fMRI of Language Systems: Methods and Applications

  • Jeffrey R. Binder


Language refers to the uniquely human capacity for communication through productive combination of symbols. Functional neuroimaging studies have greatly expanded our knowledge of the brain systems supporting language, producing a dramatic reawakening of interest in this topic and substantial revision of the classical neuroanatomical model formulated by Broca, Wernicke, and others. This chapter discusses key theoretical issues regarding functional imaging of language systems and describes several mapping paradigms in common clinical use. Research on the reliability and validity of fMRI language mapping is reviewed, and clinical applications are presented with several example cases. A central theme is that interpretation of fMRI language studies depends on an informed analysis of the cognitive processes engaged during scanning. This analytic approach can help avoid common pitfalls in task design that limit the sensitivity and specificity of language mapping studies and should encourage the development of a standardized methodological and conceptual framework for such studies.


Blood Oxygen Level Dependent Semantic Processing Language Task Anterior Temporal Lobe Language Lateralization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Broca P. Remarques sur le siège de la faculté du langage articulé; suivies d’une observation d’aphemie. Bull Soc Anatomique Paris. 1861;6:330–57.Google Scholar
  2. 2.
    Wernicke C. Der aphasische Symptomenkomplex. Breslau: Cohn & Weigert; 1874.Google Scholar
  3. 3.
    Lichtheim L. On aphasia. Brain. 1885;7:433–84.Google Scholar
  4. 4.
    Geschwind N. Aphasia. N Engl J Med. 1971;284:654–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T. Human brain language areas identified by functional MRI. J Neurosci. 1997;17:353–62.PubMedGoogle Scholar
  6. 6.
    Grabowski TJ, Damasio AR. Investigating language with functional neuroimaging. In: Toga AW, Mazziotta JC, editors. Brain mapping: The systems. San Diego, CA: Academic Press; 2000. p. 425–61.CrossRefGoogle Scholar
  7. 7.
    Démonet J-F, Thierry G, Cardebat D. Renewal of the neurophysio­logy of language: functional neuroimaging. Physiol Rev. 2005;85:49–95.PubMedCrossRefGoogle Scholar
  8. 8.
    Loring DW, Meador KJ, Lee GP, King DW. Amobarbital effects and lateralized brain function: The Wada Test. New York: Springer-Verlag; 1992.Google Scholar
  9. 9.
    Lesser RP, Lueders H, Klem G, et al. Extraoperative cortical functional localization in patients with epilepsy. J Clin Neurophysiol. 1987;4:27–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere: An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Pardo JV, Fox PT. Preoperative assessment of the cerebral hemispheric dominance for language with CBF PET. Hum Brain Mapp. 1993;1:57–68.CrossRefGoogle Scholar
  12. 12.
    Breier JI, Simos PG, Zouridakis G, et al. Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology. 1999;53:938–45.PubMedGoogle Scholar
  13. 13.
    Binder JR, Swanson SJ, Hammeke TA, et al. Determination of language dominance using functional MRI: A comparison with the Wada test. Neurology. 1996;46:978–84.PubMedGoogle Scholar
  14. 14.
    Desmond JE, Sum JM, Wagner AD, et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain. 1995;118:1411–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bahn MM, Lin W, Silbergeld DL, et al. Localization of language cortices by functional MR imaging compared with intracarotid amobarbital hemispheric sedation. Am J Radiol. 1997;169:575–9.Google Scholar
  16. 16.
    Binder J. FMRI: Language mapping. Neurosurg Clin N Am. 1997;8:383–92.PubMedGoogle Scholar
  17. 17.
    Fitzgerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: A comparison between functional MR imaging and electrocortical stimulation. Am J Neuroradiol. 1997;18:1529–39.PubMedGoogle Scholar
  18. 18.
    Hertz-Pannier L, Gaillard WD, Mott S, et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology. 1997;48:1003–12.PubMedGoogle Scholar
  19. 19.
    Stapleton SR, Kiriakipoulos E, Mikulis D, et al. Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg. 1997;26:68–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Yetkin FZ, Mueller WM, Morris GL, et al. Functional MR activation correlated with intraoperative cortical mapping. Am J Neuroradiol. 1997;18:1311–5.PubMedGoogle Scholar
  21. 21.
    Benbadis SR, Binder JR, Swanson SJ, et al. Is speech arrest during Wada testing a valid method for determining hemispheric representation of language? Brain Lang. 1998;65:441–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: Comparison with Wada language results. Am J Neuroradiol. 1998;19:1095–8.PubMedGoogle Scholar
  23. 23.
    Benson RR, FitzGerald DB, LeSeuer LL, et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52:798–809.PubMedGoogle Scholar
  24. 24.
    Ruge MI, Victor JD, Hosain S, et al. Concordance between functional magnetic resonance imaging and intraoperative language mapping. Stereotact Funct Neurosurg. 1999;72:95–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Rutten GJM, van Rijen PC, van Veelen CWM, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg. 1999;91:626–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Gaillard WD, Theodore WH. Mapping language in epilepsy with functional neuroimaging. Neuroscientist. 2000;6:391–401.CrossRefGoogle Scholar
  28. 28.
    Hammeke TA, Bellgowan PSF, Binder JR. FMRI methodology: Cognitive function mapping. Adv Neurol. 2000;83:221–33.PubMedGoogle Scholar
  29. 29.
    Hirsch J, Ruge MI, K.H.S. K, et al. An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery. 2000;47:711–22.Google Scholar
  30. 30.
    Lehéricy S, Cohen L, Bazin B, et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology. 2000;54:1625–33.PubMedGoogle Scholar
  31. 31.
    Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr. 2000;24:99–105.PubMedCrossRefGoogle Scholar
  32. 32.
    Carpentier A, Pugh KR, Westerveld M, et al. Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia. 2001;42:1241–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Detre JA, Floyd TF. Functional MRI and its applications to the clinical neurosciences. Neuroscientist. 2001;7:64–79.PubMedCrossRefGoogle Scholar
  34. 34.
    Spreer J, Quiske A, Altenmüller DM, et al. Unsuspected atypical hemispheric dominance for language as determined by fMRI. Epilepsia. 2001;52:957–9.CrossRefGoogle Scholar
  35. 35.
    Binder JR, Achten E, Constable RT, et al. Functional MRI in epilepsy. Epilepsia. 2002;43 Suppl 1:51–63.CrossRefGoogle Scholar
  36. 36.
    Liégois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T. A direct test for lateralization of language activation using fMRI: Comparison with invasive assessments in children with epilepsy. Neuroimage. 2002;17:1861–7.CrossRefGoogle Scholar
  37. 37.
    Rutten G-J, Ramsey N, van Rijen P, Alpherts W, van Veelen C. fMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. Neuroimage. 2002;17:447–60.PubMedCrossRefGoogle Scholar
  38. 38.
    Rutten GJM, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51:350–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Rutten GJ, Ramsey N, van Rijen P, van Veelen C. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80:421–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Spreer J, Arnold S, Quiske A, et al. Determination of hemisphere dominance for language: comparison of frontal and temporal fMRI activation with intracarotid amytal testing. Neuroradiology. 2002;44:467–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage. 2003;18:423–38.PubMedCrossRefGoogle Scholar
  42. 42.
    Fernández G, Specht K, Weis S, et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology. 2003;60:969–75.PubMedGoogle Scholar
  43. 43.
    Sabbah P, Chassoux F, Leveque C, et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage. 2003;18:460–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Sabsevitz DS, Swanson SJ, Hammeke TA, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60:1788–92.PubMedGoogle Scholar
  45. 45.
    Woermann FG, Jokeit H, Luerding R, et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology. 2003;61:699–701.PubMedGoogle Scholar
  46. 46.
    Gaillard WD, Balsamo L, Xu B, et al. fMRI language task panel improves determination of language dominance. Neurology. 2004;63:1403–8.PubMedGoogle Scholar
  47. 47.
    Benke T, Koylu B, Visani P, et al. Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia. 2006;47:1308–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Abou-Khalil B. An update on determination of language dominance in screening for epilepsy surgery: teh Wada test and newer non-invasive alternatives. Epilepsia. 2007;48:442–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Pelletier I, Sauerwein HC, Lepore F, Saint-Amour D, Lassonde M. Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disord. 2007;9:111–26.PubMedGoogle Scholar
  50. 50.
    Szaflarski JP, Holland SK, Jacola LM, Lindsell C, Privitera MD, Szaflarski M. Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav. 2008;12:74–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Constable RT. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009;50:2225–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Suarez RO, Whalen S, Nelson AP, et al. Threshold-independent functional MRI determination of language dominance: A validation study against clinical gold standards. Epilepsy Behav. 2009;16:288–97.PubMedCrossRefGoogle Scholar
  53. 53.
    Giussani C, Roux F-E, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66:113–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Sabsevitz DS, Swanson SJ, Morris GL, Mueller WM, Seidenberg M. Memory outcome after left anterior temporal lobectomy in patients with expected and reversed Wada memory asymmetry scores. Epilepsia. 2001;42:1408–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49:1377–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Binder JR, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller WM. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: Language lateralization vs. hippocampal activation asymmetry. Epilepsia. 2010;51:618–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Kertesz A, Harlock W, Coates R. Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain Lang. 1979;8:34–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Porch BE, Collins M, Wertz RT, Friden TP. Statistical prediction of change in aphasia. J Speech Hear Res. 1980;23:312–21.PubMedGoogle Scholar
  59. 59.
    Selnes OA, Knopman DS, Niccum N, Rubens AB, Larson D. Computed tomographic scan correlates of auditory comprehension deficits in aphasia: A prospective recovery study. Ann Neurol. 1983;13:558–66.PubMedCrossRefGoogle Scholar
  60. 60.
    Metter EJ, Jackson CA, Kempler D, Hanson WR. Temporoparietal cortex and the recovery of language comprehension in aphasia. Aphasiology. 1992;6:349–58.CrossRefGoogle Scholar
  61. 61.
    Ferro JM. The influence of infarct location on recovery from global aphasia. Aphasiology. 1992;6:415–30.CrossRefGoogle Scholar
  62. 62.
    Code C, Rowley D, Kertesz A. Predicting recovery from aphasia with connectionist networks: Preliminary comparisons with multiple regression. Cortex. 1994;30:527–32.PubMedGoogle Scholar
  63. 63.
    Karbe H, Kessler J, Herholz K, Fink GR, Heiss W-D. Long-term prognosis of poststroke aphasia studied with positron emission tomography. Arch Neurol. 1995;52:186–90.PubMedGoogle Scholar
  64. 64.
    Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: Incidence, determinants, and recovery. Ann Neurol. 1995;38:659–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Cao Y, Vikingstad EM, George KP, Johnson AF, Welch KMA. Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke. 1999;30:2331–40.PubMedCrossRefGoogle Scholar
  66. 66.
    Calvert GA, Brammer MJ, Morris RG, Williams SCR, King N, Matthews PM. Using fMRI to study recovery from acquired dysphasia. Brain Lang. 2000;71:391–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosen HJ, Petersen SE, Linenweber MR, et al. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology. 2000;55:1883–94.PubMedGoogle Scholar
  68. 68.
    Perani D, Cappa SF, Tettamanti M, et al. A fMRI study of word retrieval in aphasia. Brain Lang. 2003;85:357–68.PubMedCrossRefGoogle Scholar
  69. 69.
    Fernandez B, Cardebat D, Demonet JF, et al. Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke. 2004;35:2171–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Meinzer M, Elbert T, Wienbruch C, Djundja D, Barthel G, Rockstroh B. Intensive language training enhances brain plasticity in chronic aphasia. BMC Biology. 2004;2:
  71. 71.
    Naeser MA, Martin PI, Baker EH, et al. Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage. 2004;22:29–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Zahn R, Drews E, Specht K, et al. Recovery of semantic word processing in global aphasia: a functional MRI study. Cogn Brain Res. 2004;18:322–36.CrossRefGoogle Scholar
  73. 73.
    Fridriksson J, Morrow L. Cortical activation and language task difficulty in aphasia. Aphasiology. 2005;19:239–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Crosson B, McGregor K, Gopinath KS, et al. Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev. 2007;17:157–77.PubMedCrossRefGoogle Scholar
  75. 75.
    Meinzer M, Flaisch T, Breitenstein C, Wienbruch C, Elbert T, Rockstroh B. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage. 2008;39:2038–46.PubMedCrossRefGoogle Scholar
  76. 76.
    Leonard B, de Partz M-P, Grandin C, Pillon A. Domain-specific reorganization of semantic processing after extensive damage to the left temporal lobe. Neuroimage. 2009;45:572–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Postman-Caucheteux WA, Birn RM, Pursley RH, et al. Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. Journal of Cognitive Neuroscience. 2010;in press.Google Scholar
  78. 78.
    Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature. 1996;382:66–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Demb JB, Boynton GM, Heeger DJ. Brain activity in visual cortex predicts individual differences in reading performance. Proc Natl Acad Sci USA. 1997;94:13363–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Shaywitz SE, Shaywitz BA, Pugh KR, et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci USA. 1998;95:2636–41.PubMedCrossRefGoogle Scholar
  81. 81.
    Temple E, Deutsch GK, Poldrack RA, et al. Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proc Natl Acad Sci USA. 2003;100:2860–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Price CJ, Wise RSJ, Frackowiak RSJ. Demonstrating the implicit processing of visually presented words and pseudowords. Cereb Cortex. 1996;6:62–70.PubMedCrossRefGoogle Scholar
  83. 83.
    Macleod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.PubMedCrossRefGoogle Scholar
  84. 84.
    Reicher GM. Perceptual recognition as a function of meaningfulness of stimulus material. J Exp Psychol. 1969;81:274–80.CrossRefGoogle Scholar
  85. 85.
    Warren RM, Obusek CJ. Speech perception and phonemic restorations. Percept Psychophys. 1971;9:358–62.CrossRefGoogle Scholar
  86. 86.
    Ganong WF. Phonetic categorization in auditory word perception. J Exp Psychol Hum Percept Perform. 1980;6:110–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Marslen-Wilson WD, Tyler LK. Central processes in speech understanding. Philos Trans R Soc Lond B. 1981;295:317–32.CrossRefGoogle Scholar
  88. 88.
    Carr TH, McCauley C, Sperber RD, Parmalee CM. Words, pictures, and priming: On semantic activation, conscious identification, and the automaticity of information processing. J Exp Psychol Hum Percept Perform. 1982;8:757–77.PubMedCrossRefGoogle Scholar
  89. 89.
    Marcel AJ. Conscious and unconscious perception: Experiments on visual masking and word recognition. Cogn Psychol. 1983;15:197–237.PubMedCrossRefGoogle Scholar
  90. 90.
    Van Orden GC. A ROWS is a ROSE: Spelling, sound, and reading. Mem Cogn. 1987;15:181–98.CrossRefGoogle Scholar
  91. 91.
    Burton MW, Baum SR, Blumstein SE. Lexical effects on phonetic categorization of speech: The role of acoustic structure. J Exp Psychol Hum Percept Perform. 1989;15:567–75.PubMedCrossRefGoogle Scholar
  92. 92.
    Glaser WR. Picture naming. Cognition. 1992;42:61–105.PubMedCrossRefGoogle Scholar
  93. 93.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Raichle ME, Fiez JA, Videen TO, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.PubMedCrossRefGoogle Scholar
  95. 95.
    Buckner RL, Raichle ME, Petersen SE. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J Neurosci. 1995;74:2163–73.Google Scholar
  96. 96.
    Démonet J-F, Chollet F, Ramsay S, et al. The anatomy of phonological and semantic processing in normal subjects. Brain. 1992;115:1753–68.PubMedCrossRefGoogle Scholar
  97. 97.
    Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. A neural basis for lexical retrieval. Nature. 1996;380:499–505.PubMedCrossRefGoogle Scholar
  98. 98.
    James W. Principles of psychology. New York: Dover Publications; 1890.CrossRefGoogle Scholar
  99. 99.
    Hebb DO. The problem of consciousness and introspection. In: Adrian ED, Bremer F, Jasper HH, eds. Brain mechanisms and consciousness. A symposium. Springfield, IL: Charles C. Thomas, 1954: 402–421.Google Scholar
  100. 100.
    Miller GA, Galanter E, Pribram K. Plans and the structure of behavior. New York: Holt; 1960.CrossRefGoogle Scholar
  101. 101.
    Pope KS, Singer JL. Regulation of the stream of consciousness: Toward a theory of ongoing thought. In: Schwartz GE, Shapiro D, editors. Consciousness and self-regulation. New York: Plenum Press; 1976. p. 101–35.Google Scholar
  102. 102.
    Aurell CG. Perception: a model comprising two modes of consciousness. Percept Mot Skills. 1979;49:431–44.PubMedCrossRefGoogle Scholar
  103. 103.
    Picton TW, Stuss DT. Neurobiology of conscious experience. Curr Opin Neurobiol. 1994;4:256–65.PubMedCrossRefGoogle Scholar
  104. 104.
    Antrobus JS, Singer JL, Greenberg S. Studies in the stream of consciousness: Experimental enhancement and suppression of spontaneous cognitive processes. Percept Mot Skills. 1966;23:399–417.CrossRefGoogle Scholar
  105. 105.
    Teasdale JD, Proctor L, Lloyd CA, Baddeley AD. Working memory and stimulus-independent thought: Effects of memory load and presentation rate. Eur J Cogn Psychol. 1993;5:417–33.CrossRefGoogle Scholar
  106. 106.
    Révész G, editor. Thinking and speaking: A symposium. Amsterdam: North Holland Publishing; 1954.Google Scholar
  107. 107.
    Weiskrantz L, editor. Thought without language. Oxford: Clarendon; 1988.Google Scholar
  108. 108.
    Vygotsky LS. Thought and language. New York: Wiley; 1962.CrossRefGoogle Scholar
  109. 109.
    Karmiloff-Smith A. Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press; 1992.Google Scholar
  110. 110.
    Andreasen NC, O’Leary DS, Cizadlo T, et al. Remembering the past: Two facets of episodic memory explored with positron emission tomography. Am J Psychiatry. 1995;152:1576–85.PubMedGoogle Scholar
  111. 111.
    Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 1997;9:648–63.CrossRefGoogle Scholar
  112. 112.
    Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW. Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci. 1999;11:80–93.PubMedCrossRefGoogle Scholar
  113. 113.
    Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull. 2001;54:287–98.PubMedCrossRefGoogle Scholar
  114. 114.
    Raichle ME, McLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98:676–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Stark CE, Squire LR. When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A. 2001;98:12760–6.PubMedCrossRefGoogle Scholar
  116. 116.
    McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci. 2003;15:394–408.PubMedCrossRefGoogle Scholar
  117. 117.
    McKiernan KA, D’Angelo BR, Kaufman JN, Binder JR. Interrupting the “stream of consciousness”: An fMRI investigation. Neuroimage. 2006;29:1185–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science. 2007;315:393–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92:101–44.PubMedCrossRefGoogle Scholar
  120. 120.
    Awad M, Warren JE, Scott SK, Turkheimer FE, Wise RJS. A common system for the comprehension and production of narrative speech. J Neurosci. 2007;27:11455–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Binder JR, Swanson SJ, Hammeke TA, Sabsevitz DS. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia. 2008;49:1980–97.PubMedCrossRefGoogle Scholar
  122. 122.
    Binder JR, Frost JA, Hammeke TA, Rao SM, Cox RW. Function of the left planum temporale in auditory and linguistic processing. Brain. 1996;119:1239–47.PubMedCrossRefGoogle Scholar
  123. 123.
    Binder JR, Frost JA, Hammeke TA, et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex. 2000;10:512–28.PubMedCrossRefGoogle Scholar
  124. 124.
    Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA. 2000;97:11793–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Poremba A, Saunders RC, Sokoloff L, Crane A, Cook M, Mishkin M. Functional mapping of the primate auditory system. Science. 2003;299:568–72.PubMedCrossRefGoogle Scholar
  126. 126.
    Scott SK, Johnsrude IS. The neuroanatomical and functional organization of speech perception. Trends Neurosci. 2003;26:100–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Buchman AS, Garron DC, Trost-Cardamone JE, Wichter MD, Schwartz D. Word deafness: one hundred years later. J Neurol Neurosurg Psychiatry. 1986;49:489–99.PubMedCrossRefGoogle Scholar
  128. 128.
    Poeppel D. Pure word deafness and the bilateral processing of the speech code. Cogn Sci. 2001;25:679–93.CrossRefGoogle Scholar
  129. 129.
    Binder JR. Wernicke aphasia: A disorder of central language processing. In: D’Esposito ME, editor. Neurological foundations of cognitive neuroscience. Cambridge, MA: MIT Press; 2002. p. 175–238.Google Scholar
  130. 130.
    Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92:145–77.PubMedCrossRefGoogle Scholar
  131. 131.
    Binder JR, Desai R, Conant LL, Graves WW. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009;19:2767–96.PubMedCrossRefGoogle Scholar
  132. 132.
    Birn RM, Bandettini PA, Cox RW, Shaker R. Event-related FMRI of tasks involving brief motion. Hum Brain Mapp. 1999;7:106–14.PubMedCrossRefGoogle Scholar
  133. 133.
    Binder JR, Medler DA, Desai R, Conant LL, Liebenthal E. Some neurophysiological constraints on models of word naming. Neuroimage. 2005;27:677–93.PubMedCrossRefGoogle Scholar
  134. 134.
    Desai R, Conant LL, Waldron E, Binder JR. FMRI of past tense processing: The effects of phonological complexity and task difficulty. J Cogn Neurosci. 2006;18:278–97.PubMedCrossRefGoogle Scholar
  135. 135.
    Graves WW, Desai R, Humphries C, Seidenberg MS, Binder JR. Neural systems for reading aloud: A multiparametric approach. Cereb Cortex. 2010;20:1799–815.PubMedCrossRefGoogle Scholar
  136. 136.
    Scott SK, Blank C, Rosen S, Wise RJS. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 2000;123:2400–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Davis MH, Johnsrude IS. Hierarchical processing in spoken language comprehension. J Neurosci. 2003;23:3423–31.PubMedGoogle Scholar
  138. 138.
    Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA. Neural substrates of phonetic perception. Cereb Cortex. 2005;15:1621–31.PubMedCrossRefGoogle Scholar
  139. 139.
    Benson RR, Richardson M, Whalen DH, Lai S. Phonetic processing areas revealed by sinewave speech and acoustically similar non-speech. Neuroimage. 2006;31:342–53.PubMedCrossRefGoogle Scholar
  140. 140.
    Belin P, Zatorre RJ, Ahad P. Human temporal-lobe response to vocal sounds. Cogn Brain Res. 2002;13:17–26.CrossRefGoogle Scholar
  141. 141.
    Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A, Dehaene S. Neural correlates of switching from auditory to speech perception. Neuroimage. 2005;24:21–33.PubMedCrossRefGoogle Scholar
  142. 142.
    Mottonen R, Calvert GA, Jaaskelainen IP, et al. Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. Neuroimage. 2006;30:563–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Desai R, Liebenthal E, Waldron E, Binder JR. Left posterior temporal regions are sensitive to auditory categorization. J Cogn Neurosci. 2008;20:1174–88.PubMedCrossRefGoogle Scholar
  144. 144.
    Cohen L, Dehaene S, Naccache L, et al. The visual word form area. Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000;123:291–307.PubMedCrossRefGoogle Scholar
  145. 145.
    Cohen L, Lehéricy S, Chochon F, Lemer C, Rivaud S, Dehaene S. Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain. 2002;125:1054–69.PubMedCrossRefGoogle Scholar
  146. 146.
    Binder JR, Medler DA, Westbury CF, Liebenthal E, Buchanan L. Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage. 2006;33:739–48.PubMedCrossRefGoogle Scholar
  147. 147.
    Wise RSJ, Scott SK, Blank SC, Mummery CJ, Murphy K, Warburton EA. Separate neural subsystems within “Wernicke’s area”. Brain. 2001;124:83–95.PubMedCrossRefGoogle Scholar
  148. 148.
    Wise R, Chollet F, Hadar U, Friston K, Hoffner E, Frackowiak R. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain. 1991;114:1803–17.PubMedCrossRefGoogle Scholar
  149. 149.
    Mazoyer BM, Tzourio N, Frak V, et al. The cortical representation of speech. J Cogn Neurosci. 1993;5:467–79.CrossRefGoogle Scholar
  150. 150.
    Price CJ, Wise RJS, Warburton EA, et al. Hearing and saying. The functional neuro-anatomy of auditory word processing. Brain. 1996;119:919–31.PubMedCrossRefGoogle Scholar
  151. 151.
    Zatorre RJ, Evans AC, Meyer E, Gjedde A. Lateralization of phonetic and pitch discrimination in speech processing. Science. 1992;256:846–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Mummery CJ, Ashburner J, Scott SK, Wise RJS. Functional neuroimaging of speech perception in six normal and two aphasic subjects. J Acoust Soc Am. 1999;106:449–57.PubMedCrossRefGoogle Scholar
  153. 153.
    Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B. Voice-selective areas in human auditory cortex. Nature. 2000;403:309–12.PubMedCrossRefGoogle Scholar
  154. 154.
    Eulitz C, Elbert T, Bartenstein P, Weiller C, Müller SP, Pantev C. Comparison of magnetic and metabolic brain activity during a verb generation task. Neuroreport. 1994;6:97–100.PubMedCrossRefGoogle Scholar
  155. 155.
    Warburton E, Wise RJS, Price CJ, et al. Noun and verb retrieval by normal subjects. Studies with PET. Brain. 1996;119:159–79.PubMedCrossRefGoogle Scholar
  156. 156.
    Ojemann JG, Buckner RL, Akbudak E, et al. Functional MRI studies of word-stem completion: Reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6:203–15.PubMedCrossRefGoogle Scholar
  157. 157.
    Palmer ED, Rosen HJ, Ojemann JG, Buckner RL, Kelley WM, Petersen SE. An event-related fMRI study of overt and covert word stem completion. Neuroimage. 2001;14:182–93.PubMedCrossRefGoogle Scholar
  158. 158.
    Thompson-Schill SL, D’Esposito M, Kan IP. Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron. 1999;23:513–22.PubMedCrossRefGoogle Scholar
  159. 159.
    Malach R, Reppas JB, Benson RR, et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA. 1995;92:8135–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Kanwisher N, Woods R, Iacoboni M, Mazziotta J. A locus in human extrastriate cortex for visual shape analysis. J Cogn Neurosci. 1996;91:133–42.Google Scholar
  161. 161.
    Grill-Spector K, Kushnir T, Edelman S, Avidian-Carmel G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999;24:187–203.PubMedCrossRefGoogle Scholar
  162. 162.
    Bookheimer SY, Zeffiro TA, Blaxton T, Gaillard T, Theodore W. Regional cerebral blood flow during object naming and word reading. Hum Brain Mapp. 1995;3:93–106.CrossRefGoogle Scholar
  163. 163.
    Martin A, Wiggs CL, Ungerleider LG, Haxby JV. Neural correlates of category-specific knowledge. Nature. 1996;379:649–52.PubMedCrossRefGoogle Scholar
  164. 164.
    Price CJ, Moore CJ, Humphreys GW, Frackowiak RSJ, Friston KJ. The neural regions sustaining object recognition and naming. Proc R Soc Lond B. 1996;263:1501–7.CrossRefGoogle Scholar
  165. 165.
    Zelkowicz BJ, Herbster AN, Nebes RD, Mintun MA, Becker JT. An examination of regional cerebral blood flow during object naming tasks. J Int Neuropsychol Soc. 1998;4:160–6.PubMedCrossRefGoogle Scholar
  166. 166.
    Murtha S, Chertkow H, Beauregard M, Evans A. The neural substrate of picture naming. J Cogn Neurosci. 1999;11:399–423.PubMedCrossRefGoogle Scholar
  167. 167.
    Kiasawa M, Inoue C, Kawasaki T, et al. Functional neuroanatomy of object naming: A PET study. Graefes Arch Clin Exp Ophthalmol. 1996;234:110–5.CrossRefGoogle Scholar
  168. 168.
    Jansen A, Menke R, Sommer J, et al. The assessment of hemispheric lateralization in functional MRI—Robustness and reproducibility. Neuroimage. 2006;33:204–17.PubMedCrossRefGoogle Scholar
  169. 169.
    Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RSJ. Functional anatomy of a common semantic system for words and pictures. Nature. 1996;383:254–6.PubMedCrossRefGoogle Scholar
  170. 170.
    Müller R-A, Kleinhans N, Courchesne E. Linguistic theory and neuroimaging evidence: an fMRI study of Broca’s area in lexical semantics. Neuropsychologia. 2003;in press.Google Scholar
  171. 171.
    Price CJ, Moore CJ, Humphreys GW, Wise RJS. Segregating semantic from phonological processes during reading. J Cogn Neurosci. 1997;9:727–33.CrossRefGoogle Scholar
  172. 172.
    Mummery CJ, Patterson K, Hodges JR, Price CJ. Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci. 1998;10:766–77.PubMedCrossRefGoogle Scholar
  173. 173.
    Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci. 2001;13:829–43.PubMedCrossRefGoogle Scholar
  174. 174.
    Devlin JT, Matthews PM, Rushworth MFS. Semantic processing in the left inferior prefrontal cortex: A combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci. 2003;15:71–84.PubMedCrossRefGoogle Scholar
  175. 175.
    Scott SK, Leff AP, Wise RJS. Going beyond the information given: a neural system supporting semantic interpretation. Neuroimage. 2003;19:870–6.PubMedCrossRefGoogle Scholar
  176. 176.
    Bavelier D, Corina D, Jezzard P, et al. Sentence reading: a functional MRI study at 4 tesla. J Cogn Neurosci. 1997;9:664–86.CrossRefGoogle Scholar
  177. 177.
    Herbster AN, Mintun MA, Nebes RD, Becker JT. Regional cerebral blood flow during word and nonword reading. Hum Brain Mapp. 1997;5:84–92.PubMedCrossRefGoogle Scholar
  178. 178.
    Indefrey P, Kleinschmidt A, Merboldt K-D, et al. Equivalent responses to lexical and nonlexical visual stimuli in occipital cortex: a functional magnetic resonance imaging study. Neuroimage. 1997;5:78–81.PubMedCrossRefGoogle Scholar
  179. 179.
    Chee MW, Caplan D, Soon CS, et al. Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron. 1999;23:127–37.PubMedCrossRefGoogle Scholar
  180. 180.
    Springer JA, Binder JR, Hammeke TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122:2033–45.PubMedCrossRefGoogle Scholar
  181. 181.
    Pujol J, Deus J, Losilla JM, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999;52:1038–43.PubMedGoogle Scholar
  182. 182.
    Vikingstad EM, George KP, Johnson AF, Cao Y. Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. J Neurol Sci. 2000;175:17–27.PubMedCrossRefGoogle Scholar
  183. 183.
    Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward DB, Hammeke TA. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002;59:238–44.PubMedGoogle Scholar
  184. 184.
    Hund-Georgiadis M, Lex U, Friederici AD, von Cramon DY. Non-invasive regime for language lateralization in right- and left-handers by means of functional MRI and dichotic listening. Exp Brain Res. 2002;145:166–76.PubMedCrossRefGoogle Scholar
  185. 185.
    Plante E, Schmithorst VJ, Holland SK, Byars AW. Sex differences in the activation of language cortex during childhood. Neuropsychologia. 2006;44:1210–21.PubMedCrossRefGoogle Scholar
  186. 186.
    Knecht S, Deppe M, Dräger B, et al. Language lateralization in healthy right-handers. Brain. 2000;123:74–81.PubMedCrossRefGoogle Scholar
  187. 187.
    Shaywitz BA, Shaywitz SE, Pugh KR, et al. Sex differences in the functional organization of the brain for language. Nature. 1995;373:607–9.PubMedCrossRefGoogle Scholar
  188. 188.
    Pugh KR, Shaywitz BA, Shaywitz SE, et al. Cerebral organization of component processes in reading. Brain. 1996;119:1221–38.PubMedCrossRefGoogle Scholar
  189. 189.
    Price CJ, Moore CJ, Friston KJ. Getting sex into perspective. Neuroimage. 1996;3:S586.CrossRefGoogle Scholar
  190. 190.
    Frost JA, Binder JR, Springer JA, et al. Language processing is strongly left lateralized in both sexes: Evidence from FMRI. Brain. 1999;122:199–208.PubMedCrossRefGoogle Scholar
  191. 191.
    Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006;27:202–12.PubMedCrossRefGoogle Scholar
  192. 192.
    Ihnen SKZ, Church JA, Petersen SE, Schlaggar BL. Lack of generalizability of sex differences in the fMRI BOLD activity associated with language processing in adults. Neuroimage. 2009;45:1020–32.PubMedCrossRefGoogle Scholar
  193. 193.
    Sommer IEC, Aleman A, Bouma A, Kahn RS. Do women really have more bilateral language representation than men? A meta-analysis of functional imaging studies. Brain. 2004;127:1845–52.PubMedCrossRefGoogle Scholar
  194. 194.
    Sommer IE, Aleman A, Somers M, Boks MP, Kahn RS. Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res. 2008;1206:76–88.PubMedCrossRefGoogle Scholar
  195. 195.
    Knecht S, Dräger B, Deppe M, et al. Handedness and hemispheric language dominance in healthy humans. Brain. 2000;123:2512–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann NY Acad Sci. 1977;299:355–69.PubMedCrossRefGoogle Scholar
  197. 197.
    Loring DW, Meador KJ, Lee GP, et al. Cerebral language lateralization: Evidence from intracarotid amobarbital testing. Neuropsychologia. 1990;28:831–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Grady CL, Maisog JM, Horwitz B, et al. Age-related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci. 1994;14:1450–62.PubMedGoogle Scholar
  199. 199.
    Grady CL, McIntosh AR, Bookstein F, Horwitz B, Rapoport SI, Haxby JV. Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage. 1998;8:409–25.PubMedCrossRefGoogle Scholar
  200. 200.
    Woods RP, Dodrill CB, Ojemann GA. Brain injury, handedness, and speech lateralization in a series of amobarbital studies. Ann Neurol. 1988;23:510–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Risse GL, Gates JR, Fangman MC. A reconsideration of bilateral language representation based on the intracarotid amobarbital procedure. Brain Lang. 1997;33:118–32.Google Scholar
  202. 202.
    Binder JR, Rao SM, Hammeke TA, et al. Lateralized human brain language systems demonstrated by task subtraction functional magnetic resonance imaging. Arch Neurol. 1995;52:593–601.PubMedGoogle Scholar
  203. 203.
    Cohen MS, Dubois RM. Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10:33–40.PubMedCrossRefGoogle Scholar
  204. 204.
    Binder JR, Hammeke TA, Possing ET, et al. Reliability and validity of language dominance assessment with functional MRI. Neurology. 2001;56 Suppl 3:A158.Google Scholar
  205. 205.
    Xiong J, Rao S, Gao JH, Woldorff M, Fox PT. Evaluation of hemispheric dominance for language using functional MRI: a comparison with positron emission tomography. Hum Brain Mapp. 1998;6:42–58.PubMedCrossRefGoogle Scholar
  206. 206.
    Altenmüller DM, Kriechbaum W, Helber U, Moini S, Dichgans J, Petersen D. Cortical DC-potentials in identification of the language dominant hemisphere: linguistical and clinical aspects. Acta Neurochirurgica. 1993;56 (Suppl.):20–33.Google Scholar
  207. 207.
    Khedr EM, Hamed E, Said A, Basahi J. Handedness and language cerebral lateralization. Eur J Appl Physiol. 2002;87:469–73.PubMedCrossRefGoogle Scholar
  208. 208.
    Deppe M, Knecht S, Papke K, et al. Assessment of hemispheric language lateralization: A comparison between fMRI and fTCD. J Cereb Blood Flow Metab. 2000;20:263–8.PubMedCrossRefGoogle Scholar
  209. 209.
    Eckert MA, Leonard CM, Possing ET, Binder JR. Uncoupled leftward asymmetries for planum morphology and functional language processing. Brain Lang. 2006;98:102–11.PubMedCrossRefGoogle Scholar
  210. 210.
    Deblaere K, Boon PA, Vandemaele P, et al. MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology. 2004;46:413–20.PubMedCrossRefGoogle Scholar
  211. 211.
    Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002;97:21–32.PubMedCrossRefGoogle Scholar
  212. 212.
    Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: Correlation with direct cortical stimulation. Neurosurgery. 2003;52:1335–47.PubMedCrossRefGoogle Scholar
  213. 213.
    Signorelli F, Guyotat J, Schneider F, Isnard J, Bret P. Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg. 2003;46:265–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Bizzi A, Blasi V, Falini A, et al. Presurgical functional MR imaging of language and motor functions: Validation with intraoperative electrocortical mapping. Radiology. 2008;2:579–89.CrossRefGoogle Scholar
  215. 215.
    Håberg A, Kvistad KA, Unsgård G, Haraldseth O. Preoperative blood oxygen level dependent functional magnetic resonance imaging in patients with primary brain tumors: Clinical application and outcome. Neurosurgery. 2004;54:902–15.PubMedCrossRefGoogle Scholar
  216. 216.
    Ulmer JL, Hacein-Bey L, Mathews VP, et al. Lesion-induced pseudo-dominance at functional magnetic resonance imaging: Implications for preoperative assessments. Neurosurgery. 2004;55:569–81.PubMedCrossRefGoogle Scholar
  217. 217.
    Chelune GJ. Using neuropsychological data to forecast postsurgical cognitive outcome. In: Lüders H, editor. Epilepsy Surgery. New York: Raven Press; 1991. p. 477–85.Google Scholar
  218. 218.
    Schwartz TH, Devinsky O, Doyle W, Perrine K. Preoperative predictors of anterior temporal language areas. J Neurosurg. 1998;89:962–70.PubMedCrossRefGoogle Scholar
  219. 219.
    Hermann BP, Perrine K, Chelune GJ, et al. Visual confrontation naming following left anterior temporal lobectomy: A comparison of surgical approaches. Neuropsychology. 1999;13:3–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Hermann BP, Seidenberg M, Haltiner A, Wyler AR. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia. 1995;36:137–45.PubMedCrossRefGoogle Scholar
  221. 221.
    Helmstaedter C, Elger CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia. 1996;37:171–80.PubMedCrossRefGoogle Scholar
  222. 222.
    Martin RC, Sawrie SM, Roth DL, et al. Individual memory change after anterior temporal lobectomy: a base rate analysis using regression-based outcome methodology. Epilepsia. 1998;39:1075–82.PubMedCrossRefGoogle Scholar
  223. 223.
    Lee TMC, Yip JTH, Jones-Gotman M. Memory deficits after resection of left or right anterior temporal lobe in humans: A meta-analytic review. Epilepsia. 2002;43:283–91.PubMedCrossRefGoogle Scholar
  224. 224.
    Gleissner U, Helmstaedter C, Schramm J, Elger CE. Memory outcome after selective amygdalohippocampectomy in patients with temporal lobe epilepsy: One-year follow-up. Epilepsia. 2004;45:960–2.PubMedCrossRefGoogle Scholar
  225. 225.
    Baxendale S, Thompson P, Harkness W, Duncan J. Predicting memory decline following epilepsy surgery: A multivariate approach. Epilepsia. 2006;47:1887–94.PubMedCrossRefGoogle Scholar
  226. 226.
    Lee GP, Loring DW, Smith JR, Flanigin HF. Intraoperative hippocampal cooling and Wada memory testing in the evaluation of amnesia risk following anterior temporal lobectomy. Arch Neurol. 1995;52:857–61.PubMedGoogle Scholar
  227. 227.
    Chelune GJ, Najm IM. Risk factors associated with postsurgical decrements in memory. In: Luders HO, Comair Y, editors. Epilepsy surgery. 2nd ed. Philadelphia: Lippincott; 2000. p. 497–504.Google Scholar
  228. 228.
    Kubu CS, Girvin JP, McLachlan RS, Pavol M, Harnadek MC. Does the intracarotid amobarbital procedure predict global amnesia after temporal lobectomy? Epilepsia. 2000;41:1321–9.PubMedCrossRefGoogle Scholar
  229. 229.
    Simkins-Bullock J. Beyond speech lateralization: a review of the variability, reliability, and validity of the intracarotid amobarbital procedure and its nonlanguage uses in epilepsy surgery candidates. Neuropsychol Rev. 2000;10:41–74.PubMedCrossRefGoogle Scholar
  230. 230.
    Stroup E, Langfitt JT, Berg M, McDrmott M, Pilcher W, Como P. Predicting verbal memory decline following anterior temporal lobectomy (ATL). Neurology. 2003;60:1266–73.PubMedGoogle Scholar
  231. 231.
    Kirsch HE, Walker JA, Winstanley FS, et al. Limitations of Wada memory asymmetry as a predictor of outcomes after temporal lobectomy. Neurology. 2005;65:676–80.PubMedCrossRefGoogle Scholar
  232. 232.
    Lineweaver TT, Morris HH, Naugle RI, Najm IM, Diehl B, Bingaman W. Evaluating the contributions of state-of-the-art assessment techniques to predicting memory outcome after unilateral anterior temporal lobectomy. Epilepsia. 2006;47:1895–903.PubMedCrossRefGoogle Scholar
  233. 233.
    Rabin ML, Narayan VM, Kimberg DY, et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain. 2004;127:2286–98.PubMedCrossRefGoogle Scholar
  234. 234.
    Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ. Pre-operative verbal memory fMRI predicts post-operative memory decline after left anterior temporal lobe resection. Brain. 2004;127:2419–26.PubMedCrossRefGoogle Scholar
  235. 235.
    Richardson MP, Strange BA, Duncan JS, Dolan RJ. Memory fMRI in left hippocampal sclerosis. Optimizing the approach to predicting postsurgical memory. Neurology. 2006;66:699–705.PubMedCrossRefGoogle Scholar
  236. 236.
    Frings L, Wagner K, Halsband U, Schwarzwald R, Zentner J, Schulze-Bonhage A. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res. 2008;78:161–70.PubMedCrossRefGoogle Scholar
  237. 237.
    Powell HWR, Richardson MP, Symms MR, et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry. 2008;79:686–93.PubMedCrossRefGoogle Scholar
  238. 238.
    Lacruz ME, Alarcon G, Akanuma N, et al. Neuropsychological effects associated with temporal lobectomy and amygdalohippocampectomy depending on Wada test failure. J Neurol Neurosurg Psychiatry. 2004;75:600–7.PubMedCrossRefGoogle Scholar
  239. 239.
    Binder JR, Price CJ. Functional imaging of language. In: Cabeza R, Kingstone A, editors. Handbook of functional neuroimaging of cognition. Cambridge, MA: MIT Press; 2001. p. 187–251.Google Scholar
  240. 240.
    Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp. 2001;13:199–212.PubMedCrossRefGoogle Scholar
  241. 241.
    Hamberger MJ, Goodman RR, Perrine K, Tamny TR. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology. 2001;56:56–61.PubMedGoogle Scholar
  242. 242.
    Humphries C, Willard K, Buchsbaum B, Hickok G. Role of anterior temporal cortex in auditory sentence comprehension: an fMRI study. Neuroreport. 2001;12:1749–52.PubMedCrossRefGoogle Scholar
  243. 243.
    Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8:976–87.PubMedCrossRefGoogle Scholar
  244. 244.
    Pobric GG, Jefferies E, Lambon Ralph MA. Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc Natl Acad Sci USA. 2007;104:20137–41.PubMedCrossRefGoogle Scholar
  245. 245.
    Schwartz MF, Kimberg DY, Walker GM, et al. Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain. in press.Google Scholar
  246. 246.
    Hermann BP, Wyler AR, Somes G, Clement L. Dysnomia after left anterior temporal lobectomy without functional mapping: frequency and correlates. Neurosurgery. 1994;35:52–7.PubMedCrossRefGoogle Scholar
  247. 247.
    Langfitt JT, Rausch R. Word-finding deficits persist after left anterotemporal lobectomy. Arch Neurol. 1996;53:72–6.PubMedGoogle Scholar
  248. 248.
    Davies KG, Bell BD, Bush AJ, Hermann BP, Dohan FC, Jaap AS. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia. 1998;39:407–19.PubMedCrossRefGoogle Scholar
  249. 249.
    Bell BD, Davies KG, Hermann BP, Walters G. Confrontation naming after anterior temporal lobectomy is related to age of acquisition of the object names. Neuropsychologia. 2000;38:83–92.PubMedCrossRefGoogle Scholar
  250. 250.
    McCandliss BD, Cohen L, Dehaene S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci. 2003;7:293–9.PubMedCrossRefGoogle Scholar
  251. 251.
    Novick JM, Trueswell JC, Thompson-Schill SL. Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cogn Affect Behav Neurosci. 2005;5:263–81.PubMedCrossRefGoogle Scholar
  252. 252.
    Price CJ, Crinion JT, Friston KJ. Design and analysis of fMRI studies with neurologically impaired patients. J Magn Reson Imaging. 2006;23:816–26.PubMedCrossRefGoogle Scholar
  253. 253.
    Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;10:3299–308.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of NeurologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations