Functional Connectivity MR Imaging

  • Michelle Hampson
  • Xilin Shen
  • R. Todd Constable


Brain function arises out of interactions between brain areas. Neuroimaging studies of brain function are, therefore, concerned not only with activity in discrete brain areas but also with the interactions between areas. A variety of approaches have been developed to study these interactions. The simplest of these is to examine functional connectivity, defined as “temporal correlations between spatially remote neurophysio­logical events” [1, 2]. Because functional connectivity is defined as a correlation, it does not imply causal effects. The term effective connectivity is used to describe the “influence that one neural system exerts over another.” [1] This chapter is focused on the methods and applications of functional connectivity analyses. The reader is referred elsewhere for information about current approaches for inferring effective connectivity [3–6].


Functional Connectivity Independent Component Analysis Gaussian Mixture Model Default Mode Network Betweenness Centrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp. 1993;1:69–79.CrossRefGoogle Scholar
  2. 2.
    Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of the resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Goebel R, Roebroeck A, Kim DS, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging. 2003;21(10):1251–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Marrelec G, Daunizeau J, Pélégrini-Issac M, Doyon J, Benali H. Conditional correlation as a measure of mediated interactivity in fMRI and MEG/EEG. IEEE Trans Signal Process. 2005;53:3505–16.CrossRefGoogle Scholar
  6. 6.
    McIntosh AR, Gonzalez-Lima F. Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol. 1994;72(4):1717–33.PubMedGoogle Scholar
  7. 7.
    Horwitz B. The elusive concept of brain connectivity. Neuroimage. 2003;19:466–70.PubMedCrossRefGoogle Scholar
  8. 8.
    Sun FT, Miller LM, D’Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage. 2004;21(2):647–58.PubMedCrossRefGoogle Scholar
  9. 9.
    Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100(1):253–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kiviniemi V, Kantola JH, Jauhiainen J, Hyvarinen A, Tervonen O. Independent component analysis of nondeterministic fMRI signal sources. Neuroimage. 2003;19(2 Pt 1):253–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA. 2005;102(24):8627–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Roth JK, Courtney SM. Neural system for updating object working memory from different sources: sensory stimuli or long-term memory. Neuroimage. 2007;38(3):617–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Hampson M, Olson IR, Leung H-C, Skudlarski P, Gore JC. Changes in functional connectivity of human MT/v5 with visual motion input. Neuroreport. 2004;15(8):1315–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage. 2000;12(5):582–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage. 2006;30:1313–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Pugh KR, Mencl EW, Shaywitz BA, Shaywitz SE, Fulbright RK, Constable RT, et al. The angular gyrus in developmental dyslexia: task-specific differences in functional connectivity within posterior cortex. Psychol Sci. 2000;11(1):51–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, et al. Alterations in functional connectivity in language in prematurely born adolescents. Brain. 2009;132(Pt 3):661–70. Epub ahead of print.PubMedCrossRefGoogle Scholar
  18. 18.
    Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7:119–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Biswal B, Hudetz AG, Yetkin FZ, Haughton VM, Hyde JS. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab. 1997;17:301–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Biswal BB, Van Kylen J, Hyde JS. Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 1997;10:165–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Peltier SJ, Noll DC. T2* dependence of low frequency functional connectivity. Neuroimage. 2002;16:985–92.PubMedCrossRefGoogle Scholar
  22. 22.
    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000;21:1636–44.PubMedGoogle Scholar
  23. 23.
    Stein T, Moritz C, Quigley M, Cordes D, Haughton V, Meyerand E. Functional connectivity in the thalamus and hippocampus studied with functional MR imaging. AJNR Am J Neuroradiol. 2000;21:1397–401.PubMedGoogle Scholar
  24. 24.
    Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002;15:247–62.PubMedCrossRefGoogle Scholar
  25. 25.
    van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp. 2004;22(3):165–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Xiong J, Parsons LM, Gao J-H, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp. 1999;8:151–6.PubMedCrossRefGoogle Scholar
  27. 27.
    DeLuca M, Smith S, DeStefano N, Federico A, Matthews PM. Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res. 2005;167:587–94.CrossRefGoogle Scholar
  28. 28.
    Quigley M, Cordes D, Moritz C, Haughton V, Seth R, Meyerand ME. Role of the corpus callosum in functional connectivity. AJNR Am J Neuroradiol. 2003;24:208–12.PubMedGoogle Scholar
  29. 29.
    Husain FT, McKinney CM, Horwitz B. Frontal cortex functional connectivity changes during sound categorization. Neuroreport. 2006;17(6):617–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Bokde AL, Tagamets MA, Friedman RB, Horwitz B. Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron. 2001;30(2):609–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Jiang T, He Y, Zang Y, Weng X. Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp. 2004;22(1):63–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Morgan VL, Price RR. The effect of sensorimotor activation on functional connectivity mapping with MRI. Magn Reson Imaging. 2004;22:1069–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, et al. Connectivity–behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage. 2006;31:513–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci. 2006;26(51):13338–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Mazoyer B, Zago L, Mellet E, Bricogne S, Etard O, Houdé O, et al. Cortical Networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull. 2001;54(3):287–98.PubMedCrossRefGoogle Scholar
  36. 36.
    Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci. 1997;9(5):648–63.CrossRefGoogle Scholar
  37. 37.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA. 2001;98(2):676–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Essen DCV, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Horovitz SG, Fukunaga M, Zwart JAd, Gelderen Pv, Fulton SC, Balkin TJ, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simulataneous EEG-fMRI study. Hum Brain Mapp. 2008;29:671–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, et al. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp. 2009;30(8):2393–400.PubMedCrossRefGoogle Scholar
  41. 41.
    Shehzad Z, Kelly AM, Reiss PT, Gee DG, Gotimer K, Uddin LQ, et al. The resting brain: unconstrained yet reliable. Cereb Cortex. 2009;19(10):2209–29.PubMedCrossRefGoogle Scholar
  42. 42.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.PubMedCrossRefGoogle Scholar
  43. 43.
    Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA. 2009;106(6):2035–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Koch MA, Norris DG, Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage. 2002;16:241–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Skudlarski P, Jagannathan K, Calhoun VD, Hampson M, Skudlarska BA, Pearlson G. Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage. 2008;43(3):554–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19(1):72–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Lowe MJ, Beall EB, Sakaie KE, Koenig KA, Stone L, Marrie RA, et al. Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp. 2008;29(7):818–27.PubMedCrossRefGoogle Scholar
  48. 48.
    Dagli MS, Ingleholm JE, Haxby JV. Localization of cardiac-induced signal change in fMRI. Neuroimage. 1999;9:407–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol. 2001;46:3331–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal. Neuroimage. 2007;38(2):306–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004;21(4):1652–64.PubMedCrossRefGoogle Scholar
  52. 52.
    Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006;31:1536–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Chang C, Cunningham JP, Glover GH. Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage. 2009;44(3):857–69.PubMedCrossRefGoogle Scholar
  54. 54.
    Glover GH, Li T-Q, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44:162–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med. 1995;34:201–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Beall EB, Lowe MJ. Isolating physiologic noise sources with independently determined spatial measures. Neuroimage. 2007;37(4):1286–300.PubMedCrossRefGoogle Scholar
  57. 57.
    Giove F, Gili T, Iacovella V, Macaluso E, Maraviglia B. Images-based suppression of unwanted global signals in resting-state functional connectivity studies. Magn Reson Imaging. 2009;27(8):1058–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22(7):1326–33.PubMedGoogle Scholar
  59. 59.
    Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2008;44(3):893–905.PubMedCrossRefGoogle Scholar
  60. 60.
    Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:000–711.CrossRefGoogle Scholar
  61. 61.
    Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, et al. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex. 2008;18(12):2735–47.PubMedCrossRefGoogle Scholar
  62. 62.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex. 2005;15:1332–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, et al. Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol. 2009;5(5):e1000381.PubMedCrossRefGoogle Scholar
  65. 65.
    Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, et al. Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA. 2007;104(33):13507–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, et al. Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport. 2006;17(26):209–13.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, et al. Whole brain functional connectivity in the early blind. Brain. 2007;130:2085–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA. 2007;104(26):11073–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28(10):967–78.PubMedCrossRefGoogle Scholar
  70. 70.
    Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–59.PubMedCrossRefGoogle Scholar
  71. 71.
    McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, et al. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 1998;6(3):160–88.PubMedCrossRefGoogle Scholar
  72. 72.
    Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging. 2004;23(2):137–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp. 2007;28(11):1251–66.PubMedCrossRefGoogle Scholar
  74. 74.
    Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA. 2004;101(13):4637–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Beckmann CF, Smith SM. Tensorial extensions of independent component analysis for multisubject FMRI analysis. Neuroimage. 2005;25(1):294–311.PubMedCrossRefGoogle Scholar
  76. 76.
    Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Calhoun VD, Adali T, Pekar JJ. A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging. 2004;22(9):1181–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Guo Y, Pagnoni G. A unified framework for group independent component analysis for multi-subject fMRI data. Neuroimage. 2008;42(3):1078–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA. 2009;106(31):13040–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Golland Y, Golland P, Bentin S, Malach R. Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems. Neuropsychologia. 2008;46(2):540–53.PubMedCrossRefGoogle Scholar
  81. 81.
    Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging. 2002;20(4):305–17.PubMedCrossRefGoogle Scholar
  82. 82.
    Mezer A, Yovel Y, Pasternak O, Gorfine T, Assaf Y. Cluster analysis of resting-state fMRI time series. Neuroimage. 2009;45(4):1117–25.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage. 2010;49(3):2375–86.PubMedCrossRefGoogle Scholar
  84. 84.
    Klein JC, Behrens TE, Robson MD, Mackay CE, Higham DJ, Johansen-Berg H. Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage. 2007;34(1):204–11.PubMedCrossRefGoogle Scholar
  85. 85.
    Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage. 2008;41(1):45–57.PubMedCrossRefGoogle Scholar
  86. 86.
    Golland P, Golland Y, Malach R. Detection of spatial activation patterns as unsupervised segmentation of fMRI data. Med Image Comput Comput Assist Interv. 2007;10(Pt 1):110–8.PubMedGoogle Scholar
  87. 87.
    Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME. Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol. 2008;100(4):1740–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: structure and dynamics. Phys Rep. 2006;424(4–5):175–308.CrossRefGoogle Scholar
  89. 89.
    Eguiluz VM, Hernandez-Garcia E, Piro O, Klemm K. Effective dimensions and percolation in hierarchically structured scale-free networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;68(5 Pt 2):055102.PubMedCrossRefGoogle Scholar
  90. 90.
    Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci USA. 2006;103(23):8577–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2.PubMedCrossRefGoogle Scholar
  92. 92.
    Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.CrossRefGoogle Scholar
  93. 93.
    Newman ME. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(3 Pt 2):036104.PubMedCrossRefGoogle Scholar
  94. 94.
    Schwarz AJ, Gozzi A, Bifone A. Community structure and modularity in networks of correlated brain activity. Magn Reson Imaging. 2008;26(7):914–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Thirion B, Dodel S, Poline JB. Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage. 2006;29(1):321–7.PubMedCrossRefGoogle Scholar
  96. 96.
    van den Heuvel M, Mandl R, Hulshoff Pol H. Normalized cut group clustering of resting-state FMRI data. PLoS ONE. 2008;3(4):e2001.PubMedCrossRefGoogle Scholar
  97. 97.
    Shen X, Papademetris X, Constable RT. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. Neuroimage. 2010;50(3):1027–35.PubMedCrossRefGoogle Scholar
  98. 98.
    Golfinopoulos E, Tourville JA, Guenther FH. The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Neuroimage. 2010;52(3):862–74.PubMedCrossRefGoogle Scholar
  99. 99.
    Horwitz B, Glabus MF. Neural modeling and functional brain imaging: the interplay between the data-fitting and simulation approaches. Int Rev Neurobiol. 2005;66:267–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Husain FT, Tagamets MA, Fromm SJ, Braun AR, Horwitz B. Relating neuronal dynamics for auditory object processing to neuroimaging activity: a computational modeling and an fMRI study. Neuroimage. 2004;21(4):1701–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R. Key role of coupling, delay, and noise in resting brain fluctuations. Proc Natl Acad Sci USA. 2009;106(25):10302–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Honey CJ, Kotter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA. 2007;104(24):10240–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69.PubMedCrossRefGoogle Scholar
  104. 104.
    Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006;26(1):63–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73.PubMedCrossRefGoogle Scholar
  106. 106.
    Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in brain networks. PLoS One. 2007;2(10):e1049.PubMedCrossRefGoogle Scholar
  107. 107.
    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.PubMedCrossRefGoogle Scholar
  108. 108.
    Constable RT, Hara Y, Tokoglu F, Papademetris X. Intrinsic connectivity contrast: a novel contrast mechanism for investigating a wide range of brain disorders. Proceedings of the ISMRM Annual Meeting 2009:4493.Google Scholar
  109. 109.
    Constable RT, Hara Y, Tokoglu F, Papademetris X. Intrinsic connectivity contrast: a voxel level summary of tissue connectivity. Proceedings of the OHBM Annual Meeting 2009:275-M.Google Scholar
  110. 110.
    Glabus MF, Horwitz B, Holt JL, Kohn PD, Gerton BK, Callicott JH, et al. Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cereb Cortex. 2003;13(12):1352–61.PubMedCrossRefGoogle Scholar
  111. 111.
    Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005;8(6):828–34.PubMedCrossRefGoogle Scholar
  112. 112.
    Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA. 1998;95:8939–44.PubMedCrossRefGoogle Scholar
  113. 113.
    Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–35.PubMedCrossRefGoogle Scholar
  114. 114.
    Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, et al. Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging. 2010;31(5):839–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Kennedy DP, Redcay E, Courchesne E. Failing to deactivate: resting functional abnormalities in autism. Proc Natl Acad Sci USA. 2006;103(21):8275–80.PubMedCrossRefGoogle Scholar
  116. 116.
    Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp. 2005;26(4):231–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Garrity AG, Godfrey DP, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry. 2007;164:450–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63(3):332–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26:15–29.PubMedCrossRefGoogle Scholar
  120. 120.
    Popa D, Popescu AT, Pare D. Contrasting activity profile of two distributed cortical networks as a function of attentional demands. J Neurosci. 2009;29(4):1191–201.PubMedCrossRefGoogle Scholar
  121. 121.
    Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage. 2008;39:527–37.PubMedCrossRefGoogle Scholar
  122. 122.
    Hampson M, Driesen NR, Roth JK, Gore JC, Constable RT. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn Reson Imaging. 2010;28(8):1051–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Schmithorst VJ, Holland SK. Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. Neuroimage. 2006;31(3):1366–79.PubMedCrossRefGoogle Scholar
  124. 124.
    Schmithorst VJ, Holland SK, Plante E. Cognitive modules utilized for narrative comprehension in children: a functional magnetic resonance imaging study. Neuroimage. 2006;29(1):254–66.PubMedCrossRefGoogle Scholar
  125. 125.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.PubMedCrossRefGoogle Scholar
  126. 126.
    He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron. 2007;53:905–18.PubMedCrossRefGoogle Scholar
  127. 127.
    Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI. Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res. 1987;407:294–306.PubMedCrossRefGoogle Scholar
  128. 128.
    Horwitz B, Rumsey JM, Grady CL, Rapoport SI. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch Neurol. 1988;45(7):749–55.PubMedGoogle Scholar
  129. 129.
    Horwitz B, Schapiro MB, Grady CL, Rapoport SI. Cerebral metabolic pattern in young adult Down’s syndrome subjects: altered intercorrelations between regional rates of glucose utilization. J Ment Defic Res. 1990;34(3):237–52.PubMedGoogle Scholar
  130. 130.
    Horwitz B, Swedo SE, Grady CL, Pietrini P, Schapiro MB, Rapaport JL, et al. Cerebral metabolic pattern in obsessive–compulsive disorder: altered intercorrelations between regional rates of glucose utilization. Psychiatry Res Neuroimaging. 1991;40:221–37.CrossRefGoogle Scholar
  131. 131.
    Metter EJ, Riege WH, Hanson WR, Phelps ME, Kuhl DE. Local cerebral metabolic rates of glucose in movement and language disorders from positron tomography. Am J Physiol. 1984;246(6 Pt 2):R897–900.PubMedGoogle Scholar
  132. 132.
    Metter EJ, Riege WH, Kameyama M, Kuhl DE, Phelps ME. Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson’s diseases. J Cereb Blood Flow Metab. 1984;4(4):500–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Volkow ND, Brodie JD, Wolf AP, Gomez-Mont F, Cancro R, Van Gelder P, et al. Brain organization in schizophrenia. J Cereb Blood Flow Metab. 1986;6(4):441–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Mallet L, Mazoyer B, Martinot JL. Functional connectivity in depressive, obsessive–compulsive, and schizophrenic disorders: an explorative correlational analysis of regional cerebral metabolism. Psychiatry Res. 1998;82(2):83–93.PubMedCrossRefGoogle Scholar
  135. 135.
    Just MA, Cherkassky VL, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain. 2004;127(Pt 8):1811–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Castelli F, Frith C, Happe F, Frith U. Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain. 2002;125(Pt 8):1839–49.PubMedCrossRefGoogle Scholar
  137. 137.
    Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex. 2007;17(4):951–61.PubMedCrossRefGoogle Scholar
  138. 138.
    Lee PS, Yerys BE, Della Rosa A, Foss-Feig J, Barnes KA, James JD, et al. Functional connectivity of the inferior frontal cortex changes with age in children with autism spectrum disorders: a fcMRI study of response inhibition. Cereb Cortex. 2009;19(8):1787–94.PubMedCrossRefGoogle Scholar
  139. 139.
    Solomon M, Ozonoff SJ, Ursu S, Ravizza S, Cummings N, Ly S, et al. The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia. 2009;47(12):2515–26.PubMedCrossRefGoogle Scholar
  140. 140.
    Kana RK, Keller TA, Minshew NJ, Just MA. Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biol Psychiatry. 2007;62(3):198–206.PubMedCrossRefGoogle Scholar
  141. 141.
    Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage. 2005;24(3):810–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Koshino H, Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cereb Cortex. 2008;18(2):289–300.PubMedCrossRefGoogle Scholar
  143. 143.
    Kana RK, Keller TA, Cherkassky VL, Minshew NJ, Just MA. Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain. 2006;129(Pt 9):2484–93.PubMedCrossRefGoogle Scholar
  144. 144.
    Villalobos ME, Mizuno A, Dahl BC, Kemmotsu N, Muller RA. Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. Neuroimage. 2005;25(3):916–25.PubMedCrossRefGoogle Scholar
  145. 145.
    Turner KC, Frost L, Linsenbardt D, McIlroy JR, Muller RA. Atypically diffuse functional connectivity between caudate nuclei and cerebral cortex in autism. Behav Brain Funct. 2006;2:34.PubMedCrossRefGoogle Scholar
  146. 146.
    Mizuno A, Villalobos ME, Davies MM, Dahl BC, Muller RA. Partially enhanced thalamocortical functional connectivity in autism. Brain Res. 2006;1104(1):160–74.PubMedCrossRefGoogle Scholar
  147. 147.
    Mason RA, Williams DL, Kana RK, Minshew N, Just MA. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism. Neuropsychologia. 2008;46(1):269–80.PubMedCrossRefGoogle Scholar
  148. 148.
    Noonan SK, Haist F, Muller RA. Aberrant functional connectivity in autism: evidence from low-frequency BOLD signal fluctuations. Brain Res. 2009;1262:48–63.PubMedCrossRefGoogle Scholar
  149. 149.
    Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, et al. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008;131(Pt 4):1000–12.PubMedCrossRefGoogle Scholar
  150. 150.
    Welchew DE, Ashwin C, Berkouk K, Salvador R, Suckling J, Baron-Cohen S, et al. Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biol Psychiatry. 2005;57(9):991–8.PubMedCrossRefGoogle Scholar
  151. 151.
    Cherkassky VL, Kana RK, Keller TA, Just MA. Functional connectivity in a baseline resting-state network in autism. Neuroreport. 2006;17:1687–90.PubMedCrossRefGoogle Scholar
  152. 152.
    Kennedy DP, Courchesne E. The intrinsic functional organization of the brain is altered in autism. Neuroimage. 2008;39(4):1877–85.PubMedCrossRefGoogle Scholar
  153. 153.
    Monk CS, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, et al. Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage. 2009;47(2):764–72.PubMedCrossRefGoogle Scholar
  154. 154.
    Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3(2):89–97.PubMedGoogle Scholar
  155. 155.
    Hoffman RE, McGlashan TH. Parallel distributed processing and the emergence of schizophrenic symptoms. Schizophr Bull. 1993;19(1):119–40.PubMedGoogle Scholar
  156. 156.
    Weinberger DR, Aloia MS, Goldberg TE, Berman KF. The frontal lobes and schizophrenia. J Neuropsychiatry Clin Neurosci. 1994;6(4):419–27.PubMedGoogle Scholar
  157. 157.
    Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ. Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage. 1999;9(3):337–42.PubMedCrossRefGoogle Scholar
  158. 158.
    Weinberger DR, Lipska BK. Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schizophr Res. 1995;16(2):87–110.PubMedCrossRefGoogle Scholar
  159. 159.
    Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67(10):912–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Crossley NA, Mechelli A, Fusar-Poli P, Broome MR, Matthiasson P, Johns LC, et al. Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first-episode psychosis. Hum Brain Mapp. 2009;30(12):4129–37.PubMedCrossRefGoogle Scholar
  161. 161.
    Jeong B, Wible CG, Hashimoto R, Kubicki M. Functional and anatomical connectivity abnormalities in left inferior frontal gyrus in schizophrenia. Hum Brain Mapp. 2009;30(12):4138–51.PubMedCrossRefGoogle Scholar
  162. 162.
    Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol Psychiatry. 2002;51(12):1008–11.PubMedCrossRefGoogle Scholar
  163. 163.
    Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal–thalamic–cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.PubMedCrossRefGoogle Scholar
  164. 164.
    Honey GD, Pomarol-Clotet E, Corlett PR, Honey RA, McKenna PJ, Bullmore ET, et al. Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain. 2005;128(Pt 11):2597–611.PubMedCrossRefGoogle Scholar
  165. 165.
    Shen H, Wang L, Liu Y, Hu D. Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage. 2010;49(4):3110–21.PubMedCrossRefGoogle Scholar
  166. 166.
    Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P. Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain. 2009;132(Pt 9):2426–36.PubMedCrossRefGoogle Scholar
  167. 167.
    Henseler I, Falkai P, Gruber O. A systematic fMRI investigation of the brain systems subserving different working memory components in schizophrenia. Eur J Neurosci. 2009;30(4):693–702.PubMedCrossRefGoogle Scholar
  168. 168.
    Friedel E, Schlagenhauf F, Sterzer P, Park SQ, Bermpohl F, Strohle A, et al. 5-HTT genotype effect on prefrontal-amygdala coupling differs between major depression and controls. Psychopharmacology (Berl). 2009;205(2):261–71.CrossRefGoogle Scholar
  169. 169.
    Gavrilescu M, Rossell S, Stuart GW, Shea TL, Innes-Brown H, Henshall K, et al. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study. Psychol Med. 2010;40(7):1149–58.PubMedCrossRefGoogle Scholar
  170. 170.
    Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, et al. Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr Bull. 2010;36(5):1020–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res. 2009;174(1):17–23.PubMedCrossRefGoogle Scholar
  172. 172.
    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RWJ, et al. Spontaneous low-frequency fluctuations in BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull. 2007;33(4):1004–12.PubMedCrossRefGoogle Scholar
  173. 173.
    Camchong J, Macdonald AW, III, Bell C, Mueller BA, Lim KO, Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull. 2011;37(3):640–50.Google Scholar
  174. 174.
    Mannell MV, Franco AR, Calhoun VD, Canive JM, Thoma RJ, Mayer AR. Resting state and task-induced deactivation: a methodological comparison in patients with schizophrenia and healthy controls. Hum Brain Mapp. 2010;31(3):424–37.PubMedGoogle Scholar
  175. 175.
    Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA. 2009;106(4):1279–84.PubMedCrossRefGoogle Scholar
  176. 176.
    Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res. 2007;97:194–205.PubMedCrossRefGoogle Scholar
  177. 177.
    Meda SA, Stevens MC, Folley BS, Calhoun VD, Pearlson GD. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. PLoS ONE. 2009;4(11):e7911.PubMedCrossRefGoogle Scholar
  178. 178.
    Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, et al. Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia. Neuropsychopharmacology. 2010;35(4):904–12.PubMedCrossRefGoogle Scholar
  179. 179.
    Wolf RC, Vasic N, Sambataro F, Hose A, Frasch K, Schmid M, et al. Temporally anticorrelated brain networks during working memory performance reveal aberrant prefrontal and hippocampal connectivity in patients with schizophrenia. Prog Neuropsycho­pharmacol Biol Psychiatry. 2009;33(8):1464–73.PubMedCrossRefGoogle Scholar
  180. 180.
    Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424–30.PubMedCrossRefGoogle Scholar
  181. 181.
    Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72.PubMedCrossRefGoogle Scholar
  182. 182.
    Goldin PR, Manber-Ball T, Werner K, Heimberg R, Gross JJ. Neural mechanisms of cognitive reappraisal of negative self-beliefs in social anxiety disorder. Biol Psychiatry. 2009;66(12):1091–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Guyer AE, Lau JY, McClure-Tone EB, Parrish J, Shiffrin ND, Reynolds RC, et al. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch Gen Psychiatry. 2008;65(11):1303–12.PubMedCrossRefGoogle Scholar
  184. 184.
    Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X, Louro HM, et al. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch Gen Psychiatry. 2008;65(5):568–76.PubMedCrossRefGoogle Scholar
  185. 185.
    Rich BA, Fromm SJ, Berghorst LH, Dickstein DP, Brotman MA, Pine DS, et al. Neural connectivity in children with bipolar disorder: impairment in the face emotion processing circuit. J Child Psychol Psychiatry. 2008;49(1):88–96.PubMedCrossRefGoogle Scholar
  186. 186.
    Wang F, Kalmar JH, He Y, Jackowski M, Chepenik LG, Edmiston EE, et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry. 2009;66(5):516–21.PubMedCrossRefGoogle Scholar
  187. 187.
    Anand A, Li Y, Wang Y, Lowe MJ, Dzemidzic M. Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res. 2009;171(3):189–98.PubMedCrossRefGoogle Scholar
  188. 188.
    Dannlowski U, Ohrmann P, Konrad C, Domschke K, Bauer J, Kugel H, et al. Reduced amygdala-prefrontal coupling in major depression: association with MAOA genotype and illness severity. Int J Neuropsychopharmacol. 2009;12(1):11–22.PubMedCrossRefGoogle Scholar
  189. 189.
    Hamilton JP, Gotlib IH. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol Psychiatry. 2008;63(12):1155–62.PubMedCrossRefGoogle Scholar
  190. 190.
    Irwin W, Anderle MJ, Abercrombie HC, Schaefer SM, Kalin NH, Davidson RJ. Amygdalar interhemispheric functional connectivity differs between the non-depressed and depressed human brain. Neuroimage. 2004;21(2):674–86.PubMedCrossRefGoogle Scholar
  191. 191.
    Anand A, Li Y, Wang Y, Gardner K, Lowe MJ. Reciprocal effects of antidepressant treatment on activity and connectivity of the mood regulating circuit: an FMRI study. J Neuropsychiatry Clin Neurosci. 2007;19(3):274–82.PubMedCrossRefGoogle Scholar
  192. 192.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukari L, et al. Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol Psychiatry. 2005;57:1079–88.PubMedCrossRefGoogle Scholar
  193. 193.
    Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology. 2005;30:1334–44.PubMedGoogle Scholar
  194. 194.
    Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn L, Mueller BA, et al. A preliminary study of functional connectivity in comorbid adolescent depression. Neurosci Lett. 2009;460(3):227–31.PubMedCrossRefGoogle Scholar
  195. 195.
    Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subjenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37. epub ahead of print.PubMedCrossRefGoogle Scholar
  196. 196.
    Bluhm R, Williamson P, Lanius R, Theberge J, Densmore M, Bartha R, et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin Neurosci. 2009;63(6):754–61.PubMedCrossRefGoogle Scholar
  197. 197.
    Vasic N, Walter H, Sambataro F, Wolf RC. Aberrant functional connectivity of dorsolateral prefrontal and cingulate networks in patients with major depression during working memory processing. Psychol Med. 2009;39(6):977–87.PubMedCrossRefGoogle Scholar
  198. 198.
    Zhou Y, Yu C, Zheng H, Liu Y, Song M, Qin W, et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord. 2010;121(3):220–30.PubMedCrossRefGoogle Scholar
  199. 199.
    Lanius RA, Williamson PC, Bluhm RL, Densmore M, Boksman K, Neufeld RW, et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol Psychiatry. 2005;57(8):873–84.PubMedCrossRefGoogle Scholar
  200. 200.
    Lanius RA, Williamson PC, Densmore M, Boksman K, Neufeld RW, Gati JS, et al. The nature of traumatic memories: a 4-T FMRI functional connectivity analysis. Am J Psychiatry. 2004;161(1):36–44.PubMedCrossRefGoogle Scholar
  201. 201.
    Simmons AN, Paulus MP, Thorp SR, Matthews SC, Norman SB, Stein MB. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol Psychiatry. 2008;64(8):681–90.PubMedCrossRefGoogle Scholar
  202. 202.
    Bluhm RL, Williamson PC, Osuch EA, Frewen PA, Stevens TK, Boksman K, et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci. 2009;34(3):187–94.PubMedGoogle Scholar
  203. 203.
    Lanius RA, Bluhm RL, Coupland NJ, Hegadoren KM, Rowe B, Theberge J, et al. Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand. 2010;121(1):33–40.PubMedCrossRefGoogle Scholar
  204. 204.
    Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006;26(1):63–72.PubMedCrossRefGoogle Scholar
  205. 205.
    Bai F, Watson DR, Yu H, Shi Y, Yuan Y, Zhang Z. Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res. 2009;1302:167–74.PubMedCrossRefGoogle Scholar
  206. 206.
    Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.PubMedCrossRefGoogle Scholar
  207. 207.
    Hedden T, Van Dijk KR, Becker JA, Mehta A, Sperling RA, Johnson KA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29(40):12686–94.PubMedCrossRefGoogle Scholar
  208. 208.
    Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, et al. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–7.PubMedCrossRefGoogle Scholar
  209. 209.
    Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, et al. Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol. 2007;64(10):1482–7.PubMedCrossRefGoogle Scholar
  210. 210.
    Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31(2):496–504.PubMedCrossRefGoogle Scholar
  211. 211.
    Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity – initial results. Radiology. 2002;224(1):184–92.PubMedCrossRefGoogle Scholar
  212. 212.
    Au Duong MV, Audoin B, Boulanouar K, Ibarrola D, Malikova I, Confort-Gouny S, et al. Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab. 2005;25(10):1245–53.PubMedCrossRefGoogle Scholar
  213. 213.
    Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, et al. Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry. 2009;66(4):431–41.PubMedCrossRefGoogle Scholar
  214. 214.
    Liu J, Liang J, Qin W, Tian J, Yuan K, Bai L, et al. Dysfunctional connectivity patterns in chronic heroin users: an fMRI study. Neurosci Lett. 2009;460(1):72–7.PubMedCrossRefGoogle Scholar
  215. 215.
    Ma N, Liu Y, Li N, Wang CX, Zhang H, Jiang XF, et al. Addiction related alteration in resting-state brain connectivity. Neuroimage. 2010;49(1):738–44.PubMedCrossRefGoogle Scholar
  216. 216.
    Zhang X, Chen X, Yu Y, Sun D, Ma N, He S, et al. Masked smoking-related images modulate brain activity in smokers. Hum Brain Mapp. 2009;30(3):896–907.PubMedCrossRefGoogle Scholar
  217. 217.
    Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, Lopez-Sola M, Hernandez-Ribas R, et al. Altered corticostriatal functional connectivity in obsessive–compulsive disorder. Arch Gen Psychiatry. 2009;66(11):1189–200.PubMedCrossRefGoogle Scholar
  218. 218.
    Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM, Petersen SE, et al. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain. 2009;132(Pt 1):225–38.PubMedGoogle Scholar
  219. 219.
    Gozzo Y, Vohr B, Lacadie C, Hampson M, Katz KH, Maller-Kesselman J, et al. Alterations in neural connectivity in preterm children at school age. Neuroimage. 2009;48(2):458–63.PubMedCrossRefGoogle Scholar
  220. 220.
    Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain. 2009;132(Pt 3):661–70.PubMedCrossRefGoogle Scholar
  221. 221.
    Addis DR, Moscovitch M, McAndrews MP. Consequences of hippocampal damage across the autobiographical memory network in left temporal lobe epilepsy. Brain. 2007;130(Pt 9):2327–42.PubMedCrossRefGoogle Scholar
  222. 222.
    Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One. 2010;5(1):e8525.PubMedCrossRefGoogle Scholar
  223. 223.
    Morgan VL, Gore JC, Abou-Khalil B. Functional epileptic network in left mesial temporal lobe epilepsy detected using resting fMRI. Epilepsy Res. 2010;88(2–3):168–78.PubMedCrossRefGoogle Scholar
  224. 224.
    Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol. 2006;59(2):335–43.PubMedCrossRefGoogle Scholar
  225. 225.
    Tian L, Jiang T, Wang Y, Zang Y, He Y, Liang M, et al. Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2006;400:39–43.PubMedCrossRefGoogle Scholar
  226. 226.
    He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci USA. 2008;105(41):16039–44.PubMedCrossRefGoogle Scholar
  227. 227.
    Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA. 2007;104(32):13170–5.PubMedCrossRefGoogle Scholar
  228. 228.
    Leopold DA, Murayama Y, Logothetis NK. Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex. 2003;13(4):422–33.PubMedCrossRefGoogle Scholar
  229. 229.
    Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM. Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain. 2006;129(Pt 2):527–37.PubMedGoogle Scholar
  230. 230.
    Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology. 2009;57(7–8):640–52.PubMedCrossRefGoogle Scholar
  231. 231.
    Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J. Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol Aging. 2006;27:1395–404.PubMedCrossRefGoogle Scholar
  232. 232.
    Martuzzi R, Ramani R, Qiu M, Rajeevan N, Constable RT. Functional connectivity and alterations in baseline brain state in humans. Neuroimage. 2010;49(1):823–34.PubMedCrossRefGoogle Scholar
  233. 233.
    Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci USA. 2010;107(10):4734–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michelle Hampson
    • 1
  • Xilin Shen
    • 2
  • R. Todd Constable
    • 3
  1. 1.Department of Diagnostic RadiologyYale University, MRRCNew HavenUSA
  2. 2.Department of Diagnostic RadiologyYale UniversityNew HavenUSA
  3. 3.Diagnostic Radiology, Biomedical Engineering, and Neurosurgery, The Anlyan CenterYale University School of MedicineNew HavenUSA

Personalised recommendations