Clinical Challenges of Functional MRI

  • Nader Pouratian
  • Susan Y. Bookheimer


Functional magnetic resonance imaging (fMRI) has revolutionized clinical brain mapping by allowing relatively rapid and noninvasive assessment of brain activity. Because of its relative ease, it has become the predominant functional neuroimaging technique since its original report by Belliveau et al. [1]. The appeal of fMRI is attributable to several advantages that it offers over other functional neuroimaging techniques. Perhaps the most important advantages, especially in clinical populations, relate to the safety of fMRI: it is noninvasive, in contrast to either the Wada test or electrical stimulation mapping, and does not require exposure to ionizing radiation (as with positron emission tomography [PET]). The other major advantage of fMRI is that it offers the opportunity for reliable, repeated measurements of the same task to investigate response consistency, to compare activations across tasks, and to measure change over time. Above all, fMRI is sufficiently powerful to produce maps of cognitive and motor functions that are reliable and valid at the single-subject level. This has made possible the transition of fMRI from a research tool into a practical, approved, and reimbursable clinical procedure.


Conjunction Analysis Susceptibility Artifact fMRI Activation fMRI Signal Language Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Belliveau JW, Kennedy Jr DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254(5032):716–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Righini A, de Divitiis O, Prinster A, Spagnoli D, Appollonio I, Bello L, et al. Functional MRI: primary motor cortex localization in patients with brain tumors. J Comput Assist Tomogr. 1996;20:702.PubMedCrossRefGoogle Scholar
  3. 3.
    Krings T, Topper R, Willmes K, Reinges MHT, Gilsbach JM, Thron A (2002a) Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness. Neurology 58.Google Scholar
  4. 4.
    Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.CrossRefGoogle Scholar
  5. 5.
    Jahanshahi M, Rothwell J. Transcranial magnetic stimulation studies of cognition: an emerging field. Exp Brain Res. 2000;131:1–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev. 1995;7:240–76.PubMedGoogle Scholar
  7. 7.
    Krings T, Reinges MHT, Willmes K, Nuerk HC, Meister IG, Gilsbach JM, et al. Factors related to the magnitude of T2* MR signal changes during functional imaging. Neuroradiology. 2002;44:459–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. Am J Neuroradiol. 2000;21:1415–22.PubMedGoogle Scholar
  9. 9.
    Schreiber A, Hubbe U, Ziyeh S, Hennig J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement. Am J Neuroradiol. 2000;21:1055–63.PubMedGoogle Scholar
  10. 10.
    Schlosser R, Husche S, Gawehn J, Grunert P, Vucurevic G, Geserich T, et al. Characterization of BOLD-fMRI signal during a verbal fluency paradigm in patients with intracerebral tumors affecting the frontal lobe. Magn Reson Imaging. 2002;20:7–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen JJ, Pike GB. Global cerebral oxidative metabolism during hypercapnia and hypocapnia in humans: implications for BOLD fMRI. J Cereb Blood Flow Metab. 2010 Jun;30(6):1094–9. Epub 2010 Apr 7.Google Scholar
  12. 12.
    An H, Liu Q, Chen Y, Lin W. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia.Stroke. 2009 Jun;40(6):2165–72. Epub 2009 Apr 9.Google Scholar
  13. 13.
    Schmitz B, Bettiger BW, Hossmann KA. Brief hypercapnia enhances somatosensory activation of blood flow in rat. J Cereb Blood Flow Metab. 1996;16:1307–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Bock C, Schmitz B, Kerskens CM, Gyngell ML, Hossmann KA, Hoehn-Berlage M. Functional MRI of somatosensory activation in rat: effect of hypercapnic up-regulation on perfusion and BOLD-imaging. Magn Reson Med. 1998;39:457–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 1997;10:197–203.PubMedCrossRefGoogle Scholar
  16. 16.
    Kruger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med. 2001;45(4):595–604.PubMedCrossRefGoogle Scholar
  17. 17.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage. 2000;11:589–600.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen MS, Weisskoff RM. Ultra-fast imaging. Magn Reson Imaging. 1991;9:1–37.PubMedCrossRefGoogle Scholar
  20. 20.
    Merboldt KD, Fransson P, Bruhn H, Frahm J. Functional MRI of the human amygdala? Neuroimage. 2001;14(2):253–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Fransson P, Merboldt KD, Ingvar M, Petersson KM, Frahm J. Functional MRI with reduced susceptibility artifact: high-resolution mapping of episodic memory encoding. Neuroreport. 2001;12(7):1415–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Port JD, Pomper MG. Quantification and minimization of magnetic susceptibility artifacts on GRE images. J Comput Assist Tomogr. 2000;24(6):958–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Gorno-Tempini ML, Hutton C, Josephs O, Deichmann R, Price C, Turner R. Echo time dependence of BOLD contrast and susceptibility artifacts. Neuroimage. 2002;15(1):136–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Glover GH, Thomason ME. Improved combination of spiral-in/out images for BOLD fMRI. Magn Reson Med. 2004;51(4):863–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Stables LA, Kennan RP, Gore JC. Asymmetric spin-echo imaging of magnetically inhomogeneous systems: theory, experiment, and numerical studies. Magn Reson Med. 1998;40(3):432–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Stern CE, Corkin S, Gonzalez RG, Guimaraes AR, Baker JR, Jennings PJ, et al. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proc Natl Acad Sci USA. 1996;93(16):8660–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Hariri A, Bookheimer SY, Mazziotta J. A neural network for modulating the emotional response to faces. Neuroreport. 2000;11(1):43–8.PubMedCrossRefGoogle Scholar
  28. 28.
    LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron. 1998;20(5):937–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Cordes D, Turski PA, Sorenson JA. Compensation of susceptibility-induced signal loss in echo-planar imaging for functional applications. Magn Reson Imaging. 2000;18(9):1055–68.PubMedCrossRefGoogle Scholar
  30. 30.
    Stenger VA, Boada FE, Noll DC. Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T (*)(2)-weighted functional MRI. Magn Reson Med. 2000;44(4):525–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Glover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med. 2001;46(3):515–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Yang Y, Gu H, Zhan W, Xu S, Silbersweig DA, Stern E. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med. 2002;48(2):278–89.PubMedCrossRefGoogle Scholar
  33. 33.
    Weiger M, Pruessmann KP, Osterbauer R, Bornert P, Boesiger P, Jezzard P. Sensitivity-encoded single-shot spiral imaging for reduced susceptibility artifacts in BOLD fMRI. Magn Reson Med. 2002;48(5):860–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA. 1992;89:5675–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA. 1992;89:5951–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Sidtis JJ, Strother SC, Anderson JR, Rottenberg DA. Are brain functions really additive? Neuroimage. 1999;9:490–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Stark CEL, Squire LR. When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci USA. 2001;98:12760–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101(6):3270–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100(1):253–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Raichle ME, Fiez JA, Videen TO, MacLeod AK, Pardo JV, Fox PT, et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex. 1994;4:8–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Petersen SE, van Mier H, Fiez JA, Raichle ME. The effects of practice on the functional anatomy of task performance. Proc Natl Acad Sci USA. 1998;95:853–60.PubMedCrossRefGoogle Scholar
  43. 43.
    van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice. J Neurophysiol. 1998;80:2177–99.PubMedGoogle Scholar
  44. 44.
    Madden DJ, Turkington TG, Provenzale JM, Denny LL, Hawk TC, Gottlob LR, et al. Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum Brain Map. 1999;7:115–35.CrossRefGoogle Scholar
  45. 45.
    Garavan H, Kelley D, Rosen A, Rao SR, Stein EA. Practice-related functional activation changes in a working memory task. Microsc Res Tech. 2000;51:54–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.PubMedCrossRefGoogle Scholar
  47. 47.
    O’Brien JL, O’Keefe KM, Laviolette PS, Deluca AN, Blacker D, Dickerson BC. Sperling RA. Neurology: Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline; 2010 [Epub ahead of print].Google Scholar
  48. 48.
    Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, Lazeron RH, Valk J, Scheltens P. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1869–75.Google Scholar
  49. 49.
    Jaeggi SM, Seewer R, Nirkko AC, Eckstein D, Schroth G, Groner R, et al. Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: functional magnetic resonance imaging study. Neuroimage. 2003;19(2 Pt 1):210–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Sonty SP, Mesulam MM, Thompson CK, Johnson NA, Weintraub S, Parrish TB, et al. Primary progressive aphasia: PPA and the language network. Ann Neurol. 2003;53(1):35–49.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim DS, Duong TQ, Kim SG. High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci. 2000;3:164–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Calvert GA, Brammer MJ, Morris RG, Williams SC, King N, Matthews PM (2000). Using fMRI to study recovery from acquired dysphasia. Brain Lang. 2000 Feb 15;71(3):391–9.Google Scholar
  53. 53.
    Ruff IM, Petrovich Brennan NM, Peck KK, Hou BL, Tabar V, Brennan CW, Holodny AI. Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR Am J Neuroradiol. 2008 Mar;29(3):528–35. Epub 2008 Jan 9.Google Scholar
  54. 54.
    Gaillard WD, Balsamo L, Xu B, McKinney C, Papero PH, Weinstein S, et al. fMRI language task panel improves determination of language dominance. Neurology. 2004;63(8):1403–8.PubMedGoogle Scholar
  55. 55.
    Rutten GJ, Ramsey NF, van Rijen PC, van Veelen CW. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80(3):421–37.PubMedCrossRefGoogle Scholar
  56. 56.
    Bookheimer SY, Zeffiro TA, Blaxton T, Malow BA, Gaillard WD, Sato S, et al. A direct comparison of PET activation and electrocortical stimulation mapping for language localization. Neurology. 1997;48:1056–65.PubMedGoogle Scholar
  57. 57.
    Binder JR, Swanson SJ, Hammeke TA, Sabsevitz DS. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia. 1980;49(12):1980–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Lucas 2nd TH, McKhann 2nd GM, Ojemann GA. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg. 2004;101(3):449–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Bloch C, Kaiser A, Kuenzli E, Zappatore D, Haller S, Franceschini R, Luedi G, Radue EW, Nitsch C. The age of second language acquisition determines the variability in activation elicited by narration in three languages in Broca’s and Wernicke’s area. Neuropsychologia. 2009 Feb;47(3):625–33. Epub 2008 Nov 17.Google Scholar
  60. 60.
    Chee MW, Hon N, Lee HL, Soon CS. Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. Blood oxygen level dependent. Neuroimage. 2001;13(6 Pt 1):1155–63.PubMedCrossRefGoogle Scholar
  61. 61.
    Tan LH, Spinks JA, Feng CM, Siok WT, Perfetti CA, Xiong J, et al. Neural systems of second language reading are shaped by native language. Hum Brain Mapp. 2003;18(3):158–66.PubMedCrossRefGoogle Scholar
  62. 62.
    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Grootoonk S, Hutton C, Ashburner J, Howseman AM, Josephs O, Rees G, et al. Characterization and correction of interpolation effects in the realignment of fMRI time series. Neuroimage. 2000;11(1):49–57.PubMedCrossRefGoogle Scholar
  64. 64.
    Desmond JE, Atlas SW. Task-correlated head movement in fMR imaging: false activations can contaminate results despite motion correction. AJNR Am J Neuroradiol. 2000;21(8):1370–1.PubMedGoogle Scholar
  65. 65.
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46:978–84.PubMedGoogle Scholar
  66. 66.
    Arora J, Pugh K, Westerveld M, Spencer S, Spencer DD, Todd Constable R. Language lateralization in epilepsy patients: fMRI validated with the Wada procedure. Epilepsia. 2009 Oct;50(10):2225–41.Google Scholar
  67. 67.
    Ramsey NF, Sommer IE, Rutten GJ, Kahn RS. Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage. 2001;13(4):719–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Suarez RO, Whalen S, Nelson AP, Tie Y, Meadows ME, Radmanesh A, Golby AJ. Threshold-independent functional MRI determination of language dominance: a validation study against clinical gold standards.Epilepsy Behav. 2009 Oct;16(2):288–97. Epub 2009 Sep 4.Google Scholar
  69. 69.
    Lee DJ, Pouratian N, Bookheimer SY. Martin NA. J Neurosurg: Factors predicting language lateralization in patients with perisylvian vascular malformations; 2010 [Epub ahead of print].Google Scholar
  70. 70.
    Lehéricy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R, Hertz-Pannier L, Le Bihan D, Marsault C, Baulac M (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54.Google Scholar
  71. 71.
    Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg. 2002;97:21–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Giussani C, Poliakov A, Ferri RT, Plawner LL, Browd SR, Shaw DW, et al. DTI fiber tracking to differentiate demyelinating diseases from diffuse brain stem glioma. Neuroimage. 2010;52(1):217–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Cohen MS, DuBois RM. Stability, repeatability, and the expression of signal magnitude in functional magnetic resonance imaging. J Magn Reson Imaging. 1999;10:33–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Huettel SA, McCarthy G. The effects of single-trial averaging upon the spatial extent of fMRI activation. Neuroreport. 2001;12:2411–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Lai S, Hopkins AL, Haacke EM, Li D, Wasserman BA, Buckley P, et al. Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5T: preliminary results. Magn Reson Med. 1993;30:387–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Pouratian N, Bookheimer SY, O’Farrell AM, Sicotte NL, Cannestra AF, Becker D, et al. Optical imaging of bilingual cortical representations: case report. J Neurosurg. 2000;93:686–91.CrossRefGoogle Scholar
  77. 77.
    Cannestra AF, Pouratian N, Bookheimer SY, Martin NA, Becker D, Toga AW. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging. Cerebral Cortex. 2001;11:773–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Roux FE, Boulanouar K, Ranjeva JP, Manelfe C, Tremoulet M, Sabatier J, et al. Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Invest Radiol. 1999;34:225–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Corina DP, Poliakov A, Steury K, Martin R, Mulligan K, Maravilla K, et al. Correspondences between language cortex identified by cortical stimulation mapping and fMRI. NeuroImage. 2000;11:S295.CrossRefGoogle Scholar
  80. 80.
    Lurito JT, Lowe MJ, Sartorius C, Mathews VP. Comparison of fMRI and intraoperative direct cortical stimulation in localization of receptive language areas. J Comput Assist Tomogr. 2000;24:99–105.PubMedCrossRefGoogle Scholar
  81. 81.
    Pouratian N, Sicotte N, Rex D, Martin NA, Becker D, Cannestra AF, et al. Spatial/temporal correlation of BOLD and optical intrinsic signals in humans. Magn Reson Med. 2002;47:766–76.PubMedCrossRefGoogle Scholar
  82. 82.
    Mueller WM, Yetkin FZ, Hammeke TA, Morris GL, 3rd, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39:515–520; discussion 520–511.Google Scholar
  83. 83.
    Roux FE, Boulanouar K, Ranjeva JP, Tremoulet M, Henry P, Manelfe C, et al. Usefulness of motor functional MRI correlated to cortical mapping in Rolandic low-grade astrocytomas. Acta Neurochirurgica. 1999;141:71–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Haglund MM, Berger MS, Shamseldin M, Lettich E, Ojemann GA (1994) Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 34:567–576; discussion 576.Google Scholar
  86. 86.
    Sanai N, Berger MS. Mapping the horizon: techniques to optimize tumor resection before and during surgery. Clin Neurosurg. 2008;55:14–9.PubMedGoogle Scholar
  87. 87.
    Cannestra AF, Pouratian N, Forage J, Bookheimer SY, Martin NA, Toga AW. Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations. Neurosurgery. 2004;55(4):804–12.PubMedCrossRefGoogle Scholar
  88. 88.
    Asthagiri AR, Pouratian N, Sherman J, Ahmed G, Shaffrey ME. Advances in brain tumor surgery. Neurol Clin. 2007;25(4):975–1003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations