Functional MRI Studies of Memory in Aging, Mild Cognitive Impairment, and Alzheimer’s Disease

  • Shannon L. Risacher
  • Heather A. Wishart
  • Andrew J. Saykin


In the human brain, functionally and anatomically defined systems exist for encoding, consolidating, and retrieving memories of experiences (episodic memory); accumulating and accessing factual information in a body of knowledge (semantic memory); and actively processing and manipulating information (working memory). These three memory systems can be distinguished from other nondeclarative memory systems such as procedural learning and priming [1–4]. Brain-behavior studies using a variety of approaches from lesion-based research to functional magnetic resonance imaging (fMRI) demonstrate distinct though highly interrelated neural circuitry for episodic, semantic, and working memory [3, 5]. Each of these memory systems, despite their close interaction, is affected somewhat differently by aging and dementia.


Mild Cognitive Impairment Episodic Memory fMRI Study Default Mode Network Semantic Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported in part by the following grants from: the National Institutes of Health (CTSI Training Grant, TL1 RR025759 to SLR; NIA R01 AG19771 and NIH R01 CA101318 to AJS; Indiana Alzheimer’s Disease Center, P30 AG10133-18S1 Core Supplement to Drs. B. Ghetti and AJS); the Alzheimer’s Disease Neuroimaging Initiative (NIH U01 AG024904 and RC2 AG036535-01); the Indiana Economic Development Corporation (IEDC #87884 to AJS); and the Alzheimer’s Association.


  1. 1.
    Baddeley A. Working Memory. In: Gazzaniga MS, editor. The ­cognitive neurosciences. Cambridge, MA: MIT Press; 1995.Google Scholar
  2. 2.
    Baddeley A. Recent developments in working memory. Curr Opin Neurobiol. 1998;8(2):234–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Krause JB, Taylor JG, Schmidt D, Hautzel H, Mottaghy FM, Muller-Gartner HW. Imaging and neural modeling in episodic and working memory processes. Neural Netw. 2000;13(8–9):847–59.PubMedCrossRefGoogle Scholar
  4. 4.
    Tulving E, Donaldson W. The organization of memory. New York: Academic Press; 1972.Google Scholar
  5. 5.
    Nyberg L, Marklund P, Persson J, et al. Common prefrontal activations during working memory, episodic memory, and semantic memory. Neuropsychologia. 2003;41:371–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Tulving E, Markowitsch HJ. Episodic and declarative memory: role of the hippocampus. Hippocampus. 1998;8(3):198–204.PubMedCrossRefGoogle Scholar
  7. 7.
    Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12(1):1–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Fletcher PC, Frith CD, Rugg MD. The functional neuroanatomy of episodic memory. Trends Neurosci. 1997;20(5):213–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Schacter DL, Wagner AD. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus. 1999;9(1):7–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner AD, Koutstaal W, Schacter DL. When encoding yields remembering: insights from event-related neuroimaging. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1307–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Cabeza R. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia. 2008;46(7):1813–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Davachi L. Item, context and relational episodic encoding in humans. Curr Opin Neurobiol. 2006;16(6):693–700.PubMedCrossRefGoogle Scholar
  13. 13.
    Desgranges B, Baron JC, Eustache F. The functional neuroanatomy of episodic memory: The role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage. 1998;8:198–213.PubMedCrossRefGoogle Scholar
  14. 14.
    Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci. 2007;30:123–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain. 2001;124(Pt 5):849–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Gilbert SJ, Spengler S, Simons JS, et al. Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci. 2006;18(6):932–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Henson R. A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B. 2005;58(3–4):340–60.PubMedGoogle Scholar
  18. 18.
    Kim H. Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. Neuroimage. 2010;50(4):1648–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Milner B, Petrides M, Smith ML. Frontal lobes and the temporal organization of memory. Hum Neurobiol. 1985;4(3):137–42.PubMedGoogle Scholar
  20. 20.
    Shimamura AP. Memory and the prefrontal cortex. Ann NY Acad Sci. 1995;769:151–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Grady CL. Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia. 2009;47(8–9):1765–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Harrington GS, Tomaszewski Farias S, Buonocore MH, Yonelinas AP. The intersubject and intrasubject reproducibility of FMRI activation during three encoding tasks: implications for clinical applications. Neuroradiology. 2006;48(7):495–505.PubMedCrossRefGoogle Scholar
  23. 23.
    Shallice T, Fletcher P, Frith CD, Grasby P, Frackowiak RS, Dolan RJ. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature. 1994;368(6472):633–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Kelley WM, Miezin FM, McDermott KB, et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron. 1998;20(5):927–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Wagner AD, Poldrack RA, Eldridge LL, Desmond JE, Glover GH, Gabrieli JD. Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. Neuroreport. 1998;9(16):3711–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JD. Making memories: brain activity that predicts how well visual experience will be remembered. Science. 1998;281(5380):1185–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Gabrieli JD, Brewer JB, Desmond JE, Glover GH. Separate neural bases of two fundamental memory processes in the human medial temporal lobe. Science. 1997;276(5310):264–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Roland PE, Zilles K. Structural divisions and functional fields in the human cerebral cortex. Brain Res Brain Res Rev. 1998;26(2–3):87–105.PubMedCrossRefGoogle Scholar
  29. 29.
    McDermott KB, Buckner RL, Petersen SE, Kelley WM, Sanders AL. Set- and code-specific activation in frontal cortex: an fMRI study of encoding and retrieval of faces and words. J Cogn Neurosci. 1999;11(6):631–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Busatto G, Howard RJ, Ha Y, et al. A functional magnetic resonance imaging study of episodic memory. Neuroreport. 1997;8(12):2671–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Otten LJ, Henson RN, Rugg MD. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons. Brain. 2001;124(Pt 2):399–412.PubMedCrossRefGoogle Scholar
  32. 32.
    Otten LJ, Rugg MD. Task-dependency of the neural correlates of episodic encoding as measured by fMRI. Cereb Cortex. 2001;11(12):1150–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Gabrieli JD, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci USA. 1998;95(3):906–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci USA. 1994;91(6):2016–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Buckner RL. Functional-anatomic correlates of control processes in memory. J Neurosci. 2003;23(10):3999–4004.PubMedGoogle Scholar
  36. 36.
    Simons JS, Spiers HJ. Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci. 2003;4(8):637–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.PubMedCrossRefGoogle Scholar
  38. 38.
    Greicius MD, Krasnow B, Boyett-Anderson JM, et al. Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus. 2003;13(1):164–74.PubMedCrossRefGoogle Scholar
  39. 39.
    Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C. Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain. 2003;126(Pt 1):43–56.PubMedCrossRefGoogle Scholar
  40. 40.
    Davachi L, Mitchell JP, Wagner AD. Multiple routes to memory: distinct medial temporal lobe processes build item and source memories. Proc Natl Acad Sci USA. 2003;100(4):2157–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Davachi L, Wagner AD. Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol. 2002;88(2):982–90.PubMedGoogle Scholar
  42. 42.
    Lepage M, Habib R, Tulving E. Hippocampal PET activations of memory encoding and retrieval: The HIPER model. Hippocampus. 1998;8:313–22.PubMedCrossRefGoogle Scholar
  43. 43.
    Rombouts SA, Machielsen WC, Witter MP, Barkhof F, Lindeboom J, Scheltens P. Visual association encoding activates the medial ­temporal lobe: a functional magnetic resonance imaging study. Hippocampus. 1997;7(6):594–601.PubMedCrossRefGoogle Scholar
  44. 44.
    Stern CE, Corkin S, Gonzalez RG, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93(16):8660–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Braak H, Braak E, Yilmazer D, Bohl J. Functional anatomy of human hippocampal formation and related structures. J Child Neurol. 1996;11(4):265–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Van Hoesen GW. Anatomy of the medial temporal lobe. Magn Reson Imaging. 1995;13(8):1047–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Dolan RJ, Fletcher PC. Dissociating prefrontal and hippocampal function in episodic memory encoding. Nature. 1997;388(6642):582–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Golby AJ, Poldrack RA, Brewer JB, et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain. 2001;124(Pt 9):1841–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science. 1998;281(5380):1188–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Aguirre GK, Detre JA, Alsop DC, D’Esposito M. The parahippocampus subserves topographical learning in man. Cereb Cortex. 1996;6(6):823–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Buckner RL, Koutstaal W, Schacter DL, Dale AM, Rotte M, Rosen BR. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage. 1998;7(3):163–75.PubMedCrossRefGoogle Scholar
  52. 52.
    Buckner RL, Koutstaal W, Schacter DL, Wagner AD, Rosen BR. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. Neuroimage. 1998;7(3):151–62.PubMedCrossRefGoogle Scholar
  53. 53.
    Wagner AD, Desmond JE, Glover GH, Gabrieli JD. Prefrontal cortex and recognition memory. Functional-MRI evidence for context-dependent retrieval processes. Brain. 1998;121(Pt 10):1985–2002.PubMedCrossRefGoogle Scholar
  54. 54.
    Lepage M, Ghaffar O, Nyberg L, Tulving E. Prefrontal cortex and episodic memory retrieval mode. Proc Natl Acad Sci USA. 2000;97(1):506–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Nyberg L, Cabeza R, Tulving E. PET studies of encoding and retrieval: The HERA Model. Psychol Bull Rev. 1996;3:135–48.CrossRefGoogle Scholar
  56. 56.
    Nyberg L, McIntosh AR, Cabeza R, Habib R, Houle S, Tulving E. General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc Natl Acad Sci USA. 1996;93(20):11280–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Wagner K, Frings L, Quiske A, et al. The reliability of fMRI activations in the medial temporal lobes in a verbal episodic memory task. Neuroimage. 2005;28(1):122–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Henson RN, Shallice T, Dolan RJ. Right prefrontal cortex and episodic memory retrieval: a functional MRI test of the monitoring hypothesis. Brain. 1999;122(Pt 7):1367–81.PubMedCrossRefGoogle Scholar
  59. 59.
    McDermott KB, Ojemann JG, Petersen SE, et al. Direct comparison of episodic encoding and retrieval of words: an event-related fMRI study. Memory. 1999;7(5–6):661–78.PubMedCrossRefGoogle Scholar
  60. 60.
    Henson RN, Hornberger M, Rugg MD. Further dissociating the processes involved in recognition memory: an FMRI study. J Cogn Neurosci. 2005;17(7):1058–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Daselaar SM, Fleck MS, Cabeza R. Triple dissociation in the medial temporal lobes: recollection, familiarity, and novelty. J Neurophysiol. 2006;96(4):1902–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Dolcos F, LaBar KS, Cabeza R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc Natl Acad Sci USA. 2005;102(7):2626–31.PubMedCrossRefGoogle Scholar
  63. 63.
    Montaldi D, Spencer TJ, Roberts N, Mayes AR. The neural system that mediates familiarity memory. Hippocampus. 2006;16(5):504–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Yonelinas AP, Otten LJ, Shaw KN, Rugg MD. Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci. 2005;25(11):3002–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Milner B. Psychological aspects of focal epilepsy and its neurosurgical management. Adv Neurol. 1975;8:299–321.PubMedGoogle Scholar
  66. 66.
    Hermann BP, Seidenberg M, Haltiner A, Wyler AR. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36(2):137–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Saykin AJ, Gur RC, Sussman NM, O’Connor MJ, Gur RE. Memory deficits before and after temporal lobectomy: Effect of laterality and age of onset. Brain Cogn. 1989;9:191–200.PubMedCrossRefGoogle Scholar
  68. 68.
    Saykin AJ, Robinson LJ, Stafiniak P, et al. Neuropsychological effects of temporal lobectomy: Acute changes in memory, language, and music. In: Bennett T, editor. Neuropsychology of Epilepsy. New York: Plenum Press; 1992.Google Scholar
  69. 69.
    Sperling RA, Bates JF, Cocchiarella AJ, Schacter DL, Rosen BR, Albert MS. Encoding novel face-name associations: a functional MRI study. Hum Brain Mapp. 2001;14(3):129–39.PubMedCrossRefGoogle Scholar
  70. 70.
    Ranganath C, Yonelinas AP, Cohen MX, Dy CJ, Tom SM, D’Esposito M. Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia. 2004;42(1):2–13.PubMedCrossRefGoogle Scholar
  71. 71.
    Vilberg KL, Rugg MD. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia. 2008;46(7):1787–99.PubMedCrossRefGoogle Scholar
  72. 72.
    Kahn I, Davachi L, Wagner AD. Functional-neuroanatomic correlates of recollection: implications for models of recognition memory. J Neurosci. 2004;24(17):4172–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Gottfried JA, Smith AP, Rugg MD, Dolan RJ. Remembrance of odors past: human olfactory cortex in cross-modal recognition memory. Neuron. 2004;42(4):687–95.PubMedCrossRefGoogle Scholar
  74. 74.
    Henson RN, Rugg MD, Shallice T, Josephs O, Dolan RJ. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J Neurosci. 1999;19(10):3962–72.PubMedGoogle Scholar
  75. 75.
    Woodruff CC, Johnson JD, Uncapher MR, Rugg MD. Content-specificity of the neural correlates of recollection. Neuropsychologia. 2005;43(7):1022–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Corbetta M, Kincade JM, Shulman GL. Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci. 2002;14(3):508–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Herron JE, Henson RN, Rugg MD. Probability effects on the neural correlates of retrieval success: an fMRI study. Neuroimage. 2004;21(1):302–10.PubMedCrossRefGoogle Scholar
  78. 78.
    Ravizza SM, Delgado MR, Chein JM, Becker JT, Fiez JA. Functional dissociations within the inferior parietal cortex in verbal working memory. Neuroimage. 2004;22(2):562–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Shannon BJ, Buckner RL. Functional-anatomic correlates of memory retrieval that suggest nontraditional processing roles for multiple distinct regions within posterior parietal cortex. J Neurosci. 2004;24(45):10084–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Dobbins IG, Han S. Cue- versus probe-dependent prefrontal cortex activity during contextual remembering. J Cogn Neurosci. 2006;18(9):1439–52.PubMedCrossRefGoogle Scholar
  81. 81.
    Dobbins IG, Han S. Isolating rule- versus evidence-based prefrontal activity during episodic and lexical discrimination: a functional magnetic resonance imaging investigation of detection theory distinctions. Cereb Cortex. 2006;16(11):1614–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Simons JS, Owen AM, Fletcher PC, Burgess PW. Anterior prefrontal cortex and the recollection of contextual information. Neuropsychologia. 2005;43(12):1774–83.PubMedCrossRefGoogle Scholar
  83. 83.
    Simons JS, Gilbert SJ, Owen AM, Fletcher PC, Burgess PW. Distinct roles for lateral and medial anterior prefrontal cortex in contextual recollection. J Neurophysiol. 2005;94(1):813–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Velanova K, Jacoby LL, Wheeler ME, McAvoy MP, Petersen SE, Buckner RL. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J Neurosci. 2003;23(24):8460–70.PubMedGoogle Scholar
  85. 85.
    Dobbins IG, Foley H, Schacter DL, Wagner AD. Executive control during episodic retrieval: multiple prefrontal processes subserve source memory. Neuron. 2002;35(5):989–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Dobbins IG, Wagner AD. Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cereb Cortex. 2005;15(11):1768–78.PubMedCrossRefGoogle Scholar
  87. 87.
    Cabeza R, Rao SM, Wagner AD, Mayer AR, Schacter DL. Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc Natl Acad Sci USA. 2001;98(8):4805–10.PubMedCrossRefGoogle Scholar
  88. 88.
    Anderson ND, Craik FIM. Memory in the aging brain. In: Craik FIM, editor. The Oxford Handbook of Memory. New York: Oxford; 2000. p. 411–25.Google Scholar
  89. 89.
    Balota DA, Dolan PO, Duchek JM. Memory changes in healthy older adults. In: Craik FIM, editor. The Oxford Handbook of Memory. New York: Oxford; 2000. p. 395–409.Google Scholar
  90. 90.
    Nyberg L, Backman L, Erngrund K, Olofsson U, Nilsson LG. Age differences in episodic memory, semantic memory, and priming: relationships to demographic, intellectual, and biological factors. J Gerontol B Psychol Sci Soc Sci. 1996;51(4):P234–240.PubMedCrossRefGoogle Scholar
  91. 91.
    Grady C, Craik FI. Changes in memory processing with age. Curr Opin Neurobiol. 2000;10:224–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Park DC, Smith AD, Lautenschlager G, et al. Mediators of long-term memory performance across the lifespan. Psychol Aging. 1996;11:621–37.PubMedCrossRefGoogle Scholar
  93. 93.
    Zacks RT, Hasher L, Li KZH. Human memory. In: Salthouse TA, editor. The Handbook of Aging and Cognition. Mahwah, NJ: Erlbaum; 1999. p. 200–30.Google Scholar
  94. 94.
    Baltes PB. The aging mind: potential and limits. Gerontologist Eng. 1993;33(5):580–94.CrossRefGoogle Scholar
  95. 95.
    Flashman LA, Wishart HA, Saykin AJ. Boundaries Between Normal Aging and Dementia: Perspectives from Neuropsychological and Neuroimaging Investigations. In: Oxman TE, editor. Dementia: Presentations, Differential Diagnosis and Nosology. 2nd ed. Baltimore: Johns Hopkins University Press; 2003.Google Scholar
  96. 96.
    Schroots JJF, Birren JE. Theoretical issues and basic questions in the planning of longitudinal studies of health and aging. In: Schroots JJF, editor. Aging, health and competence: The next generation of longitudinal studies. Amsterdam: Elsevier; 1993. p. 4–34.Google Scholar
  97. 97.
    Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cereb Cortex. 1997;7(3):268–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Bigler ED, Blatter DD, Anderson CV, et al. Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol. 1997;18(1):11–23.PubMedGoogle Scholar
  99. 99.
    DeCarli C, Murphy DG, Gillette JA, et al. Lack of age-related differences in temporal lobe volume of very healthy adults. AJNR Am J Neuroradiol Eng. 1994;15(4):689–96.Google Scholar
  100. 100.
    Greenwood PM. The frontal aging hypothesis evaluated. J Int Neuropsychol Soc. 2000;6:705–26.PubMedCrossRefGoogle Scholar
  101. 101.
    Greenwood PM. Reply to west. J Int Neuropsychol Soc. 2000;6:730.CrossRefGoogle Scholar
  102. 102.
    West R. In defense of the frontal lobe hypothesis of cognitive aging. J Int Neuropsychol Soc. 2000;6:727–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Kempermann G, Gage FH. New nerve cells for the adult brain. Sci Am. 1999;280:48–53.PubMedCrossRefGoogle Scholar
  104. 104.
    Reuter-Lorenz PA, Stanczak L, Miller AC. Neural recruitment and cognitive aging: Two hemispheres are better than one, especially as you age. Psychol Sci. 1999;10(6):494–500.CrossRefGoogle Scholar
  105. 105.
    Cabeza R. Hemispheric asymmetry reduction in old adults: The HAROLD model. Psychol Aging. 2002;17:85–100.PubMedCrossRefGoogle Scholar
  106. 106.
    Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage. 2002;17:1394–402.PubMedCrossRefGoogle Scholar
  107. 107.
    Stebbins GT, Carrillo MC, Dorfman J, et al. Aging effects on memory encoding in the frontal lobes. Psychol Aging. 2002;17(1):44–55.PubMedCrossRefGoogle Scholar
  108. 108.
    Anderson KE, Perera GM, Hilton J, Zubin N, Paz Dela R, Stern Y. Functional magnetic resonance imaging study of word recognition in normal elders. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(4):647–50.PubMedCrossRefGoogle Scholar
  109. 109.
    Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L. Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex. 2004;14(4):364–75.PubMedCrossRefGoogle Scholar
  110. 110.
    Grady CL. Age-related differences in face processing: a meta-analysis of three functional neuroimaging experiments. Can J Exp Psychol. 2002;56(3):208–20.PubMedGoogle Scholar
  111. 111.
    Morcom AM, Good CD, Frackowiak RS, Rugg MD. Age effects on the neural correlates of successful memory encoding. Brain. 2003;126(Pt 1):213–29.PubMedCrossRefGoogle Scholar
  112. 112.
    Morcom AM, Li J, Rugg MD. Age effects on the neural correlates of episodic retrieval: increased cortical recruitment with matched performance. Cereb Cortex. 2007;17(11):2491–506.PubMedCrossRefGoogle Scholar
  113. 113.
    Grady CL, McIntosh AR, Rajah MN, Beig S, Craik FI. The effects of age on the neural correlates of episodic encoding. Cereb Cortex. 1999;9(8):805–14.PubMedCrossRefGoogle Scholar
  114. 114.
    Mandzia JL, Black SE, McAndrews MP, Grady C, Graham S. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly. Hum Brain Mapp. 2004;21(1):1–14.PubMedCrossRefGoogle Scholar
  115. 115.
    Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL. Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron. 2002;33(5):827–40.PubMedCrossRefGoogle Scholar
  116. 116.
    Rajah MN, D’Esposito M. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain. 2005;128(Pt 9):1964–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Belger A, Banich MT. Costs and benefits of integrating information between the cerebral hemispheres: a computational perspective. Neuropsychology. 1998;12(3):380–98.PubMedCrossRefGoogle Scholar
  118. 118.
    Erickson KI, Colcombe SJ, Wadhwa R, et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol Aging. 2007;28(2):272–83.PubMedCrossRefGoogle Scholar
  119. 119.
    Fawcett JW, Rosser AE, Dunnett SB. Brain Damage, Brain Repair. New York: Oxford U.P; 2001.Google Scholar
  120. 120.
    Muller RA, Rothermel RD, Behen ME, Muzik O, Mangner TJ, Chugani HT. Differential patterns of language and motor reorganization following early left hemisphere lesion: a PET study. Arch Neurol. 1998;55(8):1113–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Baltes PB, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging. 1997;12(1):12–21.PubMedCrossRefGoogle Scholar
  122. 122.
    Cabeza R. Cognitive neuroscience of aging: contributions of functional neuroimaging. Scand J Psychol. 2001;42(3):277–86.PubMedCrossRefGoogle Scholar
  123. 123.
    Daselaar SM, Fleck MS, Dobbins IG, Madden DJ, Cabeza R. Effects of healthy aging on hippocampal and rhinal memory functions: an event-related fMRI study. Cereb Cortex. 2006;16(12):1771–82.PubMedCrossRefGoogle Scholar
  124. 124.
    Dennis NA, Daselaar S, Cabeza R. Effects of aging on transient and sustained successful memory encoding activity. Neurobiol Aging. 2007;28(11):1749–58.PubMedCrossRefGoogle Scholar
  125. 125.
    Sperling RA, Bates JF, Chua EF, et al. FMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74(1):44–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Small SA, Tsai WY, DeLaPaz R, Mayeux R, Stern Y. Imaging hippocampal function across the human life span: is memory decline normal or not? Ann Neurol. 2002;51(3):290–5.PubMedCrossRefGoogle Scholar
  127. 127.
    Small SA, Wu EX, Bartsch D, et al. Imaging physiologic dysfunction of individual hippocampal subregions in humans and genetically modified mice. Neuron. 2000;28(3):653–64.PubMedCrossRefGoogle Scholar
  128. 128.
    Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R. Que PASA? The posterior-anterior shift in aging. Cereb Cortex. 2008;18(5):1201–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Dennis NA, Hayes SM, Prince SE, Madden DJ, Huettel SA, Cabeza R. Effects of aging on the neural correlates of successful item and source memory encoding. J Exp Psychol Learn Mem Cogn. 2008;34(4):791–808.PubMedCrossRefGoogle Scholar
  130. 130.
    Petersen RC. Aging, mild cognitive impairment, and Alzheimer’s disease. Neurol Clin. 2000;18(4):789–806.PubMedCrossRefGoogle Scholar
  131. 131.
    Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.PubMedCrossRefGoogle Scholar
  132. 132.
    Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST. Practice parameter: Early detection of dementia: Mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56:1133–42.PubMedGoogle Scholar
  133. 133.
    Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447–55.PubMedCrossRefGoogle Scholar
  134. 134.
    Saykin AJ, Wishart HA. Mild Cognitive Impairment: Conceptual issues and structural and functional brain correlates. In: Ovsiew F, editor. Seminars in clinical neuropsychiatry. 2003.Google Scholar
  135. 135.
    Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport. 2002;13:1939–43.PubMedCrossRefGoogle Scholar
  137. 137.
    de Leon MJ, Convit A, DeSanti S, et al. The hippocampus in aging and Alzheimer’s disease. Neuroimaging Clin N Am Eng. 1995;5(1):1–17.Google Scholar
  138. 138.
    de Leon MJ, Convit A, George AE, et al. In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann NY Acad Sci Eng. 1996;777:1–13.CrossRefGoogle Scholar
  139. 139.
    Jack Jr CR, Petersen RC, O’ Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurol Eng. 1992;42(1):183–8.Google Scholar
  140. 140.
    Jack Jr CR, Shiung MM, Gunter JL, et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004;62(4):591–600.PubMedGoogle Scholar
  141. 141.
    Jack Jr CR, Shiung MM, Weigand SD, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology. 2005;65(8):1227–31.PubMedCrossRefGoogle Scholar
  142. 142.
    Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009;6(4):347–61.PubMedCrossRefGoogle Scholar
  143. 143.
    Devanand DP, Liu X, Tabert MH, et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatry. 2008;64(10):871–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Risacher SL, Saykin AJ. Neuroimaging of Alzheimer’s Disease, Mild Cognitive Impairment and Other Dementias. In: Sweet LH, Cohen RA, editors. Brain imaging in behavioral medicine and clinical neuroscience. New York: Springer; 2011.Google Scholar
  145. 145.
    Zakzanis KK, Graham SJ, Campbell Z. A meta-analysis of structural and functional brain imaging in dementia of the Alzheimer’s type: a neuroimaging profile. Neuropsychol Rev. 2003;13(1):1–18.PubMedCrossRefGoogle Scholar
  146. 146.
    de Leon MJ, DeSanti S, Zinkowski R, et al. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J Intern Med. 2004;256(3):205–23.PubMedCrossRefGoogle Scholar
  147. 147.
    de Leon MJ, Mosconi L, Blennow K, et al. Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann NY Acad Sci. 2007;1097:114–45.PubMedCrossRefGoogle Scholar
  148. 148.
    DeCarli C. The role of neuroimaging in dementia. Clin Geriatr Med. 2001;17(2):255–79.PubMedCrossRefGoogle Scholar
  149. 149.
    Good CD. Dementia and ageing. Br Med Bull. 2003;65:159–68.PubMedCrossRefGoogle Scholar
  150. 150.
    Weiner MW. Imaging and biomarkers will be used for detection and monitoring progression of early Alzheimer’s disease. J Nutr Health Aging. 2009;13:332.PubMedCrossRefGoogle Scholar
  151. 151.
    Whitwell JL, Jack CR, Jr. Neuroimaging in dementia. Neurol Clin. 2007;25(3):843–857, viii.Google Scholar
  152. 152.
    Wolf H, Hensel A, Kruggel F, et al. Structural correlates of mild cognitive impairment. Neurobiol Aging. 2004;25(7):913–24.PubMedCrossRefGoogle Scholar
  153. 153.
    Wolf H, Jelic V, Gertz HJ, Nordberg A, Julin P, Wahlund LO. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol Scand Suppl. 2003;179:52–76.PubMedCrossRefGoogle Scholar
  154. 154.
    Wolk DA, Price JC, Saxton JA, et al. Amyloid imaging in mild cognitive impairment subtypes. Ann Neurol. 2009;65:557–68.PubMedCrossRefGoogle Scholar
  155. 155.
    Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.PubMedCrossRefGoogle Scholar
  156. 156.
    Pariente J, Cole S, Henson R, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol. 2005;58(6):870–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: A functional MRI study. Neurology. 2001;57:812–6.PubMedGoogle Scholar
  158. 158.
    Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol. 2000;21(10):1869–75.PubMedGoogle Scholar
  159. 159.
    Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45(4):466–72.PubMedCrossRefGoogle Scholar
  160. 160.
    Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology. 2003;61(4):500–6.PubMedGoogle Scholar
  161. 161.
    Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol. 2002;51(4):491–8.PubMedCrossRefGoogle Scholar
  162. 162.
    Corkin S, Functional MRI. for studying episodic memory in aging and Alzheimer’s disease. Geriatrics. 1998;53 Suppl 1:S13–15.PubMedGoogle Scholar
  163. 163.
    Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci. 2003;23(3):986–93.PubMedGoogle Scholar
  164. 164.
    Golby A, Silverberg G, Race E, et al. Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain. 2005;128(Pt 4):773–87.PubMedCrossRefGoogle Scholar
  165. 165.
    Saykin AJ, Flashman LA, Johnson S, et al. Frontal and hippocampal memory circuitry in early Alzheimer’s disease: Relation of structural and functional MRI changes. Neuroimage. 2000;11(5):S123.CrossRefGoogle Scholar
  166. 166.
    Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci. 2006;26(40):10222–31.PubMedCrossRefGoogle Scholar
  167. 167.
    Trivedi MA, Murphy CM, Goetz C, et al. fMRI activation changes during successful episodic memory encoding and recognition in amnestic mild cognitive impairment relative to cognitively healthy older adults. Dement Geriatr Cogn Disord. 2008;26(2):123–37.PubMedCrossRefGoogle Scholar
  168. 168.
    Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol. 2004;56(1):27–35.PubMedCrossRefGoogle Scholar
  169. 169.
    Hamalainen A, Pihlajamaki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging. 2007;28(12):1889–903.PubMedCrossRefGoogle Scholar
  170. 170.
    Johnson SC, Schmitz TW, Moritz CH, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging. 2006;27(11):1604–12.PubMedCrossRefGoogle Scholar
  171. 171.
    O’Brien JL, O’Keefe KM, LaViolette PS, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74(24):1969–76.PubMedCrossRefGoogle Scholar
  172. 172.
    Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia. 2004;42(7):980–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Miller SL, Fenstermacher E, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry. 2008;79(6):630–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CE. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage. 2010;51(3):1242–52.PubMedCrossRefGoogle Scholar
  175. 175.
    McIntosh AR. Towards a network theory of cognition. Neural Netw. 2000;13(8–9):861–70.PubMedCrossRefGoogle Scholar
  176. 176.
    Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage. 1997;6(3):218–29.PubMedCrossRefGoogle Scholar
  177. 177.
    Greicius MD, Menon V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci. 2004;16(9):1484–92.PubMedCrossRefGoogle Scholar
  178. 178.
    Nyberg L, Persson J, Habib R, et al. Large scale neurocognitive networks underlying episodic memory. J Cogn Neurosci. 2000;12(1):163–73.PubMedCrossRefGoogle Scholar
  179. 179.
    Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus. 2005;15(8):997–1005.PubMedCrossRefGoogle Scholar
  180. 180.
    Burianova H, McIntosh AR, Grady CL. A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage. 2010;49(1):865–74.PubMedCrossRefGoogle Scholar
  181. 181.
    Takahashi E, Ohki K, Kim DS. Dissociated pathways for successful memory retrieval from the human parietal cortex: anatomical and functional connectivity analyses. Cereb Cortex. 2008;18(8):1771–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Iidaka T, Matsumoto A, Nogawa J, Yamamoto Y, Sadato N. Frontoparietal network involved in successful retrieval from episodic memory. Spatial and temporal analyses using fMRI and ERP. Cereb Cortex. 2006;16(9):1349–60.PubMedCrossRefGoogle Scholar
  183. 183.
    Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94.PubMedCrossRefGoogle Scholar
  184. 184.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.PubMedCrossRefGoogle Scholar
  185. 185.
    Cabeza R, Grady CL, Nyberg L, et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci. 1997;17(1):391–400.PubMedGoogle Scholar
  186. 186.
    Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3(2):e17.PubMedCrossRefGoogle Scholar
  187. 187.
    Grady CL, McIntosh AR, Craik FI. Age-related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus. 2003;13(5):572–86.PubMedCrossRefGoogle Scholar
  188. 188.
    Wang L, Laviolette P, O’Keefe K, et al. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage. 2010;51(2):910–7.PubMedCrossRefGoogle Scholar
  189. 189.
    Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–35.PubMedCrossRefGoogle Scholar
  190. 190.
    Damoiseaux JS, Beckmann CF, Arigita EJ, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18(8):1856–64.PubMedCrossRefGoogle Scholar
  191. 191.
    Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA. 2003;100(24):14504–9.PubMedCrossRefGoogle Scholar
  192. 192.
    Daselaar SM, Prince SE, Cabeza R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. 2004;23(3):921–7.PubMedCrossRefGoogle Scholar
  193. 193.
    Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology. 2002;225(1):253–9.PubMedCrossRefGoogle Scholar
  194. 194.
    Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–42.PubMedCrossRefGoogle Scholar
  195. 195.
    Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26(4):231–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2007;104(47):18760–5.PubMedCrossRefGoogle Scholar
  197. 197.
    Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31(2):496–504.PubMedCrossRefGoogle Scholar
  198. 198.
    Wagner AD. Early detection of Alzheimer’s disease: An fMRI marker for people at risk? Nat Neurosci. 2000;3(10):973–4.PubMedCrossRefGoogle Scholar
  199. 199.
    Rodda JE, Dannhauser TM, Cutinha DJ, Shergill SS, Walker Z. Subjective cognitive impairment: increased prefrontal cortex activation compared to controls during an encoding task. Int J Geriatr Psychiatry. 2009;24(8):865–74.PubMedCrossRefGoogle Scholar
  200. 200.
    Smith JD. Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev. 2002;1(3):345–65.PubMedCrossRefGoogle Scholar
  201. 201.
    Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.PubMedCrossRefGoogle Scholar
  202. 202.
    Burggren AC, Small GW, Sabb FW, Bookheimer SY. Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):44–51.PubMedGoogle Scholar
  203. 203.
    Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology. 2005;64(3):501–8.PubMedCrossRefGoogle Scholar
  204. 204.
    Elgh E, Larsson A, Eriksson S, Nyberg L. Altered prefrontal brain activity in persons at risk for Alzheimer’s disease: an fMRI study. Int Psychogeriatr. 2003;15(2):121–33.PubMedCrossRefGoogle Scholar
  205. 205.
    Trivedi MA, Schmitz TW, Ries ML, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Med. 2006;4:1.PubMedCrossRefGoogle Scholar
  206. 206.
    Rombouts SA, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73(6):665–71.PubMedCrossRefGoogle Scholar
  207. 207.
    Kircher TT, Erb M, Grodd W, Leube DT. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry. 2005;13(11):1006–13.PubMedGoogle Scholar
  208. 208.
    Goekoop R, Scheltens P, Barkhof F, Rombouts SA. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation – a pharmacological fMRI study. Brain. 2006;129(Pt 1):141–57.PubMedGoogle Scholar
  209. 209.
    Dumas JA, McDonald BC, Saykin AJ, et al. Cholinergic modulation of hippocampal activity during episodic memory encoding in postmenopausal women: a pilot study. Menopause. 2010;17(4):852–9.PubMedCrossRefGoogle Scholar
  210. 210.
    Bozzali M, MacPherson SE, Dolan RJ, Shallice T. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI. Neuroimage. 2006;33(1):286–95.PubMedCrossRefGoogle Scholar
  211. 211.
    Budson AE. Understanding memory dysfunction. Neurologist. 2009;15(2):71–9.PubMedCrossRefGoogle Scholar
  212. 212.
    Martin A. Functional neuroimaging of semantic memory. In: Kingstone A, editor. Handbook of Functional Neuroimaging of Cognition. Cambridge, MA: Bradford; 2001. p. 153–86.Google Scholar
  213. 213.
    Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19(12):2767–96.PubMedCrossRefGoogle Scholar
  214. 214.
    Grossman M, Smith EE, Koenig P, et al. The neural basis for categorization in semantic memory. Neuroimage. 2002;17(3):1549–61.PubMedCrossRefGoogle Scholar
  215. 215.
    Levy DA, Bayley PJ. Squire LR. The anatomy of semantic knowledge: medial vs. lateral temporal lobe. Proc Natl Acad Sci USA. 2004;101(17):6710–5.PubMedCrossRefGoogle Scholar
  216. 216.
    Vigneau M, Beaucousin V, Herve PY, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30(4):1414–32.PubMedCrossRefGoogle Scholar
  217. 217.
    Grossman M, Koenig P, DeVita C, et al. The neural basis for category-specific knowledge: an fMRI study. Neuroimage. 2002;15(4):936–48.PubMedCrossRefGoogle Scholar
  218. 218.
    Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129(Pt 8):2132–47.PubMedCrossRefGoogle Scholar
  219. 219.
    Warrington EK. The selective impairment of semantic memory. Q J Exp Psychol. 1975;27(4):635–57.PubMedCrossRefGoogle Scholar
  220. 220.
    Mummery CJ, Patterson K, Wise RJ, Vandenberghe R, Price CJ, Hodges JR. Disrupted temporal lobe connections in semantic dementia. Brain. 1999;122(Pt 1):61–73.PubMedCrossRefGoogle Scholar
  221. 221.
    Wallentin M, Lund TE, Ostergaard S, Ostergaard L, Roepstorff A. Motion verb sentences activate left posterior middle temporal cortex despite static context. Neuroreport. 2005;16(6):649–52.PubMedCrossRefGoogle Scholar
  222. 222.
    Simmons WK, Ramjee V, Beauchamp MS, McRae K, Martin A, Barsalou LW. A common neural substrate for perceiving and knowing about color. Neuropsychologia. 2007;45(12):2802–10.PubMedCrossRefGoogle Scholar
  223. 223.
    Gainotti G. What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex. 2000;36(4):539–59.PubMedCrossRefGoogle Scholar
  224. 224.
    Kuchinke L, Jacobs AM, Grubich C, Vo ML, Conrad M, Herrmann M. Incidental effects of emotional valence in single word processing: an fMRI study. Neuroimage. 2005;28(4):1022–32.PubMedCrossRefGoogle Scholar
  225. 225.
    Bechara A, Damasio H, Damasio AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex. 2000;10(3):295–307.PubMedCrossRefGoogle Scholar
  226. 226.
    Bechara A, Tranel D, Damasio H. Characterization of the ­decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain. 2000;123(Pt 11):2189–202.PubMedCrossRefGoogle Scholar
  227. 227.
    Ni W, Constable RT, Mencl WE, et al. An event-related neuroimaging study distinguishing form and content in sentence processing. J Cogn Neurosci. 2000;12(1):120–33.PubMedCrossRefGoogle Scholar
  228. 228.
    Humphries C, Binder JR, Medler DA, Liebenthal E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage. 2007;36(3):924–32.PubMedCrossRefGoogle Scholar
  229. 229.
    Lehmann S, Murray MM. The role of multisensory memories in unisensory object discrimination. Brain Res Cogn Brain Res. 2005;24(2):326–34.PubMedCrossRefGoogle Scholar
  230. 230.
    Robinson G, Blair J, Cipolotti L. Dynamic aphasia: an inability to select between competing verbal responses? Brain. 1998;121(Pt 1):77–89.PubMedCrossRefGoogle Scholar
  231. 231.
    Price CJ, Mummery CJ, Moore CJ, Frakowiak RS, Friston KJ. Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. J Cogn Neurosci. 1999;11(4):371–82.PubMedCrossRefGoogle Scholar
  232. 232.
    Epstein RA, Parker WE, Feiler AM. Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J Neurosci. 2007;27(23):6141–9.PubMedCrossRefGoogle Scholar
  233. 233.
    Maddock RJ. The retrosplenial cortex and emotion: new insights from functional neuroimaging of the human brain. Trends Neurosci. 1999;22(7):310–6.PubMedCrossRefGoogle Scholar
  234. 234.
    Hassabis D, Kumaran D, Maguire EA. Using imagination to understand the neural basis of episodic memory. J Neurosci. 2007;27(52):14365–74.PubMedCrossRefGoogle Scholar
  235. 235.
    O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev. 2001;108(2):311–45.PubMedCrossRefGoogle Scholar
  236. 236.
    Salthouse TA. Speed and knowledge as determinants of adult age differences in verbal tasks. J Gerontology Eng. 1993;48(1):29–36.Google Scholar
  237. 237.
    Albert MS, Heller HS, Milberg W. Changes in naming ability with age. Psychol Aging. 1988;3(2):173–8.PubMedCrossRefGoogle Scholar
  238. 238.
    Au R, Joung P, Nicholas M, Obler LK. Naming ability across the adult life span. Aging Cognition. 1995;2(4):300–11.CrossRefGoogle Scholar
  239. 239.
    Rich JB, Park NW, Dopkins S, Brandt J. What do Alzheimer’s disease patients know about animals? It depends on task structure and presentation format. J Int Neuropsychol Soc. 2002;8(1):83–94.PubMedCrossRefGoogle Scholar
  240. 240.
    Cooke A, Grossman M, DeVita C, et al. Large-scale neural network for sentence processing. Brain Lang. 2006;96(1):14–36.PubMedCrossRefGoogle Scholar
  241. 241.
    Gold BT, Andersen AH, Jicha GA, Smith CD. Aging influences the neural correlates of lexical decision but not automatic semantic priming. Cereb Cortex. 2009;19(11):2671–9.PubMedCrossRefGoogle Scholar
  242. 242.
    Johnson SC, Saykin AJ, Flashman LA, et al. Similarities and differences in semantic and phonological processing with age: Patterns of functional MRI activation. Aging Neuropsychol Cognition. 2001;8(4):307–20.CrossRefGoogle Scholar
  243. 243.
    Nielson KA, Douville KL, Seidenberg M, et al. Age-related functional recruitment for famous name recognition: an event-related fMRI study. Neurobiol Aging. 2006;27(10):1494–504.PubMedCrossRefGoogle Scholar
  244. 244.
    Wierenga CE, Benjamin M, Gopinath K, et al. Age-related changes in word retrieval: role of bilateral frontal and subcortical networks. Neurobiol Aging. 2008;29(3):436–51.PubMedCrossRefGoogle Scholar
  245. 245.
    Grossman M, Cooke A, DeVita C, et al. Age-related changes in working memory during sentence comprehension: an fMRI study. Neuroimage. 2002;15(2):302–17.PubMedCrossRefGoogle Scholar
  246. 246.
    Tyler LK, Shafto MA, Randall B, Wright P, Marslen-Wilson WD, Stamatakis EA. Preserving syntactic processing across the adult life span: the modulation of the frontotemporal language system in the context of age-related atrophy. Cereb Cortex. 2010;20(2):352–64.PubMedCrossRefGoogle Scholar
  247. 247.
    Garrard P, Patterson K, Watson PC, Hodges JR. Category specific semantic loss in dementia of Alzheimer’s type. Functional-anatomical correlations from cross-sectional analyses. Brain. 1998;121(Pt 4):633–46.PubMedCrossRefGoogle Scholar
  248. 248.
    Grossman M. Not all words are created equal. Category-specific deficits in central nervous system disease. Neurology. 1998;50(2):324–5.PubMedGoogle Scholar
  249. 249.
    Grossman M, Robinson K, Biassou N, White-Devine T, D’Esposito M. Semantic memory in Alzheimer’s disease: representativeness, ontologic category, and material. Neuropsychology. 1998;12(1):34–42.PubMedCrossRefGoogle Scholar
  250. 250.
    Woodard JL, Seidenberg M, Nielson KA, et al. Semantic memory activation in amnestic mild cognitive impairment. Brain. 2009;132(Pt 8):2068–78.PubMedCrossRefGoogle Scholar
  251. 251.
    Gigi A, Babai R, Penker A, Hendler T, Korczyn AD. Prefrontal compensatory mechanism may enable normal semantic memory performance in mild cognitive impairment (MCI). J Neuroimaging. 2010;20(2):163–8.PubMedCrossRefGoogle Scholar
  252. 252.
    Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000;11(3):179–87.PubMedCrossRefGoogle Scholar
  253. 253.
    McGeown WJ, Shanks MF, Forbes-McKay KE, Venneri A. Patterns of brain activity during a semantic task differentiate normal aging from early Alzheimer’s disease. Psychiatry Res. 2009;173(3):218–27.PubMedCrossRefGoogle Scholar
  254. 254.
    Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc. 1999;5(5):377–92.PubMedCrossRefGoogle Scholar
  255. 255.
    Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain. 2003;126(Pt 2):292–311.PubMedCrossRefGoogle Scholar
  256. 256.
    Taler V, Risacher SL, West JD, et al. Differential neuroanatomical substrates of language performance by diagnostic group and task in the ADNI cohort. J Int Neuropsychol Soc. Submitted for publication.Google Scholar
  257. 257.
    Assaf M, Jagannathan K, Calhoun V, Kraut M, Hart Jr J, Pearlson G. Temporal sequence of hemispheric network activation during semantic processing: a functional network connectivity analysis. Brain Cogn. 2009;70(2):238–46.PubMedCrossRefGoogle Scholar
  258. 258.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999;11(1):80–95.PubMedCrossRefGoogle Scholar
  259. 259.
    Vitali P, Abutalebi J, Tettamanti M, et al. Generating animal and tool names: an fMRI study of effective connectivity. Brain Lang. 2005;93(1):32–45.PubMedCrossRefGoogle Scholar
  260. 260.
    Adlam AL, Bozeat S, Arnold R, Watson P, Hodges JR. Semantic knowledge in mild cognitive impairment and mild Alzheimer’s disease. Cortex. 2006;42(5):675–84.PubMedCrossRefGoogle Scholar
  261. 261.
    Duong A, Whitehead V, Hanratty K, Chertkow H. The nature of lexico-semantic processing deficits in mild cognitive impairment. Neuropsychologia. 2006;44(10):1928–35.PubMedCrossRefGoogle Scholar
  262. 262.
    Mickes L, Wixted JT, Fennema-Notestine C, et al. Progressive impairment on neuropsychological tasks in a longitudinal study of preclinical Alzheimer’s disease. Neuropsychology. 2007;21(6):696–705.PubMedCrossRefGoogle Scholar
  263. 263.
    Smith JA, Knight RG. Memory processing in Alzheimer’s disease. Neuropsychologia. 2002;40(6):666–82.PubMedCrossRefGoogle Scholar
  264. 264.
    Lind J, Persson J, Ingvar M, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain. 2006;129(Pt 5):1240–8.PubMedCrossRefGoogle Scholar
  265. 265.
    McGeown WJ, Shanks MF, Venneri A. Prolonged cholinergic enrichment influences regional cortical activation in early Alzheimer’s disease. Neuropsychiatr Dis Treat. 2008;4(2):465–76.PubMedGoogle Scholar
  266. 266.
    Mencl WE, Pugh KR, Shaywitz SE, et al. Network analysis of brain activations in working memory: behavior and age relationships. Microsc Res Tech. 2000;51(1):64–74.PubMedCrossRefGoogle Scholar
  267. 267.
    Baddeley AD. Is working memory still working? Am Psychol. 2001;56(11):851–64.PubMedCrossRefGoogle Scholar
  268. 268.
    Becker JT, Morris RG. Working memory(s). Brain Cogn. 1999;41:1–8.PubMedCrossRefGoogle Scholar
  269. 269.
    Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7(9):415–23.PubMedCrossRefGoogle Scholar
  270. 270.
    Baddeley A. Working memory. Curr Biol. 2010;20(4):R136–140.PubMedCrossRefGoogle Scholar
  271. 271.
    Baddeley A. Working memory. C R Acad Sci III. 1998;321(2–3):167–73.PubMedGoogle Scholar
  272. 272.
    Baddeley A. Working memory. Science. 1992;255(5044):556–9.PubMedCrossRefGoogle Scholar
  273. 273.
    Cowan N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol Bull. 1988;104(2):163–91.PubMedCrossRefGoogle Scholar
  274. 274.
    Cowan N, Nugent LD, Elliott EM, Ponomarev I, Saults JS. The role of attention in the development of short-term memory: age differences in the verbal span of apprehension. Child Dev. 1999;70(5):1082–97.PubMedCrossRefGoogle Scholar
  275. 275.
    D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):761–72.PubMedCrossRefGoogle Scholar
  276. 276.
    Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science. 1998;279(5355):1347–51.PubMedCrossRefGoogle Scholar
  277. 277.
    Awh E, Jonides J. Overlapping mechanisms of attention and spatial working memory. Trends Cogn Sci. 2001;5(3):119–26.PubMedCrossRefGoogle Scholar
  278. 278.
    Curtis CE, Rao VY, D’Esposito M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J Neurosci. 2004;24(16):3944–52.PubMedCrossRefGoogle Scholar
  279. 279.
    Klein C, Fischer B, Hartnegg K, Heiss WH, Roth M. Optomotor and neuropsychological performance in old age. Exp Brain Res. 2000;135(2):141–54.PubMedCrossRefGoogle Scholar
  280. 280.
    Chein JM, Fiez JA. Dissociation of verbal working memory system components using a delayed serial recall task. Cereb Cortex. 2001;11(11):1003–14.PubMedCrossRefGoogle Scholar
  281. 281.
    Davachi L, Maril A, Wagner AD. When keeping in mind supports later bringing to mind: neural markers of phonological rehearsal predict subsequent remembering. J Cogn Neurosci. 2001;13(8):1059–70.PubMedCrossRefGoogle Scholar
  282. 282.
    Jonides J, Schumacher EH, Smith EE, et al. The role of parietal cortex in verbal working memory. J Neurosci. 1998;18(13):5026–34.PubMedGoogle Scholar
  283. 283.
    Smith EE, Jonides J. Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA. 1998;95(20):12061–8.PubMedCrossRefGoogle Scholar
  284. 284.
    Smith EE, Jonides J, Marshuetz C, Koeppe RA. Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci USA. 1998;95(3):876–82.PubMedCrossRefGoogle Scholar
  285. 285.
    Druzgal TJ, D’Esposito M. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. J Cogn Neurosci. 2003;15(6):771–84.PubMedCrossRefGoogle Scholar
  286. 286.
    Linden DE, Bittner RA, Muckli L, et al. Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage. 2003;20(3):1518–30.PubMedCrossRefGoogle Scholar
  287. 287.
    Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3(4):255–74.PubMedCrossRefGoogle Scholar
  288. 288.
    Ranganath C, DeGutis J, D’Esposito M. Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. Brain Res Cogn Brain Res. 2004;20(1):37–45.PubMedCrossRefGoogle Scholar
  289. 289.
    Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci. 2005;17(3):507–17.PubMedCrossRefGoogle Scholar
  290. 290.
    D’Esposito M, Aguirre GK, Zarahn D, Ballard RK, Shin JL. Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res. 1998;7:1–13.CrossRefGoogle Scholar
  291. 291.
    Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283(5408):1657–61.PubMedCrossRefGoogle Scholar
  292. 292.
    Levy R, Goldman-Rakic PS. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp Brain Res. 2000;133(1):23–32.PubMedCrossRefGoogle Scholar
  293. 293.
    Sala JB, Rama P, Courtney SM. Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory. Neuropsychologia. 2003;41:341–56.PubMedCrossRefGoogle Scholar
  294. 294.
    D’Esposito M, Postle BR, Jonides J, Smith EE. The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc Natl Acad Sci USA. 1999;96(13):7514–9.PubMedCrossRefGoogle Scholar
  295. 295.
    Anders TR, Fozard JL, Lillyquist TD. Effects of age upon retrieval from short-term memory. Dev Psychol. 1972;6:214–7.CrossRefGoogle Scholar
  296. 296.
    VanderLinden M, Bredart S, Beerten A. Age-related differences in updating working memory. Br J Psychol Eng. 1994;85(Pt 1):145–52.CrossRefGoogle Scholar
  297. 297.
    Grady CL. Brain imaging and age-related changes in cognition. Exp Gerontol. 1998;33(7–8):661–73.PubMedCrossRefGoogle Scholar
  298. 298.
    Mattay VS, Fera F, Tessitore A, et al. Neurophysiological correlates of age-related changes in working memory capacity. Neurosci Lett. 2006;392(1–2):32–7.PubMedCrossRefGoogle Scholar
  299. 299.
    Mitchell KJ, Johnson MK, Raye CL, D’Esposito M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cogn Brain Res. 2000;10(1–2):197–206.CrossRefGoogle Scholar
  300. 300.
    Park DC, Welsh RC, Marshuetz C, et al. Working memory for complex scenes: age differences in frontal and hippocampal activations. J Cogn Neurosci. 2003;15(8):1122–34.PubMedCrossRefGoogle Scholar
  301. 301.
    Grady CL, Yu H, Alain C. Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cereb Cortex. 2008;18(1):189–99.PubMedCrossRefGoogle Scholar
  302. 302.
    Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK. Attentional control in Alzheimer’s disease. Brain. 2001;124:1492–508.PubMedCrossRefGoogle Scholar
  303. 303.
    Lim HK, Juh R, Pae CU, et al. Altered verbal working memory process in patients with Alzheimer’s disease: an fMRI investigation. Neuropsychobiology. 2008;57(4):181–7.PubMedCrossRefGoogle Scholar
  304. 304.
    Peters JC, Goebel R, Roelfsema PR. Remembered but unused: the accessory items in working memory that do not guide attention. J Cogn Neurosci. 2009;21(6):1081–91.PubMedCrossRefGoogle Scholar
  305. 305.
    Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol. 2006;16(1):193–206.PubMedCrossRefGoogle Scholar
  306. 306.
    Bokde AL, Karmann M, Born C, et al. Altered brain activation during a verbal working memory task in subjects with amnestic mild cognitive impairment. J Alzheimers Dis. 2010;21(1):103–118.Google Scholar
  307. 307.
    Saykin AJ, Wishart HA, Rabin LA, et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain. 2004;127(Pt 7):1574–83.PubMedCrossRefGoogle Scholar
  308. 308.
    Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60(12):1904–8.PubMedGoogle Scholar
  309. 309.
    Berlingeri M, Bottini G, Basilico S, et al. Anatomy of the episodic buffer: a voxel-based morphometry study in patients with dementia. Behav Neurol. 2008;19(1–2):29–34.PubMedGoogle Scholar
  310. 310.
    Luck D, Danion JM, Marrer C, Pham BT, Gounot D, Foucher J. The right parahippocampal gyrus contributes to the formation and maintenance of bound information in working memory. Brain Cogn. 2010;72(2):255–63.PubMedCrossRefGoogle Scholar
  311. 311.
    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci. 2006;26(51):13338–43.PubMedCrossRefGoogle Scholar
  312. 312.
    Protzner AB, Cortese F, Alain C, McIntosh AR. The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Neuropsychologia. 2009;47(8–9):1954–63.PubMedCrossRefGoogle Scholar
  313. 313.
    Rissman J, Gazzaley A, D’Esposito M. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb Cortex. 2008;18(7):1618–29.PubMedCrossRefGoogle Scholar
  314. 314.
    Anticevic A, Repovs G, Shulman GL, Barch DM. When less is more: TPJ and default network deactivation during encoding predicts working memory performance. Neuroimage. 2010;49(3):2638–48.PubMedCrossRefGoogle Scholar
  315. 315.
    Esposito F, Aragri A, Latorre V, et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol. 2009;147(1–2):11–20.PubMedGoogle Scholar
  316. 316.
    Grady CL, Protzner AB, Kovacevic N, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex. 2010;20(6):1432–47.PubMedCrossRefGoogle Scholar
  317. 317.
    Li Z, Moore AB, Tyner C, Hu X. Asymmetric connectivity reduction and its relationship to “HAROLD” in aging brain. Brain Res. 2009;1295:149–58.PubMedCrossRefGoogle Scholar
  318. 318.
    Sambataro F, Murty VP, Callicott JH, et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging. 2010;31(5):839–52.PubMedCrossRefGoogle Scholar
  319. 319.
    Saunders NL, Summers MJ. Attention and working memory deficits in mild cognitive impairment. J Clin Exp Neuropsychol. 2010;32(4):350–7.PubMedCrossRefGoogle Scholar
  320. 320.
    Filbey FM, Slack KJ, Sunderland TP, Cohen RM. Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEepsilon4 in young healthy adults. Neuroreport. 2006;17(15):1585–90.PubMedCrossRefGoogle Scholar
  321. 321.
    Wishart HA, Saykin AJ, Rabin LA, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry. 2006;163(9):1603–10.PubMedCrossRefGoogle Scholar
  322. 322.
    Craig MC, Brammer M, Maki PM, et al. The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology. 2010;35(7):987–1000.PubMedCrossRefGoogle Scholar
  323. 323.
    Dumas JA, Saykin AJ, McDonald BC, McAllister TW, Hynes ML, Newhouse PA. Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. Am J Geriatr Psychiatry. 2008;16(4):272–82.PubMedCrossRefGoogle Scholar
  324. 324.
    Goekoop R, Rombouts SA, Jonker C, et al. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage. 2004;23(4):1450–9.PubMedCrossRefGoogle Scholar
  325. 325.
    D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4(11):863–72.PubMedCrossRefGoogle Scholar
  326. 326.
    Tekes A, Mohamed MA, Browner NM, Calhoun VD, Yousem DM. Effect of age on visuomotor functional MR imaging. Acad Radiol. 2005;12(6):739–45.PubMedCrossRefGoogle Scholar
  327. 327.
    D’Esposito M, Zarahn E, Aguirre GK, Rympa B. The effect of normal aging on the coupling of neural activity to the BOLD hemodynamic response. Neuroimage. 1999;10:6–14.PubMedCrossRefGoogle Scholar
  328. 328.
    Huettel SA, Singerman JD, McCarthy G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage. 2001;13(1):161–75.PubMedCrossRefGoogle Scholar
  329. 329.
    Taoka T, Iwasaki S, Uchida H, et al. Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr. 1998;22(4):514–7.PubMedCrossRefGoogle Scholar
  330. 330.
    Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, et al. Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp. 2002;16(1):14–23.PubMedCrossRefGoogle Scholar
  331. 331.
    Ross MH, Yurgelun-Todd DA, Renshaw PF, et al. Age-related reduction in functional MRI response to photic stimulation. Neurology. 1997;48(1):173–6.PubMedGoogle Scholar
  332. 332.
    Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance. Brain. 2003;126(Pt 4):873–88.PubMedCrossRefGoogle Scholar
  333. 333.
    Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci. 2000;12 Suppl 2:24–34.PubMedCrossRefGoogle Scholar
  334. 334.
    Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage. 1997;5(4 Pt 1):261–70.PubMedCrossRefGoogle Scholar
  335. 335.
    Price CJ, Moore CJ, Friston KJ. Subtractions, conjunctions, and interactions in experimental design of activation studies. Hum Brain Mapp. 1997;5(4):264–72.PubMedCrossRefGoogle Scholar
  336. 336.
    McClearn GE, Johansson B, Berg S, et al. Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science. 1997;276(5318):1560–3.PubMedCrossRefGoogle Scholar
  337. 337.
    Rasch B, Papassotiropoulos A, de Quervain DF. Imaging genetics of cognitive functions: focus on episodic memory. Neuroimage. 2010;53(3):870–7.Google Scholar
  338. 338.
    Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–69.PubMedCrossRefGoogle Scholar
  339. 339.
    Hariri AR, Goldberg TE, Mattay VS, et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci. 2003;23(17):6690–4.PubMedGoogle Scholar
  340. 340.
    Hashimoto R, Moriguchi Y, Yamashita F, et al. Dose-dependent effect of the Val66Met polymorphism of the brain-derived neurotrophic factor gene on memory-related hippocampal activity. Neurosci Res. 2008;61(4):360–7.PubMedCrossRefGoogle Scholar
  341. 341.
    Sambataro F, Murty VP, Lemaitre HS, et al. BDNF modulates normal human hippocampal ageing [corrected]. Mol Psychiatry. 2010;15(2):116–8.PubMedCrossRefGoogle Scholar
  342. 342.
    Lachman HM, Morrow B, Shprintzen R, et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome. Am J Med Genet. 1996;67(5):468–72.PubMedCrossRefGoogle Scholar
  343. 343.
    Bertolino A, Blasi G, Latorre V, et al. Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain. J Neurosci. 2006;26(15):3918–22.PubMedCrossRefGoogle Scholar
  344. 344.
    Bertolino A, Rubino V, Sambataro F, et al. Prefrontal-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry. 2006;60(11):1250–8.PubMedCrossRefGoogle Scholar
  345. 345.
    de Frias CM, Annerbrink K, Westberg L, Eriksson E, Adolfsson R, Nilsson LG. COMT gene polymorphism is associated with declarative memory in adulthood and old age. Behav Genet. 2004;34(5):533–9.PubMedCrossRefGoogle Scholar
  346. 346.
    Reuter M, Montag C, Peters K, Kocher A, Kiefer M. The modulatory influence of the functional COMT Val158Met polymorphism on lexical decisions and semantic priming. Front Hum Neurosci. 2009;3:20.PubMedCrossRefGoogle Scholar
  347. 347.
    Sambataro F, Reed JD, Murty VP, et al. Catechol-O-methyltransferase valine(158)methionine polymorphism modulates brain networks underlying working memory across adulthood. Biol Psychiatry. 2009;66(6):540–8.PubMedCrossRefGoogle Scholar
  348. 348.
    Schott BH, Seidenbecher CI, Fenker DB, et al. The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci. 2006;26(5):1407–17.PubMedCrossRefGoogle Scholar
  349. 349.
    Huentelman MJ, Papassotiropoulos A, Craig DW, et al. Calmodulin-binding transcription activator 1 (CAMTA1) alleles predispose human episodic memory performance. Hum Mol Genet. 2007;16(12):1469–77.PubMedCrossRefGoogle Scholar
  350. 350.
    Buchmann A, Mondadori CR, Hanggi J, et al. Prion protein M129V polymorphism affects retrieval-related brain activity. Neuropsychologia. 2008;46(9):2389–402.PubMedCrossRefGoogle Scholar
  351. 351.
    Papassotiropoulos A, Stephan DA, Huentelman MJ, et al. Common Kibra alleles are associated with human memory performance. Science. 2006;314(5798):475–8.PubMedCrossRefGoogle Scholar
  352. 352.
    Thimm M, Krug A, Markov V, et al. The impact of dystrobrevin-binding protein 1 (DTNBP1) on neural correlates of episodic memory encoding and retrieval. Hum Brain Mapp. 2010;31(2):203–9.PubMedGoogle Scholar
  353. 353.
    Owen MJ, Williams NM, O’Donovan MC. Dysbindin-1 and schizophrenia: from genetics to neuropathology. J Clin Invest. 2004;113(9):1255–7.PubMedGoogle Scholar
  354. 354.
    Krug A, Markov V, Krach S, et al. The effect of Neuregulin 1 on neural correlates of episodic memory encoding. Neuroimage. 2010;53(3):985–91.Google Scholar
  355. 355.
    Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002;71(4):877–92.PubMedCrossRefGoogle Scholar
  356. 356.
    Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303.PubMedCrossRefGoogle Scholar
  357. 357.
    Saykin AJ, Shen L, Foroud TM, et al. Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement. 2010;6(3):265–73.PubMedCrossRefGoogle Scholar
  358. 358.
    Stein JL, Hua X, Morra JH, et al. Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. Neuroimage. 2010;51(2):542–54.PubMedCrossRefGoogle Scholar
  359. 359.
    Stein JL, Hua X, Lee S, et al. Voxelwise genome-wide association study (vGWAS). Neuroimage. 2010;53(3):1160–74.Google Scholar
  360. 360.
    Shen L, Kim S, Risacher SL, et al. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage. 2010;53(3):1051–63.Google Scholar
  361. 361.
    Potkin SG, Guffanti G, Lakatos A, et al. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS ONE. 2009;4(8):e6501.PubMedCrossRefGoogle Scholar
  362. 362.
    Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29(40):12686–94.PubMedCrossRefGoogle Scholar
  363. 363.
    Restom K, Bangen KJ, Bondi MW, Perthen JE, Liu TT. Cerebral blood flow and BOLD responses to a memory encoding task: a comparison between healthy young and elderly adults. Neuroimage. 2007;37(2):430–9.PubMedCrossRefGoogle Scholar
  364. 364.
    Sheline YI, Raichle ME, Snyder AZ, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7.PubMedCrossRefGoogle Scholar
  365. 365.
    Sperling RA, Laviolette PS, O’Keefe K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–88.PubMedCrossRefGoogle Scholar
  366. 366.
    Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations: combined fMRI & DTI study. Exp Brain Res. 2010;204(1):57–70.PubMedCrossRefGoogle Scholar
  367. 367.
    Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.PubMedCrossRefGoogle Scholar
  368. 368.
    Hoffmann MB, Stadler J, Kanowski M, Speck O. Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Clin Neurophysiol. 2009;120(1):108–16.PubMedCrossRefGoogle Scholar
  369. 369.
    Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol. 2010;103(5):2544–56.PubMedCrossRefGoogle Scholar
  370. 370.
    Bondi MW. Genetic and brain imaging contributions to neuropsychological functioning in preclinical dementia. J Int Neuropsychol Soc. 2002;8:915–7.PubMedCrossRefGoogle Scholar
  371. 371.
    Shoghi-Jadid K, Small GW, Agdeppa ED, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10(1):24–35.PubMedGoogle Scholar
  372. 372.
    Klunk WE, Lopresti BJ, Ikonomovic MD, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci. 2005;25(46):10598–606.PubMedCrossRefGoogle Scholar
  373. 373.
    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19.PubMedCrossRefGoogle Scholar
  374. 374.
    Burggren AC, Bookheimer SY. Structural and functional neuroimaging in Alzheimer’s disease: an update. Curr Top Med Chem. 2002;2(4):385–93.PubMedCrossRefGoogle Scholar
  375. 375.
    Citron M. Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. 2010;9(5):387–98.PubMedCrossRefGoogle Scholar
  376. 376.
    Grady CL. Cognitive neuroscience of aging. Ann NY Acad Sci. 2008;1124:127–44.PubMedCrossRefGoogle Scholar
  377. 377.
    Hedden T, Gabrieli JD. Healthy and pathological processes in adult development: new evidence from neuroimaging of the aging brain. Curr Opin Neurol. 2005;18(6):740–7.PubMedCrossRefGoogle Scholar
  378. 378.
    Langley LK, Madden DJ. Functional neuroimaging of memory: implications for cognitive aging. Microsc Res Tech. 2000;51(1):75–84.PubMedCrossRefGoogle Scholar
  379. 379.
    Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia. 2008;46(6):1624–35.PubMedCrossRefGoogle Scholar
  380. 380.
    Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol. 2009;21(1):63–75.PubMedGoogle Scholar
  381. 381.
    Drzezga A. Concept of functional imaging of memory decline in Alzheimer’s disease. Methods. 2008;44(4):304–14.PubMedCrossRefGoogle Scholar
  382. 382.
    Han SD, Bangen KJ, Bondi MW. Functional magnetic resonance imaging of compensatory neural recruitment in aging and risk for Alzheimer’s disease: review and recommendations. Dement Geriatr Cogn Disord. 2009;27(1):1–10.PubMedCrossRefGoogle Scholar
  383. 383.
    Ries ML, Carlsson CM, Rowley HA, et al. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review. J Am Geriatr Soc. 2008;56(5):920–34.PubMedCrossRefGoogle Scholar
  384. 384.
    Sperling RA, Dickerson BC, Pihlajamaki M, et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 2010;12(1):27–43.PubMedCrossRefGoogle Scholar
  385. 385.
    Wierenga CE, Bondi MW. Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychol Rev. 2007;17(2):127–43.PubMedCrossRefGoogle Scholar
  386. 386.
    Cappa SF. Imaging studies of semantic memory. Curr Opin Neurol. 2008;21(6):669–75.PubMedCrossRefGoogle Scholar
  387. 387.
    Wingfield A, Grossman M. Language and the aging brain: patterns of neural compensation revealed by functional brain imaging. J Neurophysiol. 2006;96(6):2830–9.PubMedCrossRefGoogle Scholar
  388. 388.
    Dickerson BC. Functional magnetic resonance imaging of cholinergic modulation in mild cognitive impairment. Curr Opin Psychiatry. 2006;19(3):299–306.PubMedCrossRefGoogle Scholar
  389. 389.
    Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.PubMedCrossRefGoogle Scholar
  390. 390.
    Rypma B, D’Esposito M. Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci. 2000;3(5):509–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shannon L. Risacher
    • 1
  • Heather A. Wishart
    • 2
  • Andrew J. Saykin
    • 3
  1. 1.Department of Radiology and Imaging SciencesIndiana University School of Medicine, IU Center for NeuroimagingIndianapolisUSA
  2. 2.Brain Imaging Laboratory, Department of PsychiatryDartmouth Medical School, One Medical Center DriveLebanonUSA
  3. 3.Center for Neuroimaging, Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA

Personalised recommendations