SA, Glover GH, Wandell BA. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex. 1997;7:181–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, et al. Functional analysis of V3A and related areas in human visual cortex. J Neurosci. 1997;17(18):7060–78.PubMedGoogle Scholar
  29. 29.
    Grill-Spector K, Kushnir T, Hendler T, Edelman S, Itzchak Y, Malach R. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum Brain Mapp. 1998;6(4):316–28.PubMedCrossRefGoogle Scholar
  30. 30.
    Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA. Visual areas and spatial summation in human visual cortex. Vision Res. 2001;41(10–11):1321–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Sereno MI, Pitzalis S, Martinez A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science. 2001;294(5545):1350–4.PubMedCrossRefGoogle Scholar
  32. 32.
    Tootell RB, Hadjikhani N. Where is ‘dorsal V4’ in human visual cortex? Retinotopic, topographic and functional evidence. Cereb Cortex. 2001;11(4):298–311.PubMedCrossRefGoogle Scholar
  33. 33.
    Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J Vis. 2003;3(10):586–98.PubMedCrossRefGoogle Scholar
  34. 34.
    Duncan RO, Boynton GM. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron. 2003;38(4):659–71.PubMedCrossRefGoogle Scholar
  35. 35.
    Brewer AA, Liu J, Wade AR, Wandell BA. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci. 2005;8(8):1102–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu J, Wandell BA. Specializations for chromatic and temporal signals in human visual cortex. J Neurosci. 2005;25(13):3459–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Schluppeck D, Glimcher P, Heeger DJ. Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol. 2005;94(2):1372–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Silver MA, Ress D, Heeger DJ. Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol. 2005;94(2):1358–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Wandell BA, Brewer AA, Dougherty RF. Visual field map clusters in human cortex. Philos Trans R Soc Lond B Biol Sci. 2005;360(1456):693–707.PubMedCrossRefGoogle Scholar
  40. 40.
    Hagler Jr DJ, Sereno MI. Spatial maps in frontal and prefrontal cortex. Neuroimage. 2006;29(2):567–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Kastner S, Schneider KA, Wunderlich K. Beyond a relay nucleus: neuroimaging views on the human LGN. Prog Brain Res. 2006;155:125–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Larsson J, Heeger DJ. Two retinotopic visual areas in human lateral occipital cortex. J Neurosci. 2006;26(51):13128–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, et al. Wide-field retinotopy defines human cortical visual area v6. J Neurosci. 2006;26(30):7962–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Hansen KA, Kay KN, Gallant JL. Topographic organization in and near human visual area V4. J Neurosci. 2007;27(44):11896–911.PubMedCrossRefGoogle Scholar
  45. 45.
    Schira MM, Wade AR, Tyler CW. Two-dimensional mapping of the central and parafoveal visual field to human visual cortex. J Neurophysiol. 2007;97(6):4284–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC. Visual topography of human intraparietal sulcus. J Neurosci. 2007;27(20):5326–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. Neuron. 2007;56(2):366–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Dumoulin SO, Wandell BA. Population receptive field estimates in human visual cortex. Neuroimage. 2008;39(2):647–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Saygin AP, Sereno MI. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Cereb Cortex. 2008;18(9):2158–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Amano K, Wandell BA, Dumoulin SO. Visual field maps, population receptive field sizes, and visual field coverage in the human MT  +  complex. J Neurophysiol. 2009;102(5):2704–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Arcaro MJ, McMains SA, Singer BD, Kastner S. Retinotopic organization of human ventral visual cortex. J Neurosci. 2009;29(34):10638–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, et al. Human V6: the medial motion area. Cereb Cortex. 2010;20(2):411–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Silver MA, Kastner S. Topographic maps in human frontal and parietal cortex. Trends Cogn Sci. 2009;13(11):488–95.PubMedCrossRefGoogle Scholar
  54. 54.
    Kolster H, Peeters R, Orban GA. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci. 2010;30(29):9801–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM. The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA. 1998;95(3):818–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ. Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci. 2006;26(19):5098–108.PubMedCrossRefGoogle Scholar
  57. 57.
    Sereno MI, Huang RS. A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci. 2006;9(10):1337–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Orban GA, Dupont P, De Bruyn B, Vogels R, Vandenberghe R, Mortelmans L. A motion area in human visual cortex. Proc Natl Acad Sci USA. 1995;92(4):993–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Hadjikhani N, Liu AK, Dale A, Cavanagh P, Tootell RBH. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998;1:235–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Zeki S, Perry RJ, Bartels A. The processing of kinetic contours in the brain. Cereb Cortex. 2003;13(2):189–202.PubMedCrossRefGoogle Scholar
  61. 61.
    Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17(11):4302–11.PubMedGoogle Scholar
  62. 62.
    Cohen L, Dehaene S. Specialization within the ventral stream: the case for the visual word form area. Neuroimage. 2004;22(1):466–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G, Henaff MA, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000;123(Pt 2):291–307.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S. Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain. 2002;125(Pt 5):1054–69.PubMedCrossRefGoogle Scholar
  65. 65.
    Price CJ, Devlin JT. The myth of the visual word form area. Neuroimage. 2003;19(3):473–81.PubMedCrossRefGoogle Scholar
  66. 66.
    Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature. 1998;392(6676):598–601.PubMedCrossRefGoogle Scholar
  67. 67.
    Bonda E, Petrides M, Ostry D, Evans A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci. 1996;16(11):3737–44.PubMedGoogle Scholar
  68. 68.
    Howard RJ, Brammer M, Wright I, Woodruff PW, Bullmore ET, Zeki S. A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain. Curr Biol. 1996;6(8):1015–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Grossman ED, Blake R. Brain activity evoked by inverted and imagined biological motion. Vision Res. 2001;41(10–11):1475–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Downing PE, Jiang Y, Shuman M, Kanwisher N. A cortical area selective for visual processing of the human body. Science. 2001;293(5539):2470–3.PubMedCrossRefGoogle Scholar
  71. 71.
    Astafiev SV, Stanley CM, Shulman GL, Corbetta M. Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci. 2004;7(5):542–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Lueck CJ, Zeki S, Friston KJ, Deiber MP, Cope P, Cunningham VJ, et al. The colour centre in the cerebral cortex of man. Nature. 1989;340(6232):386–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Merigan WH. Human V4? Curr Biol. 1993;3(4):226–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Heywood CA, Gaffan D, Cowey A. Cerebral achromatopsia in monkeys. Eur J Neurosci. 1995;7:1064–73.PubMedCrossRefGoogle Scholar
  75. 75.
    McKeefry DJ, Zeki S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain. 1997;120(Pt 12):2229–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Zeki S. Improbable areas in the visual brain. Trends Neurosci. 2003;26(1):23–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Wade A, Augath M, Logothetis N, Wandell B. fMRI measurements of color in macaque and human. J Vis. 2008;8(10):6. 1–19.PubMedCrossRefGoogle Scholar
  78. 78.
    Dupont P, Orban GA, De Bruyn B, Verbruggen A, Mortelmans L. Many areas in the human brain respond to visual motion. J Neurophysiol. 1994;72(3):1420–4.PubMedGoogle Scholar
  79. 79.
    Dupont P, De Bruyn B, Vandenberghe R, Rosier AM, Michiels J, Marchal G, et al. The kinetic occipital region in human visual cortex. Cereb Cortex. 1997;7(3):283–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA. The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex. 1997;7(7):690–701.PubMedCrossRefGoogle Scholar
  81. 81.
    Serences JT, Boynton GM. The representation of behavioral choice for motion in human visual cortex. J Neurosci. 2007;27(47):12893–9.PubMedCrossRefGoogle Scholar
  82. 82.
    DeYoe EA, Van Essen DC. Concurrent processing streams in monkey visual cortex. Trends Neurosci. 1988;11(5):219–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Bio_Motion_Lab. BMLwalker V2.0. 2010. http://www.biomotionlab.ca/Demos/BMLwalker.html.
  84. 84.
    Girkin CA, Miller NR. Central disorders of vision in humans. Surv Ophthalmol. 2001;45(5):379–405.PubMedCrossRefGoogle Scholar
  85. 85.
    Zihl J, Von Cramon D, Mai N. Selective disturbance of movement vision after bilateral brain damage. Brain. 1983;106:313–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Zihl J, Von Cramon D, Mai N, Schmid CH. Disturbance of movement vision after bilateral posterior brain damage. Brain. 1991;114:2235–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Ulmer JL, Salvan CV, Mueller WM, Krouwer HG, Stroe GO, Aralasmak A, et al. The role of diffusion tensor imaging in establishing the proximity of tumor borders to functional brain systems: implications for preoperative risk assessments and postoperative outcomes. Technol Cancer Res Treat. 2004;3(6):567–76.PubMedGoogle Scholar
  88. 88.
    Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230(1):77–87.PubMedCrossRefGoogle Scholar
  89. 89.
    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25(3):356–69.PubMedGoogle Scholar
  90. 90.
    Sherbondy AJ, Dougherty RF, Napel S, Wandell BA. Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis. 2008;8(10):12. 1–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller DH, Thompson AJ. Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage. 2004;21(4):1452–63.PubMedCrossRefGoogle Scholar
  92. 92.
    Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA. Functional organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci USA. 2005;102(20):7350–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Kim M, Ducros M, Carlson T, Ronen I, He S, Ugurbil K, et al. Anatomical correlates of the functional organization in the human occipitotemporal cortex. Magn Reson Imaging. 2006;24(5):583–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Sherbondy AJ, Dougherty RF, Ananthanarayanan R, Modha DS, Wandell BA. Think global, act local; projectome estimation with BlueMatter. Med Image Comput Comput Assist Interv. 2009;12(Pt 1):861–8.PubMedGoogle Scholar
  95. 95.
    Shinoura N, Suzuki Y, Yamada R, Tabei Y, Saito K, Yagi K. Relationships between brain tumor and optic tract or calcarine ­fissure are involved in visual field deficits after surgery for brain tumor. Acta Neurochir (Wien). 2010;152(4):637–42.CrossRefGoogle Scholar
  96. 96.
    Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA. 2010;107(10):4734–9.PubMedCrossRefGoogle Scholar
  97. 97.
    McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B. Network analysis of cortical visual pathways mapped with PET. J Neurosci. 1994;14(2):655–66.PubMedGoogle Scholar
  98. 98.
    Marreiros AC, Kiebel SJ, Friston KJ. Dynamic causal modelling for fMRI: a two-state model. Neuroimage. 2008;39(1):269–78.PubMedCrossRefGoogle Scholar
  99. 99.
    Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Duyn JH. Modulation of spontaneous fMRI activity in human visual cortex by behavioral state. Neuroimage. 2009;45(1):160–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47.PubMedCrossRefGoogle Scholar
  101. 101.
    Merigan WH, Nealey TA, Maunsell JH. Visual effects of lesions of cortical area V2 in macaques. J Neurosci. 1993;13(7):3180–91.PubMedGoogle Scholar
  102. 102.
    Zeki S, Ffytche DH. The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain. 1998;121(Pt 1):25–45.PubMedCrossRefGoogle Scholar
  103. 103.
    Brodmann K. Vergleichende Lokalisationslehre der Grosshirinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J.A. Barth; 1909.Google Scholar
  104. 104.
    von Economo C, Koskinas GN. Atlas of cytoarchitectonics of the adult human cerebral cortex: first English edition. In: Triarhou LC, editors. Basel: Karger; 2008.Google Scholar
  105. 105.
    Schleicher A, Morosan P, Amunts K, Zilles K. Quantitative architectural analysis: a new approach to cortical mapping. J Autism Dev Disord. 2009;39(11):1568–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Zilles K, Amunts K. Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol. 2009;22(4):331–9.PubMedCrossRefGoogle Scholar
  107. 107.
    de Sousa AA, Sherwood CC, Schleicher A, Amunts K, MacLeod CE, Hof PR, et al. Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cereb Cortex. 2010;20(4):966–81.PubMedCrossRefGoogle Scholar
  108. 108.
    Buracas GT, Boynton GM. Efficient design of event-related fMRI experiments using M-sequences. Neuroimage. 2002;16(3 Pt 1):801–13.PubMedCrossRefGoogle Scholar
  109. 109.
    Seiffert AE, Somers DC, Dale AM, Tootell RB. Functional MRI studies of human visual motion perception: texture, luminance, attention and after-effects. Cereb Cortex. 2003;13(4):340–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Brefczynski J, Datta R, Lewis JW, DeYoe EA. The topography of visuospatial attention as revealed by a novel visual field mapping technique. J Cogn Neurosci. 2009;21(7):1447–60.CrossRefGoogle Scholar
  111. 111.
  112. 112.
    Invivo. Invivo. 2010. http://www.invivocorp.com/.
  113. 113.
    NordicNeuroLab. NordicNeuroLab. 2010. http://www.nordicneurolab.com/.
  114. 114.
    Prism Clinical Imaging. Prism clinical imaging Inc. 2010. http://www.prismclinical.com/index.html.
  115. 115.
    Greve DN, Mueller BA, Liu T, Turner JA, Voyvodic J, Yetter E, Diaz M, McCarthy G, Wallace S, Roach BJ, Ford JM, Mathalon DH, Calhoun VD, Wible CG, Brown GG, Potkin SG, Glover G. A novel method for quantifying scanner instability in fMRI. Magn Reson Med. 2011;65(4):1053–61.Google Scholar
  116. 116.
    Brown GG, Mathalon DH, Stern H, Ford J, Mueller B, Greve DN, McCarthy G, Voyvodic J, Glover G, Diaz M, Yetter E, Ozyurt IB, Jorgensen KW, Wible CG, Turner JA, Thompson WK, Potkin SG. Multisite reliability of cognitive BOLD data. Neuroimage. 2011;54(3):2163–75.Google Scholar
  117. 117.
    Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage. 1997;6(3):156–67.PubMedCrossRefGoogle Scholar
  118. 118.
    National Electrical Manufacturers Association. DICOM. 2010. http://medical.nema.org/dicom/geninfo/Brochure.pdf.
  119. 119.
    Voyvodic JT. Activation mapping as a percentage of local excitation: fMRI stability within scans, between scans and across field strengths. Magn Reson Imaging. 2006;24(9):1249–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Voyvodic JT, Petrella JR, Friedman AH. fMRI activation mapping as a percentage of local excitation: consistent presurgical motor maps without threshold adjustment. J Magn Reson Imaging. 2009;29(4):751–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Prism Clinical Imaging. Prism process. Elm Grove, WI: Prism Clinical Imaging; 2010.Google Scholar
  122. 122.
    Saad ZS, Ropella KM, Cox RW, DeYoe EA. Analysis and use of FMRI response delays. Hum Brain Mapp. 2001;13(2):74–93.PubMedCrossRefGoogle Scholar
  123. 123.
    Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003;19(2 Pt 1):261–70.PubMedCrossRefGoogle Scholar
  124. 124.
    Coenen VA, Krings T, Weidemann J, Spangenberg P, Gilsbach JM, Rohde V. Diffusion weighted imaging combined with intraoperative 3D-ultrasound and fMRI for the resection of an optic radiation cavernoma. Zentralbl Neurochir. 2003;64(3):133–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Damasio AR, Damasio H, Van Hoeson GW. Prosopagnosia: anatomical basis and behavioral mechanisms. Neurology. 1982;32:331–41.PubMedGoogle Scholar
  126. 126.
    Andreasen NC, O’Leary DS, Arndt S, Cizadlo T, Hurtig R, Rezai K, et al. Neural substrates of facial recognition. J Neuropsychiatry Clin Neurosci. 1996;8(2):139–46.PubMedGoogle Scholar
  127. 127.
    Warrington EK, Shallice T. Word-form dyslexia. Brain. 1980;103(1):99–112.PubMedCrossRefGoogle Scholar
  128. 128.
    Feinberg TE, Schindler RJ, Ochoa E, Kwan PC, Farah MJ. Associative visual agnosia and alexia without prosopagnosia. Cortex. 1994;30(3):395–411.PubMedGoogle Scholar
  129. 129.
    Zeki S. Cerebral akinetopsia (visual motion blindness). Brain. 1991;114:811–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Rizzo M, Mawrot M, Zihl J. Motion and shape perception in cerebral akinetopsia. Brain. 1995;118:1105–27.PubMedCrossRefGoogle Scholar
  131. 131.
    Bernal B, Altman N. Visual functional magnetic resonance imaging in patients with Sturge-Weber syndrome. Pediatr Neurol. 2004;31(1):9–15.PubMedCrossRefGoogle Scholar
  132. 132.
    Pantelis E, Papadakis N, Verigos K, Stathochristopoulou I, Antypas C, Lekas L, et al. Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. Int J Radiat Oncol Biol Phys. 2010;78(1):257–67.PubMedCrossRefGoogle Scholar
  133. 133.
    Barton JJ, Hefter R, Chang B, Schomer D, Drislane F. The field defects of anterior temporal lobectomy: a quantitative reassessment of Meyer’s loop. Brain. 2005;128(Pt 9):2123–33.PubMedCrossRefGoogle Scholar
  134. 134.
    Bartolomeo P, Thiebaut de Schotten M, Duffau H. Mapping of visuospatial functions during brain surgery: a new tool to prevent unilateral spatial neglect. Neurosurgery. 2007;61(6):E1340.PubMedCrossRefGoogle Scholar
  135. 135.
    Tandon N, Alexopoulos AV, Warbel A, Najm IM, Bingaman WE. Occipital epilepsy: spatial categorization and surgical management. J Neurosurg. 2009;110(2):306–18.PubMedCrossRefGoogle Scholar
  136. 136.
    Haberg A, Kvistad KA, Unsgard G, Haraldseth O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery. 2004;54(4):902–15.PubMedCrossRefGoogle Scholar
  137. 137.
    Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14. discussion 914–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Meyer A. The connections of the occipital lobes and the present status of the cerebral visual affections. Trans Assoc Am Physicians. 1907;22:7–15.Google Scholar
  139. 139.
    Zeki S. A century of cerebral achromatopsia. Brain. 1990;113:1721–77.PubMedCrossRefGoogle Scholar
  140. 140.
    Heywood CA, Cowey A, Newcombe F. On the role of parvocellular (P) and magnocellular (M) pathways in cerebral achromatopsia. Brain. 1994;117(Pt 2):245–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Sacks O. An anthropologist on mars. New York: Alfred A. Knopf; 1995.Google Scholar
  142. 142.
    Burke M, Buhrle C. BOLD response during uncoupling of neuronal activity and CBF. Neuroimage. 2006;32(1):1–8.PubMedCrossRefGoogle Scholar
  143. 143.
    van der Zande FH, Hofman PA, Backes WH. Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI. Neuroradiology. 2005;47(2):114–20.PubMedCrossRefGoogle Scholar
  144. 144.
    Hsu YY, Kuan WC, Lim KE, Liu HL. Breathhold-regulated blood oxygenation level-dependent (BOLD) MRI of human brain at 3 tesla. J Magn Reson Imaging. 2010;31(1):78–84.PubMedCrossRefGoogle Scholar
  145. 145.
    Riecker A, Grodd W, Klose U, Schulz JB, Groschel K, Erb M, et al. Relation between regional functional MRI activation and vascular reactivity to carbon dioxide during normal aging. J Cereb Blood Flow Metab. 2003;23(5):565–73.PubMedCrossRefGoogle Scholar
  146. 146.
    Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR. Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med. 2005;54(1):87–95.PubMedCrossRefGoogle Scholar
  147. 147.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89(12):5675–79.PubMedCrossRefGoogle Scholar
  148. 148.
    Balasubramanian M, Polimeni J, Schwartz EL. The V1–V2-V3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. Neural Netw. 2002;15(10):1157–63.PubMedCrossRefGoogle Scholar
  149. 149.
    Wandell BA, Winawer J, Imaging retinotopic maps in the human brain. Vision Res. 2010. Epub ahead of print.Google Scholar
  150. 150.
    Beauchamp MS, Haxby JV, Rosen AC, DeYoe EA. A functional MRI case study of acquired cerebral dyschromatopsia. Neuropsychologia. 2000;38(8):1170–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci. 1998;18(10):3816–30.PubMedGoogle Scholar
  152. 152.
    Greenlee MW, Smith AT. Detection and discrimination of first- and second-order motion in patients with unilateral brain damage. J Neurosci. 1997;17(2):804–18.PubMedGoogle Scholar
  153. 153.
    Brouwer GJ, van Ee R. Visual cortex allows prediction of perceptual states during ambiguous structure-from-motion. J Neurosci. 2007;27(5):1015–23.PubMedCrossRefGoogle Scholar
  154. 154.
    Tsao DY, Vanduffel W, Sasaki Y, Fize D, Knutsen TA, Mandeville JB, et al. Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron. 2003;39(3):555–68.PubMedCrossRefGoogle Scholar
  155. 155.
    Watson JDG, Myers R, Frackowiak RSJ, Hajnal JV, Woods RP, Mazziotta JC, et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex. 1993;3:79–94.PubMedCrossRefGoogle Scholar
  156. 156.
    Rosa MG, Tweedale R. The dorsomedial visual areas in New World and Old World monkeys: homology and function. Eur J Neurosci. 2001;13(3):421–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Peelen MV, Wiggett AJ, Downing PE. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion. Neuron. 2006;49(6):815–22.PubMedCrossRefGoogle Scholar
  158. 158.
    Tootell RBH, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT, et al. The retinotopy of spatial attention. Neuron. 1998;21:1409–22.PubMedCrossRefGoogle Scholar
  159. 159.
    Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci. 2005;8(11):1603–10.PubMedCrossRefGoogle Scholar
  160. 160.
    Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–24.PubMedCrossRefGoogle Scholar
  161. 161.
    Mesulam MM. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1325–46.PubMedCrossRefGoogle Scholar
  162. 162.
    Merigan W, Freeman A, Meyers SP. Parallel processing streams in human visual cortex. Neuroreport. 1997;8(18):3985–91.PubMedCrossRefGoogle Scholar
  163. 163.
    Merigan WH, Pham HA. V4 lesions in macaques affect both ­single- and multiple-viewpoint shape discriminations. Vis Neurosci. 1998;15(2):359–67.PubMedCrossRefGoogle Scholar
  164. 164.
    Merigan WH. Cortical area V4 is critical for certain texture discriminations, but this effect is not dependent on attention. Vis Neurosci. 2000;17(6):949–58.PubMedCrossRefGoogle Scholar
  165. 165.
    Kastner S, De Weerd P, Ungerleider LG. Texture segregation in the human visual cortex: a functional MRI study. J Neurophysiol. 2000;83(4):2453–7.PubMedGoogle Scholar
  166. 166.
    Beauchamp MS, Haxby JV, Jennings JE, DeYoe EA. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb Cortex. 1999;9(3):257–63.PubMedCrossRefGoogle Scholar
  167. 167.
    Steeves JK, Culham JC, Duchaine BC, Pratesi CC, Valyear KF, Schindler I, et al. The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. Neuropsychologia. 2006;44(4):594–609.PubMedCrossRefGoogle Scholar
  168. 168.
    Epstein R, Harris A, Stanley D, Kanwisher N. The parahippocampal place area: recognition, navigation, or encoding? Neuron. 1999;23(1):115–25.PubMedCrossRefGoogle Scholar
  169. 169.
    Epstein R, DeYoe EA, Press DZ, Rosen AC, Kanwisher N. Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn Neuropsychol. 2001;18(6):481–508.PubMedGoogle Scholar
  170. 170.
    Paus T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia. 1996;34(6):475–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Edgar A. DeYoe
    • 1
  • John L. Ulmer
    • 2
  • Wade Mueller
    • 3
  • Lotfi Hacein-Bey
    • 4
  • Viktor Szeder
    • 5
  • Mary Jo Maciejewski
    • 6
  • Karen Medler
    • 7
  • Danielle Reitsma
    • 1
  • Jedediah Mathis
    • 8
  1. 1.Department of RadiologyMedical College of WisconsinMilwaukeeUSA
  2. 2.Medical College of WisconsinMilwaukeeUSA
  3. 3.Department of NeurosurgeryMedical College of WisconsinMilwaukeeUSA
  4. 4.Radiological Associates of Sacramento Medical Group Inc.SacramentoUSA
  5. 5.Division of Stroke, Department of NeurologyColumbia University Medical CenterNew YorkUSA
  6. 6.Center for Brain HealthUniversity of Texas at DallasDallasUSA
  7. 7.Neurolab, Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  8. 8.Department of Radiology (Neuro Lab)Medical College of WisconsinMilwaukeeUSA

Personalised recommendations