Advertisement

Clinical Applications of Diffusion

  • Reza Forghani
  • Pamela W. Schaefer
Chapter

Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is a technique based on diffusion of water molecules in tissues, with clinical applications to a wide array of pathological conditions. Currently, DWI is the most reliable method for detection of early and small ischemic infarcts in the brain and the gold standard for determination of the infarct core. DWI is also an important sequence for characterization of various neoplastic conditions such as epidermoid tumors, lymphomas, and high-grade astrocytomas and enables distinction of pyogenic abscesses from ring-enhancing intracranial neoplasms. Additional applications of DWI include differentiation of vasogenic edema syndromes from acute ischemia, identification of acute demyelinating lesions, and characterization of encephalitides, toxic and metabolic lesions, and diffuse axonal injury. This chapter provides an overview of current clinical applications of DWI as well as potential future applications of DWI currently under investigation, including its use for prediction of complications and outcomes of ischemic strokes and distinction of tumor progression from treatment-related changes.

Keywords

Apparent Diffusion Coefficient Diffusion Tensor Imaging Posterior Reversible Encephalopathy Syndrome Restricted Diffusion Transient Global Amnesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.CrossRefGoogle Scholar
  2. 2.
    James TL, McDonald GG. Measurement of the self-diffusion coefficient of each component in a complex system using pulsed-­gradient fourier transform NMR. J Magn Reson. 1973;11:58–61.Google Scholar
  3. 3.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.PubMedGoogle Scholar
  4. 4.
    Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol. 1987;28:353–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.PubMedGoogle Scholar
  6. 6.
    Brooks DJ, Luthert P, Gadian D, Marsden CD. Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry. 1989;52:108–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hanicke W, Deimling M. MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med. 1989;9:423–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Doran M, Hajnal JV, Van Bruggen N, King MD, Young IR, Bydder GM. Normal and abnormal white matter tracts shown by MR imaging using directional diffusion weighted sequences. J Comput Assist Tomogr. 1990;14:865–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Sevick RJ, Kucharczyk J, Mintorovitch J, Moseley ME, Derugin N, Norman D. Diffusion-weighted MR imaging and T2-weighted MR imaging in acute cerebral ischaemia: comparison and correlation with histopathology. Acta Neurochir Suppl (Wien). 1990;51:210–2.Google Scholar
  11. 11.
    Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439–45.PubMedGoogle Scholar
  12. 12.
    Moseley ME, Kucharczyk J, Mintorovitch J, et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol. 1990;11:423–9.PubMedGoogle Scholar
  13. 13.
    Tsuruda JS, Chew WM, Moseley ME, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol. 1990;11:925–31. discussion 932–924.PubMedGoogle Scholar
  14. 14.
    Merboldt KD, Hanicke W, Gyngell ML, Frahm J, Bruhn H. The influence of flow and motion in MRI of diffusion using a modified CE-FAST sequence. Magn Reson Med. 1989;12:198–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodman JA, Kroenke CD, Bretthorst GL, Ackerman JJ, Neil JJ. Sodium ion apparent diffusion coefficient in living rat brain. Magn Reson Med. 2005;53:1040–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Mintorovitch J, Yang GY, Shimizu H, Kucharczyk J, Chan PH, Weinstein PR. Diffusion-weighted magnetic resonance imaging of acute focal cerebral ischemia: comparison of signal intensity with changes in brain water and Na+, K(+)-ATPase activity. J Cereb Blood Flow Metab. 1994;14:332–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23:746–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Veldhuis WB, van der Stelt M, Delmas F, et al. In vivo excitotoxicity induced by ouabain, a Na+/K+−ATPase inhibitor. J Cereb Blood Flow Metab. 2003;23:62–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology. 1992;185:687–90.PubMedGoogle Scholar
  20. 20.
    Duong TQ, Ackerman JJ, Ying HS, Neil JJ. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19 F NMR. Magn Reson Med. 1998;40:1–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Babsky AM, Topper S, Zhang H, et al. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn Reson Med. 2008;59:485–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Transient hypoxia-ischemia in rats: changes in diffusion-sensitive MR imaging findings, extracellular space, and Na+-K+-adenosine triphosphatase and cytochrome oxidase activity. Radiology. 2002;223:65–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson AW, Zhong J, Petroff OA, et al. Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn Reson Med. 1996;35:162–7.PubMedCrossRefGoogle Scholar
  24. 24.
    van der Toorn A, Sykova E, Dijkhuizen RM, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med. 1996;36:52–60.PubMedCrossRefGoogle Scholar
  25. 25.
    van der Toorn A, Dijkhuizen RM, Tulleken CA, Nicolay K. Diffusion of metabolites in normal and ischemic rat brain measured by localized 1H MRS. Magn Reson Med. 1996;36:914–22.PubMedCrossRefGoogle Scholar
  26. 26.
    Neil JJ, Duong TQ, Ackerman JJ. Evaluation of intracellular diffusion in normal and globally-ischemic rat brain via 133Cs NMR. Magn Reson Med. 1996;35:329–35.PubMedCrossRefGoogle Scholar
  27. 27.
    Mastro AM, Babich MA, Taylor WD, Keith AD. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci USA. 1984;81:3414–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Wojcieszyn JW, Schlegel RA, Wu ES, Jacobson KA. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci USA. 1981;78:4407–10.PubMedCrossRefGoogle Scholar
  29. 29.
    Szafer A, Zhong J, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995;33:697–712.PubMedCrossRefGoogle Scholar
  30. 30.
    Chalela JA, Kidwell CS, Nentwich LM, et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet. 2007;369:293–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Gonzalez RG, Schaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology. 1999;210:155–62.PubMedGoogle Scholar
  32. 32.
    Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol. 2003;24:878–85.PubMedGoogle Scholar
  33. 33.
    Urbach H, Flacke S, Keller E, et al. Detectability and detection rate of acute cerebral hemisphere infarcts on CT and diffusion-weighted MRI. Neuroradiology. 2000;42:722–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Mullins ME, Schaefer PW, Sorensen AG, et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology. 2002;224:353–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Hjort N, Christensen S, Solling C, et al. Ischemic injury detected by diffusion imaging 11 minutes after stroke. Ann Neurol. 2005;58:462–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Engelter ST, Wetzel SG, Radue EW, Rausch M, Steck AJ, Lyrer PA. The clinical significance of diffusion-weighted MR imaging in infratentorial strokes. Neurology. 2004;62:574–80.PubMedGoogle Scholar
  37. 37.
    Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME. Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol. 1997;41:574–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Welch KM, Windham J, Knight RA, et al. A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging. Stroke. 1995;26:1983–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Knight RA, Dereski MO, Helpern JA, Ordidge RJ, Chopp M. Magnetic resonance imaging assessment of evolving focal cerebral ischemia. Comparison with histopathology in rats. Stroke. 1994;25:1252–61. discussion 1261–1252.PubMedCrossRefGoogle Scholar
  40. 40.
    Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology. 1997;49:113–9.PubMedGoogle Scholar
  41. 41.
    Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology. 1992;42:1717–23.PubMedGoogle Scholar
  42. 42.
    Schwamm LH, Koroshetz WJ, Sorensen AG, et al. Time course of lesion development in patients with acute stroke: serial diffusion- and hemodynamic-weighted magnetic resonance imaging. Stroke. 1998;29:2268–76.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiebach JB, Jansen O, Schellinger PD, Heiland S, Hacke W, Sartor K. Serial analysis of the apparent diffusion coefficient time course in human stroke. Neuroradiology. 2002;44:294–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37:231–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Copen WA, Schwamm LH, Gonzalez RG, et al. Ischemic stroke: effects of etiology and patient age on the time course of the core apparent diffusion coefficient. Radiology. 2001;221:27–34.PubMedCrossRefGoogle Scholar
  46. 46.
    Kuker W, Weise J, Krapf H, Schmidt F, Friese S, Bahr M. MRI characteristics of acute and subacute brainstem and thalamic infarctions: value of T2- and diffusion-weighted sequences. J Neurol. 2002;249:33–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Oppenheim C, Stanescu R, Dormont D, et al. False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol. 2000;21:1434–40.PubMedGoogle Scholar
  48. 48.
    Ay H, Buonanno FS, Rordorf G, et al. Normal diffusion-weighted MRI during stroke-like deficits. Neurology. 1999;52:1784–92.PubMedGoogle Scholar
  49. 49.
    Narisawa A, Shamoto H, Shimizu H, Tominaga T, Yoshimoto T. Diffusion-weighted magnetic resonance imaging (MRI) in acute brain stem infarction. No To Shinkei. 2001;53:1021–6.PubMedGoogle Scholar
  50. 50.
    Etgen T, Grafin von Einsiedel H, Rottinger M, Winbeck K, Conrad B, Sander D. Detection of acute brainstem infarction by using DWI/MRI. Eur Neurol. 2004;52:145–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Fitzek S, Fitzek C, Urban PP, Marx J, Hopf HC, Stoeter P. Time course of lesion development in patients with acute brain stem infarction and correlation with NIHSS score. Eur J Radiol. 2001;39:180–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Linfante I, Llinas RH, Schlaug G, Chaves C, Warach S, Caplan LR. Diffusion-weighted imaging and National Institutes of Health Stroke Scale in the acute phase of posterior-circulation stroke. Arch Neurol. 2001;58:621–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Toi H, Uno M, Harada M, et al. Diagnosis of acute brain-stem infarcts using diffusion-weighed MRI. Neuroradiology. 2003;45:352–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Burdette JH, Elster AD. Diffusion-weighted imaging of cerebral infarctions: are higher B values better? J Comput Assist Tomogr. 2002;26:622–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Cihangiroglu M, Citci B, Kilickesmez O, et al. The utility of high b-value DWI in evaluation of ischemic stroke at 3T. Eur J Radiol. 2011;78:75–81.Google Scholar
  56. 56.
    Kim HJ, Choi CG, Lee DH, Lee JH, Kim SJ, Suh DC. High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5T. AJNR Am J Neuroradiol. 2005;26:208–15.PubMedGoogle Scholar
  57. 57.
    Meyer JR, Gutierrez A, Mock B, et al. High-b-value diffusion-weighted MR imaging of suspected brain infarction. AJNR Am J Neuroradiol. 2000;21:1821–9.PubMedGoogle Scholar
  58. 58.
    Bertrand A, Oppenheim C, Lamy C, et al. Comparison of optimized and standard diffusion-weighted imaging at 1.5T for the detection of acute lesions in patients with transient ischemic attack. AJNR Am J Neuroradiol. 2008;29:363–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuhl CK, Textor J, Gieseke J, et al. Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology. 2005;234:509–16.PubMedCrossRefGoogle Scholar
  60. 60.
    Baird AE, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;41:581–9.PubMedCrossRefGoogle Scholar
  61. 61.
    van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LM, Mali WP. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke. 1998;29:1783–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Tong DC, Yenari MA, Albers GW, O’Brien M, Marks MP, Moseley ME. Correlation of perfusion- and diffusion-weighted MRI with NIHSS score in acute (<6.5 hour) ischemic stroke. Neurology. 1998;50:864–70.PubMedGoogle Scholar
  63. 63.
    Kidwell CS, Saver JL, Mattiello J, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47:462–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol. 2002;52:698–703.PubMedCrossRefGoogle Scholar
  65. 65.
    Schaefer PW, Hassankhani A, Putman C, et al. Characterization and evolution of diffusion MR imaging abnormalities in stroke patients undergoing intra-arterial thrombolysis. AJNR Am J Neuroradiol. 2004;25:951–7.PubMedGoogle Scholar
  66. 66.
    Miyasaka N, Nagaoka T, Kuroiwa T, et al. Histopathologic correlates of temporal diffusion changes in a rat model of cerebral hypoxia/ischemia. AJNR Am J Neuroradiol. 2000;21:60–6.PubMedGoogle Scholar
  67. 67.
    Olivot JM, Mlynash M, Thijs VN, et al. Relationships between cerebral perfusion and reversibility of acute diffusion lesions in DEFUSE: insights from RADAR. Stroke. 2009;40:1692–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Schaefer PW, Ozsunar Y, He J, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2003;24:436–43.PubMedGoogle Scholar
  69. 69.
    Fiehler J, Knab R, Reichenbach JR, Fitzek C, Weiller C, Rother J. Apparent diffusion coefficient decreases and magnetic resonance imaging perfusion parameters are associated in ischemic tissue of acute stroke patients. J Cereb Blood Flow Metab. 2001;21:577–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Schlaug G, Benfield A, Baird AE, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53:1528–37.PubMedGoogle Scholar
  71. 71.
    Rohl L, Ostergaard L, Simonsen CZ, et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke. 2001;32:1140–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Gonen KA, Simsek MM. Diffusion weighted imaging and estimation of prognosis using apparent diffusion coefficient measurements in ischemic stroke. Eur J Radiol. 2010;76:157–61.Google Scholar
  73. 73.
    Fiehler J, Foth M, Kucinski T, et al. Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke. 2002;33:79–86.PubMedCrossRefGoogle Scholar
  74. 74.
    Jones TH, Morawetz RB, Crowell RM, et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–82.PubMedCrossRefGoogle Scholar
  75. 75.
    Calandre L, Ortega JF, Bermejo F. Anticoagulation and hemorrhagic infarction in cerebral embolism secondary to rheumatic heart disease. Arch Neurol. 1984;41:1152–4.PubMedGoogle Scholar
  76. 76.
    Hakim AM, Ryder-Cooke A, Melanson D. Sequential computerized tomographic appearance of strokes. Stroke. 1983;14:893–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Hornig CR, Dorndorf W, Agnoli AL. Hemorrhagic cerebral infarction – a prospective study. Stroke. 1986;17:179–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Horowitz SH, Zito JL, Donnarumma R, Patel M, Alvir J. Computed tomographic-angiographic findings within the first five hours of cerebral infarction. Stroke. 1991;22:1245–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA. 1999;282:2003–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–29.PubMedCrossRefGoogle Scholar
  81. 81.
    Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. The NINDS t-PA Stroke Study Group. Stroke. 1997;28:2109–18.Google Scholar
  82. 82.
    Kim EY, Na DG, Kim SS, Lee KH, Ryoo JW, Kim HK. Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am J Neuroradiol. 2005;26:1050–5.PubMedGoogle Scholar
  83. 83.
    Derex L, Hermier M, Adeleine P, et al. Clinical and imaging predictors of intracerebral haemorrhage in stroke patients treated with intravenous tissue plasminogen activator. J Neurol Neurosurg Psychiatry. 2005;76:70–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Tong DC, Adami A, Moseley ME, Marks MP. Prediction of hemorrhagic transformation following acute stroke: role of diffusion- and perfusion-weighted magnetic resonance imaging. Arch Neurol. 2001;58:587–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Selim M, Fink JN, Kumar S, et al. Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator: prognostic value of the initial apparent diffusion coefficient and diffusion-weighted lesion volume. Stroke. 2002;33:2047–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Oppenheim C, Samson Y, Dormont D, et al. DWI prediction of symptomatic hemorrhagic transformation in acute MCA infarct. J Neuroradiol. 2002;29:6–13.PubMedGoogle Scholar
  87. 87.
    Singer OC, Humpich MC, Fiehler J, et al. Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol. 2008;63:52–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Campbell BC, Christensen S, Butcher KS, et al. Regional very low cerebral blood volume predicts hemorrhagic transformation better than diffusion-weighted imaging volume and thresholded apparent diffusion coefficient in acute ischemic stroke. Stroke. 2010;41:82–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim JH, Bang OY, Liebeskind DS, et al. Impact of baseline tissue status (diffusion-weighted imaging lesion) versus perfusion status (severity of hypoperfusion) on hemorrhagic transformation. Stroke. 2010;41:e135–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Kassner A, Roberts T, Taylor K, Silver F, Mikulis D. Prediction of hemorrhage in acute ischemic stroke using permeability MR imaging. AJNR Am J Neuroradiol. 2005;26:2213–7.PubMedGoogle Scholar
  91. 91.
    Hjort N, Wu O, Ashkanian M, et al. MRI detection of early blood-brain barrier disruption: parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke. 2008;39:1025–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Adams Jr HP, del Zoppo G, Alberts MJ, et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke. 2007;38:1655–711.PubMedCrossRefGoogle Scholar
  93. 93.
    Lovblad KO, Baird AE, Schlaug G, et al. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol. 1997;42:164–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Nighoghossian N, Hermier M, Adeleine P, et al. Baseline magnetic resonance imaging parameters and stroke outcome in patients treated by intravenous tissue plasminogen activator. Stroke. 2003;34:458–63.PubMedCrossRefGoogle Scholar
  95. 95.
    Engelter ST, Provenzale JM, Petrella JR, DeLong DM, Alberts MJ. Infarct volume on apparent diffusion coefficient maps correlates with length of stay and outcome after middle cerebral artery stroke. Cerebrovasc Dis. 2003;15:188–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Derex L, Nighoghossian N, Hermier M, et al. Influence of pretreatment MRI parameters on clinical outcome, recanalization and infarct size in 49 stroke patients treated by intravenous tissue plasminogen activator. J Neurol Sci. 2004;225:3–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Sanak D, Nosal V, Horak D, et al. Impact of diffusion-weighted MRI-measured initial cerebral infarction volume on clinical outcome in acute stroke patients with middle cerebral artery occlusion treated by thrombolysis. Neuroradiology. 2006;48:632–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Parsons MW, Christensen S, McElduff P, et al. Pretreatment ­diffusion- and perfusion-MR lesion volumes have a crucial influence on clinical response to stroke thrombolysis. J Cereb Blood Flow Metab. 2010;30(6):1214–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Yoo AJ, Barak ER, Copen WA, et al. Combining acute DWI and MTT lesion volumes with NIHSS score improves the prediction of acute stroke outcome. Stroke. 2010;41(8):1728–35.PubMedCrossRefGoogle Scholar
  100. 100.
    Yoo AJ, Verduzco LA, Schaefer PW, Hirsch JA, Rabinov JD, Gonzalez RG. MRI-based selection for intra-arterial stroke therapy: value of pretreatment diffusion-weighted imaging lesion volume in selecting patients with acute stroke who will benefit from early recanalization. Stroke. 2009;40:2046–54.PubMedCrossRefGoogle Scholar
  101. 101.
    Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40:2276–93.PubMedCrossRefGoogle Scholar
  102. 102.
    Albers GW, Caplan LR, Easton JD, et al. Transient ischemic attack – proposal for a new definition. N Engl J Med. 2002;347:1713–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Ay H, Oliveira-Filho J, Buonanno FS, et al. ‘Footprints’ of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis. 2002;14:177–86.PubMedCrossRefGoogle Scholar
  104. 104.
    Kidwell CS, Alger JR, Di Salle F, et al. Diffusion MRI in patients with transient ischemic attacks. Stroke. 1999;30:1174–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Crisostomo RA, Garcia MM, Tong DC. Detection of diffusion-weighted MRI abnormalities in patients with transient ischemic attack: correlation with clinical characteristics. Stroke. 2003;34:932–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Inatomi Y, Kimura K, Yonehara T, Fujioka S, Uchino M. DWI abnormalities and clinical characteristics in TIA patients. Neurology. 2004;62:376–80.PubMedGoogle Scholar
  107. 107.
    Purroy F, Montaner J, Rovira A, Delgado P, Quintana M, Alvarez-Sabin J. Higher risk of further vascular events among transient ischemic attack patients with diffusion-weighted imaging acute ischemic lesions. Stroke. 2004;35:2313–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Ay H, Koroshetz WJ, Benner T, et al. Transient ischemic attack with infarction: a unique syndrome? Ann Neurol. 2005;57:679–86.PubMedCrossRefGoogle Scholar
  109. 109.
    Mullins ME, Grant PE, Wang B, Gonzalez RG, Schaefer PW. Parenchymal abnormalities associated with cerebral venous sinus thrombosis: assessment with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2004;25:1666–75.PubMedGoogle Scholar
  110. 110.
    Keller E, Flacke S, Urbach H, Schild HH. Diffusion- and perfusion-weighted magnetic resonance imaging in deep cerebral venous thrombosis. Stroke. 1999;30:1144–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Ducreux D, Oppenheim C, Vandamme X, et al. Diffusion-weighted imaging patterns of brain damage associated with cerebral venous thrombosis. AJNR Am J Neuroradiol. 2001;22:261–8.PubMedGoogle Scholar
  112. 112.
    Sagduyu A, Sirin H, Mulayim S, et al. Cerebral cortical and deep venous thrombosis without sinus thrombosis: clinical MRI correlates. Acta Neurol Scand. 2006;114:254–60.PubMedCrossRefGoogle Scholar
  113. 113.
    Schwartz RB, Mulkern RV, Gudbjartsson H, Jolesz F. Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. AJNR Am J Neuroradiol. 1998;19:859–62.PubMedGoogle Scholar
  114. 114.
    McKinney AM, Short J, Truwit CL, et al. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol. 2007;189:904–12.PubMedCrossRefGoogle Scholar
  115. 115.
    Donmez FY, Basaran C, Kayahan Ulu EM, Yildirim M, Coskun M. MRI Features of posterior reversible encephalopathy syndrome in 33 patients. J Neuroimaging. 2010;20(1):22–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Crasto SG, Rizzo L, Sardo P, Davini O, De Lucchi R. Reversible encephalopathy syndrome: report of 12 cases with follow-up. Neuroradiology. 2004;46:795–804.PubMedCrossRefGoogle Scholar
  117. 117.
    Ahn KJ, You WJ, Jeong SL, et al. Atypical manifestations of reversible posterior leukoencephalopathy syndrome: findings on diffusion imaging and ADC mapping. Neuroradiology. 2004;46:978–83.PubMedCrossRefGoogle Scholar
  118. 118.
    Onder AM, Lopez R, Teomete U, et al. Posterior reversible encephalopathy syndrome in the pediatric renal population. Pediatr Nephrol. 2007;22:1921–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Chen TY, Lee HJ, Wu TC, Tsui YK. MR imaging findings of medulla oblongata involvement in posterior reversible encephalopathy syndrome secondary to hypertension. AJNR Am J Neuroradiol. 2009;30:755–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Pande AR, Ando K, Ishikura R, et al. Clinicoradiological factors influencing the reversibility of posterior reversible encephalopathy syndrome: a multicenter study. Radiat Med. 2006;24:659–68.PubMedCrossRefGoogle Scholar
  121. 121.
    Kuroda H, Ogasawara K, Hirooka R, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy using middle cerebral artery signal intensity in preoperative single-slab 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery. 2009;64:1065–71. discussion 1071–1072.PubMedCrossRefGoogle Scholar
  122. 122.
    Karapanayiotides T, Meuli R, Devuyst G, et al. Postcarotid endarterectomy hyperperfusion or reperfusion syndrome. Stroke. 2005;36:21–6.PubMedCrossRefGoogle Scholar
  123. 123.
    Scozzafava J, Hussain MS, Yeo T, Jeerakathil T, Brindley PG. Case report: aggressive blood pressure management for carotid endarterectomy hyperperfusion syndrome. Can J Anaesth. 2006;53:764–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Du Mesnil De Rochemont R, Schneider S, Yan B, Lehr A, Sitzer M, Berkefeld J. Diffusion-weighted MR imaging lesions after filter-protected stenting of high-grade symptomatic carotid artery stenoses. AJNR Am J Neuroradiol. 2006;27:1321–5.PubMedGoogle Scholar
  125. 125.
    Cho AH, Suh DC, Kim GE, et al. MRI evidence of reperfusion injury associated with neurological deficits after carotid revascularization procedures. Eur J Neurol. 2009;16:1066–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Hirooka R, Ogasawara K, Sasaki M, et al. Magnetic resonance imaging in patients with cerebral hyperperfusion and cognitive impairment after carotid endarterectomy. J Neurosurg. 2008;108:1178–83.PubMedCrossRefGoogle Scholar
  127. 127.
    Shinno K, Ueda S, Uno M, Nishitani K, Nagahiro S, Harada M. Hyperperfusion syndrome following carotid endarterectomy: evaluation using diffusion-weighted magnetic resonance imaging – case report. Neurol Med Chir (Tokyo). 1998;38:557–61.CrossRefGoogle Scholar
  128. 128.
    Sander K, Sander D. New insights into transient global amnesia: recent imaging and clinical findings. Lancet Neurol. 2005;4:437–44.PubMedCrossRefGoogle Scholar
  129. 129.
    Sedlaczek O, Hirsch JG, Grips E, et al. Detection of delayed focal MR changes in the lateral hippocampus in transient global amnesia. Neurology. 2004;62:2165–70.PubMedGoogle Scholar
  130. 130.
    Toledo M, Pujadas F, Grive E, Alvarez-Sabin J, Quintana M, Rovira A. Lack of evidence for arterial ischemia in transient global amnesia. Stroke. 2008;39:476–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Lee HY, Kim JH, Weon YC, et al. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus. Neuroradiology. 2007;49:481–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Yang Y, Kim S, Kim JH. Ischemic evidence of transient global amnesia: location of the lesion in the hippocampus. J Clin Neurol. 2008;4:59–66.PubMedCrossRefGoogle Scholar
  133. 133.
    Weon YC, Kim JH, Lee JS, Kim SY. Optimal diffusion-weighted imaging protocol for lesion detection in transient global amnesia. AJNR Am J Neuroradiol. 2008;29:1324–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Matsui M, Imamura T, Sakamoto S, Ishii K, Kazui H, Mori E. Transient global amnesia: increased signal intensity in the right hippocampus on diffusion-weighted magnetic resonance imaging. Neuroradiology. 2002;44:235–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Greer DM, Schaefer PW, Schwamm LH. Unilateral temporal lobe stroke causing ischemic transient global amnesia: role for diffusion-weighted imaging in the initial evaluation. J Neuroimaging. 2001;11:317–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Ay H, Furie KL, Yamada K, Koroshetz WJ. Diffusion-weighted MRI characterizes the ischemic lesion in transient global amnesia. Neurology. 1998;51:901–3.PubMedGoogle Scholar
  137. 137.
    Saito K, Kimura K, Minematsu K, Shiraishi A, Nakajima M. Transient global amnesia associated with an acute infarction in the retrosplenium of the corpus callosum. J Neurol Sci. 2003;210:95–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Lee SY, Kim WJ, Suh SH, Oh SH, Lee KY. Higher lesion detection by 3.0T MRI in patient with transient global amnesia. Yonsei Med J. 2009;50:211–4.PubMedCrossRefGoogle Scholar
  139. 139.
    Chabriat H, Vahedi K, Clark CA, et al. Decreased hemispheric water mobility in hemiplegic migraine related to mutation of CACNA1A gene. Neurology. 2000;54:510–2.PubMedGoogle Scholar
  140. 140.
    Bhatia R, Desai S, Tripathi M, et al. Sporadic hemiplegic migraine: report of a case with clinical and radiological features. J Headache Pain. 2008;9:385–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Gutschalk A, Kollmar R, Mohr A, et al. Multimodal functional imaging of prolonged neurological deficits in a patient suffering from familial hemiplegic migraine. Neurosci Lett. 2002;332:115–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Jacob A, Mahavish K, Bowden A, Smith ET, Enevoldson P, White RP. Imaging abnormalities in sporadic hemiplegic migraine on conventional MRI, diffusion and perfusion MRI and MRS. Cephalalgia. 2006;26:1004–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Oberndorfer S, Wober C, Nasel C, et al. Familial hemiplegic migraine: follow-up findings of diffusion-weighted magnetic resonance imaging (MRI), perfusion-MRI and [99mTc] HMPAO-SPECT in a patient with prolonged hemiplegic aura. Cephalalgia. 2004;24:533–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Gonzalez-Alegre P, Tippin J. Prolonged cortical electrical depression and diffuse vasospasm without ischemia in a case of severe hemiplegic migraine during pregnancy. Headache. 2003;43:72–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Butteriss DJ, Ramesh V, Birchall D. Serial MRI in a case of familial hemiplegic migraine. Neuroradiology. 2003;45:300–3.PubMedGoogle Scholar
  146. 146.
    Masuzaki M, Utsunomiya H, Yasumoto S, Mitsudome A. A case of hemiplegic migraine in childhood: transient unilateral hyperperfusion revealed by perfusion MR imaging and MR angiography. AJNR Am J Neuroradiol. 2001;22:1795–7.PubMedGoogle Scholar
  147. 147.
    Prodan CI, Holland NR, Lenaerts ME, Parke JT. Magnetic resonance angiogram evidence of vasospasm in familial hemiplegic migraine. J Child Neurol. 2002;17:470–2.PubMedCrossRefGoogle Scholar
  148. 148.
    Grimaldi D, Tonon C, Cevoli S, et al. Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia. 2010;30(5):552–9.PubMedGoogle Scholar
  149. 149.
    Hasegawa D, Orima H, Fujita M, et al. Diffusion-weighted imaging in kainic acid-induced complex partial status epilepticus in dogs. Brain Res. 2003;983:115–27.PubMedCrossRefGoogle Scholar
  150. 150.
    Righini A, Pierpaoli C, Alger JR, Di Chiro G. Brain parenchyma apparent diffusion coefficient alterations associated with experimental complex partial status epilepticus. Magn Reson Imaging. 1994;12:865–71.PubMedCrossRefGoogle Scholar
  151. 151.
    Wieshmann UC, Symms MR, Shorvon SD. Diffusion changes in status epilepticus. Lancet. 1997;350:493–4.PubMedCrossRefGoogle Scholar
  152. 152.
    Sagiuchi T, Ishii K, Asano Y, et al. Transient seizure activity demonstrated by Tc-99m HMPAO SPECT and diffusion-weighted MR imaging. Ann Nucl Med. 2001;15:267–70.PubMedCrossRefGoogle Scholar
  153. 153.
    Lansberg MG, O’Brien MW, Norbash AM, Moseley ME, Morrell M, Albers GW. MRI abnormalities associated with partial status epilepticus. Neurology. 1999;52:1021–7.PubMedGoogle Scholar
  154. 154.
    Huang YC, Weng HH, Tsai YT, et al. Periictal magnetic resonance imaging in status epilepticus. Epilepsy Res. 2009;86:72–81.PubMedCrossRefGoogle Scholar
  155. 155.
    Kim JA, Chung JI, Yoon PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol. 2001;22:1149–60.PubMedGoogle Scholar
  156. 156.
    Hong KS, Cho YJ, Lee SK, Jeong SW, Kim WK, Oh EJ. Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus. Seizure. 2004;13:317–21.PubMedCrossRefGoogle Scholar
  157. 157.
    Milligan TA, Zamani A, Bromfield E. Frequency and patterns of MRI abnormalities due to status epilepticus. Seizure. 2009;18:104–8.PubMedCrossRefGoogle Scholar
  158. 158.
    Okumura A, Abe S, Hara S, Aoyagi Y, Shimizu T, Watanabe K. Transiently reduced water diffusion in the corpus callosum in infants with benign partial epilepsy in infancy. Brain Dev. 2010;32:564–6.Google Scholar
  159. 159.
    Oster J, Doherty C, Grant PE, Simon M, Cole AJ. Diffusion-weighted imaging abnormalities in the splenium after seizures. Epilepsia. 2003;44:852–4.PubMedCrossRefGoogle Scholar
  160. 160.
    Men S, Lee DH, Barron JR, Munoz DG. Selective neuronal necrosis associated with status epilepticus: MR findings. AJNR Am J Neuroradiol. 2000;21:1837–40.PubMedGoogle Scholar
  161. 161.
    Nakasu Y, Nakasu S, Morikawa S, Uemura S, Inubushi T, Handa J. Diffusion-weighted MR in experimental sustained seizures elicited with kainic acid. AJNR Am J Neuroradiol. 1995;16:1185–92.PubMedGoogle Scholar
  162. 162.
    Parmar H, Lim SH, Tan NC, Lim CC. Acute symptomatic seizures and hippocampus damage: DWI and MRS findings. Neurology. 2006;66:1732–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Londono A, Castillo M, Lee YZ, Smith JK. Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures. AJNR Am J Neuroradiol. 2003;24:1582–6.PubMedGoogle Scholar
  164. 164.
    Wieshmann UC, Clark CA, Symms MR, Barker GJ, Birnie KD, Shorvon SD. Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging. 1999;17:29–36.PubMedCrossRefGoogle Scholar
  165. 165.
    Wehner T, Lapresto E, Tkach J, et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology. 2007;68:122–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Lee JH, Chung CK, Song IC, Chang KH, Kim HJ. Limited utility of interictal apparent diffusion coefficient in the evaluation of hippocampal sclerosis. Acta Neurol Scand. 2004;110:53–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Luat AF, Chugani HT. Molecular and diffusion tensor imaging of epileptic networks. Epilepsia. 2008;49 Suppl 3:15–22.PubMedCrossRefGoogle Scholar
  168. 168.
    Pillai JJ, Williams HT, Faro S. Functional imaging in temporal lobe epilepsy. Semin Ultrasound CT MR. 2007;28:437–50.PubMedCrossRefGoogle Scholar
  169. 169.
    Lo L, Tan AC, Umapathi T, Lim CC. Diffusion-weighted MR imaging in early diagnosis and prognosis of hypoglycemia. AJNR Am J Neuroradiol. 2006;27:1222–4.PubMedGoogle Scholar
  170. 170.
    Cordonnier C, Oppenheim C, Lamy C, Meder JF, Mas JL. Serial diffusion and perfusion-weighted MR in transient hypoglycemia. Neurology. 2005;65:175.PubMedCrossRefGoogle Scholar
  171. 171.
    Bottcher J, Kunze A, Kurrat C, et al. Localized reversible reduction of apparent diffusion coefficient in transient hypoglycemia-induced hemiparesis. Stroke. 2005;36:e20–2.PubMedCrossRefGoogle Scholar
  172. 172.
    Okamoto K, Tokiguchi S, Furusawa T, et al. MR features of diseases involving bilateral middle cerebellar peduncles. AJNR Am J Neuroradiol. 2003;24:1946–54.PubMedGoogle Scholar
  173. 173.
    Finelli PF. Diffusion-weighted MR in hypoglycemic coma. Neurology. 2001;57:933.PubMedGoogle Scholar
  174. 174.
    Kim JH, Choi JY, Koh SB, Lee Y. Reversible splenial abnormality in hypoglycemic encephalopathy. Neuroradiology. 2007;49:217–22.PubMedCrossRefGoogle Scholar
  175. 175.
    Chan R, Erbay S, Oljeski S, Thaler D, Bhadelia R. Case report: hypoglycemia and diffusion-weighted imaging. J Comput Assist Tomogr. 2003;27:420–3.PubMedCrossRefGoogle Scholar
  176. 176.
    Fujioka M, Okuchi K, Hiramatsu KI, Sakaki T, Sakaguchi S, Ishii Y. Specific changes in human brain after hypoglycemic injury. Stroke. 1997;28:584–7.PubMedCrossRefGoogle Scholar
  177. 177.
    Chen CY, Lee KW, Lee CC, Chin SC, Chung HW, Zimmerman RA. Heroin-induced spongiform leukoencephalopathy: value of diffusion MR imaging. J Comput Assist Tomogr. 2000;24:735–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Hagel J, Andrews G, Vertinsky T, Heran MK, Keogh C. “Chasing the dragon” – imaging of heroin inhalation leukoencephalopathy. Can Assoc Radiol J. 2005;56:199–203.PubMedGoogle Scholar
  179. 179.
    Ahmed A, Loes DJ, Bressler EL. Reversible magnetic resonance imaging findings in metronidazole-induced encephalopathy. Neurology. 1995;45:588–9.PubMedGoogle Scholar
  180. 180.
    Kim E, Na DG, Kim EY, Kim JH, Son KR, Chang KH. MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR Am J Neuroradiol. 2007;28:1652–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Lee SS, Cha SH, Lee SY, Song CJ. Reversible inferior colliculus lesion in metronidazole-induced encephalopathy: magnetic resonance findings on diffusion-weighted and fluid attenuated inversion recovery imaging. J Comput Assist Tomogr. 2009;33:305–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Kim DW, Park JM, Yoon BW, Baek MJ, Kim JE, Kim S. Metronidazole-induced encephalopathy. J Neurol Sci. 2004;224:107–11.PubMedCrossRefGoogle Scholar
  183. 183.
    Seok JI, Yi H, Song YM, Lee WY. Metronidazole-induced encephalopathy and inferior olivary hypertrophy: lesion analysis with diffusion-weighted imaging and apparent diffusion coefficient maps. Arch Neurol. 2003;60:1796–800.PubMedCrossRefGoogle Scholar
  184. 184.
    Kinoshita T, Sugihara S, Matsusue E, Fujii S, Ametani M, Ogawa T. Pallidoreticular damage in acute carbon monoxide poisoning: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol. 2005;26:1845–8.PubMedGoogle Scholar
  185. 185.
    Teksam M, Casey SO, Michel E, Liu H, Truwit CL. Diffusion-weighted MR imaging findings in carbon monoxide poisoning. Neuroradiology. 2002;44:109–13.PubMedCrossRefGoogle Scholar
  186. 186.
    Kawanami T, Kato T, Kurita K, Sasaki H. The pallidoreticular pattern of brain damage on MRI in a patient with carbon monoxide poisoning. J Neurol Neurosurg Psychiatry. 1998;64:282.PubMedCrossRefGoogle Scholar
  187. 187.
    Kim JH, Chang KH, Song IC, et al. Delayed encephalopathy of acute carbon monoxide intoxication: diffusivity of cerebral white matter lesions. AJNR Am J Neuroradiol. 2003;24:1592–7.PubMedGoogle Scholar
  188. 188.
    Chu K, Kang DW, Ko SB, Kim M. Diffusion-weighted MR findings of central pontine and extrapontine myelinolysis. Acta Neurol Scand. 2001;104:385–8.PubMedCrossRefGoogle Scholar
  189. 189.
    Chua GC, Sitoh YY, Lim CC, Chua HC, Ng PY. MRI findings in osmotic myelinolysis. Clin Radiol. 2002;57:800–6.PubMedGoogle Scholar
  190. 190.
    Cramer SC, Stegbauer KC, Schneider A, Mukai J, Maravilla KR. Decreased diffusion in central pontine myelinolysis. AJNR Am J Neuroradiol. 2001;22:1476–9.PubMedGoogle Scholar
  191. 191.
    Chu K, Kang DW, Kim HJ, Lee YS, Park SH. Diffusion-weighted imaging abnormalities in wernicke encephalopathy: reversible cytotoxic edema? Arch Neurol. 2002;59:123–7.PubMedCrossRefGoogle Scholar
  192. 192.
    Loh Y, Watson WD, Verma A, Krapiva P. Restricted diffusion of the splenium in acute Wernicke’s encephalopathy. J Neuroimaging. 2005;15:373–5.PubMedGoogle Scholar
  193. 193.
    Johkura K, Naito M, Naka T. Cortical involvement in Marchiafava-Bignami disease. AJNR Am J Neuroradiol. 2005;26:670–3.PubMedGoogle Scholar
  194. 194.
    Hlaihel C, Gonnaud PM, Champin S, Rousset H, Tran-Minh VA, Cotton F. Diffusion-weighted magnetic resonance imaging in Marchiafava-Bignami disease: follow-up studies. Neuroradiology. 2005;47:520–4.PubMedCrossRefGoogle Scholar
  195. 195.
    Menegon P, Sibon I, Pachai C, Orgogozo JM, Dousset V. Marchiafava-Bignami disease: diffusion-weighted MRI in corpus callosum and cortical lesions. Neurology. 2005;65:475–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Aggunlu L, Oner Y, Kocer B, Akpek S. The value of diffusion-weighted imaging in the diagnosis of Marchiafava-Bignami disease: apropos of a case. J Neuroimaging. 2008;18:188–90.PubMedCrossRefGoogle Scholar
  197. 197.
    Gallucci M, Limbucci N, Paonessa A, Caranci F. Reversible focal splenial lesions. Neuroradiology. 2007;49:541–4.PubMedCrossRefGoogle Scholar
  198. 198.
    Kim SS, Chang KH, Kim ST, et al. Focal lesion in the splenium of the corpus callosum in epileptic patients: antiepileptic drug toxicity? AJNR Am J Neuroradiol. 1999;20:125–9.PubMedGoogle Scholar
  199. 199.
    Maeda M, Shiroyama T, Tsukahara H, Shimono T, Aoki S, Takeda K. Transient splenial lesion of the corpus callosum associated with antiepileptic drugs: evaluation by diffusion-weighted MR imaging. Eur Radiol. 2003;13:1902–6.PubMedCrossRefGoogle Scholar
  200. 200.
    Gurtler S, Ebner A, Tuxhorn I, Ollech I, Pohlmann-Eden B, Woermann FG. Transient lesion in the splenium of the corpus callosum and antiepileptic drug withdrawal. Neurology. 2005;65:1032–6.PubMedCrossRefGoogle Scholar
  201. 201.
    Honda K, Nishimiya J, Sato H, et al. Transient splenial lesion of the corpus callosum after acute withdrawal of antiepileptic drug: a case report. Magn Reson Med Sci. 2006;5:211–5.PubMedCrossRefGoogle Scholar
  202. 202.
    Winslow H, Mickey B, Frohman EM. Sympathomimetic-induced kaleidoscopic visual illusion associated with a reversible splenium lesion. Arch Neurol. 2006;63:135–7.PubMedCrossRefGoogle Scholar
  203. 203.
    Steinborn M, Leiz S, Rudisser K, Griebel M, Harder T, Hahn H. CT and MRI in haemolytic uraemic syndrome with central nervous system involvement: distribution of lesions and prognostic value of imaging findings. Pediatr Radiol. 2004;34:805–10.PubMedCrossRefGoogle Scholar
  204. 204.
    Toldo I, Manara R, Cogo P, et al. Diffusion-weighted imaging findings in hemolytic uremic syndrome with central nervous system involvement. J Child Neurol. 2009;24:247–50.PubMedCrossRefGoogle Scholar
  205. 205.
    Ogura H, Takaoka M, Kishi M, et al. Reversible MR findings of hemolytic uremic syndrome with mild encephalopathy. AJNR Am J Neuroradiol. 1998;19:1144–5.PubMedGoogle Scholar
  206. 206.
    Kallenberg K, Bailey DM, Christ S, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27:1064–71.PubMedGoogle Scholar
  207. 207.
    Wong SH, Turner N, Birchall D, Walls TJ, English P, Schmid ML. Reversible abnormalities of DWI in high-altitude cerebral edema. Neurology. 2004;62:335–6.PubMedGoogle Scholar
  208. 208.
    Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X. Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions: case report. AJNR Am J Neuroradiol. 2002;23:989–94.PubMedGoogle Scholar
  209. 209.
    Tievsky AL, Ptak T, Farkas J. Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol. 1999;20:1491–9.PubMedGoogle Scholar
  210. 210.
    Bernarding J, Braun J, Koennecke HC. Diffusion- and perfusion-weighted MR imaging in a patient with acute demyelinating encephalomyelitis (ADEM). J Magn Reson Imaging. 2002;15:96–100.PubMedCrossRefGoogle Scholar
  211. 211.
    Rovaris M, Gass A, Bammer R, et al. Diffusion MRI in multiple sclerosis. Neurology. 2005;65:1526–32.PubMedCrossRefGoogle Scholar
  212. 212.
    Castriota-Scanderbeg A, Sabatini U, Fasano F, et al. Diffusion of water in large demyelinating lesions: a follow-up study. Neuroradiology. 2002;44:764–7.PubMedCrossRefGoogle Scholar
  213. 213.
    Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am. 2008;18:149–61. ix.PubMedCrossRefGoogle Scholar
  214. 214.
    Przeklasa-Auth M, Ovbiagele B, Yim C, Shewmon A. Multiple sclerosis with initial stroke-like clinicoradiologic features: case report and literature review. J Child Neurol. 2009.Google Scholar
  215. 215.
    Malhotra HS, Jain KK, Agarwal A, et al. Characterization of tumefactive demyelinating lesions using MR imaging and in-vivo proton MR spectroscopy. Mult Scler. 2009;15:193–203.PubMedCrossRefGoogle Scholar
  216. 216.
    Castriota Scanderbeg A, Tomaiuolo F, Sabatini U, Nocentini U, Grasso MG, Caltagirone C. Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol. 2000;21:862–8.PubMedGoogle Scholar
  217. 217.
    Rovaris M, Filippi M. Diffusion tensor MRI in multiple sclerosis. J Neuroimaging. 2007;17 Suppl 1:27S–30.PubMedCrossRefGoogle Scholar
  218. 218.
    Matthews PM. Brain imaging of multiple sclerosis: the next 10 years. Neuroimaging Clin N Am. 2009;19:101–12.PubMedCrossRefGoogle Scholar
  219. 219.
    Rovaris M, Agosta F, Pagani E, Filippi M. Diffusion tensor MR imaging. Neuroimaging Clin N Am. 2009;19:37–43.PubMedCrossRefGoogle Scholar
  220. 220.
    Lai PH, Ho JT, Chen WL, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23:1369–77.PubMedGoogle Scholar
  221. 221.
    Mueller-Mang C, Castillo M, Mang TG, Cartes-Zumelzu F, Weber M, Thurnher MM. Fungal versus bacterial brain abscesses: is diffusion-weighted MR imaging a useful tool in the differential diagnosis? Neuroradiology. 2007;49:651–7.PubMedCrossRefGoogle Scholar
  222. 222.
    Luthra G, Parihar A, Nath K, et al. Comparative evaluation of fungal, tubercular, and pyogenic brain abscesses with conventional and diffusion MR imaging and proton MR spectroscopy. AJNR Am J Neuroradiol. 2007;28:1332–8.PubMedCrossRefGoogle Scholar
  223. 223.
    Bergui M, Zhong J, Bradac GB, Sales S. Diffusion-weighted images of intracranial cyst-like lesions. Neuroradiology. 2001;43:824–9.PubMedCrossRefGoogle Scholar
  224. 224.
    Duprez TP, Cosnard G, Hernalsteen D. Diffusion-weighted monitoring of conservatively treated pyogenic brain abscesses: a marker for antibacterial treatment efficacy. AJNR Am J Neuroradiol. 2005;26:1296–8. author reply 1300–1291.PubMedGoogle Scholar
  225. 225.
    Cartes-Zumelzu FW, Stavrou I, Castillo M, Eisenhuber E, Knosp E, Thurnher MM. Diffusion-weighted imaging in the assessment of brain abscesses therapy. AJNR Am J Neuroradiol. 2004;25:1310–7.PubMedGoogle Scholar
  226. 226.
    Fanning NF, Laffan EE, Shroff MM. Serial diffusion-weighted MRI correlates with clinical course and treatment response in children with intracranial pus collections. Pediatr Radiol. 2006;36:26–37.PubMedCrossRefGoogle Scholar
  227. 227.
    Gordon M, Parmar H, Ibrahim M. Spread of infection to Virchow-Robin spaces in a patient with Streptococcus pneumoniae meningitis. J Comput Assist Tomogr. 2009;33:562–4.PubMedCrossRefGoogle Scholar
  228. 228.
    Gaviani P, Schwartz RB, Hedley-Whyte ET, et al. Diffusion-weighted imaging of fungal cerebral infection. AJNR Am J Neuroradiol. 2005;26:1115–21.PubMedGoogle Scholar
  229. 229.
    Chong-Han CH, Cortez SC, Tung GA. Diffusion-weighted MRI of cerebral toxoplasma abscess. AJR Am J Roentgenol. 2003;181:1711–4.PubMedGoogle Scholar
  230. 230.
    Camacho DL, Smith JK, Castillo M. Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. AJNR Am J Neuroradiol. 2003;24:633–7.PubMedGoogle Scholar
  231. 231.
    Schroeder PC, Post MJ, Oschatz E, Stadler A, Bruce-Gregorios J, Thurnher MM. Analysis of the utility of diffusion-weighted MRI and apparent diffusion coefficient values in distinguishing central nervous system toxoplasmosis from lymphoma. Neuroradiology. 2006;48:715–20.PubMedCrossRefGoogle Scholar
  232. 232.
    Fujikawa A, Tsuchiya K, Honya K, Nitatori T. Comparison of MRI sequences to detect ventriculitis. AJR Am J Roentgenol. 2006;187:1048–53.PubMedCrossRefGoogle Scholar
  233. 233.
    Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. AJNR Am J Neuroradiol. 2001;22:1510–6.PubMedGoogle Scholar
  234. 234.
    Pezzullo JA, Tung GA, Mudigonda S, Rogg JM. Diffusion-weighted MR imaging of pyogenic ventriculitis. AJR Am J Roentgenol. 2003;180:71–5.PubMedGoogle Scholar
  235. 235.
    Han KT, Choi DS, Ryoo JW, et al. Diffusion-weighted MR imaging of pyogenic intraventricular empyema. Neuroradiology. 2007;49:813–8.PubMedCrossRefGoogle Scholar
  236. 236.
    Heiner L, Demaerel P. Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis. Eur J Radiol. 2003;45:195–8.PubMedCrossRefGoogle Scholar
  237. 237.
    Bulakbasi N, Kocaoglu M. Central nervous system infections of herpesvirus family. Neuroimaging Clin N Am. 2008;18:53–84. viii.PubMedCrossRefGoogle Scholar
  238. 238.
    Tsuchiya K, Katase S, Yoshino A, Hachiya J. Diffusion-weighted MR imaging of encephalitis. AJR Am J Roentgenol. 1999;173:1097–9.PubMedGoogle Scholar
  239. 239.
    Dhawan A, Kecskes Z, Jyoti R, Kent AL. Early diffusion-weighted magnetic resonance imaging findings in neonatal herpes encephalitis. J Paediatr Child Health. 2006;42:824–6.PubMedCrossRefGoogle Scholar
  240. 240.
    Kiroglu Y, Calli C, Yunten N, et al. Diffusion-weighted MR imaging of viral encephalitis. Neuroradiology. 2006;48:875–80.PubMedCrossRefGoogle Scholar
  241. 241.
    Sener RN. Herpes simplex encephalitis: diffusion MR imaging findings. Comput Med Imaging Graph. 2001;25:391–7.PubMedCrossRefGoogle Scholar
  242. 242.
    McCabe K, Tyler K, Tanabe J. Diffusion-weighted MRI abnormalities as a clue to the diagnosis of herpes simplex encephalitis. Neurology. 2003;61:1015–6.PubMedGoogle Scholar
  243. 243.
    Gupta RK, Jain KK, Kumar S. Imaging of nonspecific (nonherpetic) acute viral infections. Neuroimaging Clin N Am. 2008;18:41–52. vii.PubMedCrossRefGoogle Scholar
  244. 244.
    Hatipoglu HG, Gurbuz MO, Sakman B, Yuksel E. Diffusion-weighted magnetic resonance imaging in rhombencephalitis due to Listeria monocytogenes. Acta Radiol. 2007;48:464–7.PubMedCrossRefGoogle Scholar
  245. 245.
    Lo CP, Chen CY. Neuroimaging of viral infections in infants and young children. Neuroimaging Clin N Am. 2008;18:119–32. viii.PubMedCrossRefGoogle Scholar
  246. 246.
    Rumboldt Z. Imaging of topographic viral CNS infections. Neuroimaging Clin N Am. 2008;18:85–92. viii.PubMedCrossRefGoogle Scholar
  247. 247.
    Hagemann G, Mentzel HJ, Weisser H, Kunze A, Terborg C. Multiple reversible MR signal changes caused by Epstein-Barr virus encephalitis. AJNR Am J Neuroradiol. 2006;27:1447–9.PubMedGoogle Scholar
  248. 248.
    Vrancken AF, Frijns CJ, Ramos LM. FLAIR MRI in sporadic Creutzfeldt-Jakob disease. Neurology. 2000;55:147–8.PubMedGoogle Scholar
  249. 249.
    Wada R, Kucharczyk W. Prion infections of the brain. Neuroimaging Clin N Am. 2008;18:183–91. ix.PubMedCrossRefGoogle Scholar
  250. 250.
    Finkenstaedt M, Szudra A, Zerr I, et al. MR imaging of Creutzfeldt-Jakob disease. Radiology. 1996;199:793–8.PubMedGoogle Scholar
  251. 251.
    Mittal S, Farmer P, Kalina P, Kingsley PB, Halperin J. Correlation of diffusion-weighted magnetic resonance imaging with neuropathology in Creutzfeldt-Jakob disease. Arch Neurol. 2002;59:128–34.PubMedCrossRefGoogle Scholar
  252. 252.
    Kallenberg K, Schulz-Schaeffer WJ, Jastrow U, et al. Creutzfeldt-Jakob disease: comparative analysis of MR imaging sequences. AJNR Am J Neuroradiol. 2006;27:1459–62.PubMedGoogle Scholar
  253. 253.
    Collie DA, Summers DM, Sellar RJ, et al. Diagnosing variant Creutzfeldt-Jakob disease with the pulvinar sign: MR imaging findings in 86 neuropathologically confirmed cases. AJNR Am J Neuroradiol. 2003;24:1560–9.PubMedGoogle Scholar
  254. 254.
    Zeidler M, Sellar RJ, Collie DA, et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease. Lancet. 2000;355:1412–8.PubMedCrossRefGoogle Scholar
  255. 255.
    Hyare H, Thornton J, Stevens J, et al. High-b-value diffusion MR imaging and basal nuclei apparent diffusion coefficient measurements in variant and sporadic Creutzfeldt-Jakob disease. AJNR Am J Neuroradiol. 2010;31:521–6.PubMedCrossRefGoogle Scholar
  256. 256.
    Murata T, Shiga Y, Higano S, Takahashi S, Mugikura S. Conspicuity and evolution of lesions in Creutzfeldt-Jakob disease at diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23:1164–72.PubMedGoogle Scholar
  257. 257.
    Young GS, Geschwind MD, Fischbein NJ, et al. Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol. 2005;26:1551–62.PubMedGoogle Scholar
  258. 258.
    Bahn MM, Parchi P. Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt-Jakob disease. Arch Neurol. 1999;56:577–83.PubMedCrossRefGoogle Scholar
  259. 259.
    Manners DN, Parchi P, Tonon C, et al. Pathologic correlates of diffusion MRI changes in Creutzfeldt-Jakob disease. Neurology. 2009;72:1425–31.PubMedCrossRefGoogle Scholar
  260. 260.
    Haik S, Dormont D, Faucheux BA, Marsault C, Hauw JJ. Prion protein deposits match magnetic resonance imaging signal abnormalities in Creutzfeldt-Jakob disease. Ann Neurol. 2002;51:797–9.PubMedCrossRefGoogle Scholar
  261. 261.
    Shiga Y, Miyazawa K, Sato S, et al. Diffusion-weighted MRI abnormalities as an early diagnostic marker for Creutzfeldt-Jakob disease. Neurology. 2004;63:443–9.PubMedGoogle Scholar
  262. 262.
    Matoba M, Tonami H, Miyaji H, Yokota H, Yamamoto I. Creutzfeldt-Jakob disease: serial changes on diffusion-weighted MRI. J Comput Assist Tomogr. 2001;25:274–7.PubMedCrossRefGoogle Scholar
  263. 263.
    Ukisu R, Kushihashi T, Kitanosono T, et al. Serial diffusion-weighted MRI of Creutzfeldt-Jakob disease. AJR Am J Roentgenol. 2005;184:560–6.PubMedGoogle Scholar
  264. 264.
    Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26 Suppl 1:S173–89.PubMedCrossRefGoogle Scholar
  265. 265.
    Gupta RK, Sinha U, Cloughesy TF, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med. 1999;41:2–7.PubMedCrossRefGoogle Scholar
  266. 266.
    Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst. 2000;92:2029–36.PubMedCrossRefGoogle Scholar
  267. 267.
    Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology. 2002;44:656–66.PubMedCrossRefGoogle Scholar
  268. 268.
    Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol. 2002;57:219–25.PubMedCrossRefGoogle Scholar
  269. 269.
    Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol. 2003;24:225–33.PubMedGoogle Scholar
  270. 270.
    Arvinda HR, Kesavadas C, Sarma PS, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol. 2009;94:87–96.PubMedCrossRefGoogle Scholar
  271. 271.
    Fan GG, Deng QL, Wu ZH, Guo QY. Usefulness of diffusion/perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas: a valuable tool to predict tumour grading? Br J Radiol. 2006;79:652–8.PubMedCrossRefGoogle Scholar
  272. 272.
    Rizzo L, Crasto SG, Moruno PG, et al. Role of diffusion- and perfusion-weighted MR imaging for brain tumour characterisation. Radiol Med. 2009;114:645–59.PubMedCrossRefGoogle Scholar
  273. 273.
    Kan P, Liu JK, Hedlund G, Brockmeyer DL, Walker ML, Kestle JR. The role of diffusion-weighted magnetic resonance imaging in pediatric brain tumors. Childs Nerv Syst. 2006;22:1435–9.PubMedCrossRefGoogle Scholar
  274. 274.
    Hayashida Y, Hirai T, Morishita S, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006;27:1419–25.PubMedGoogle Scholar
  275. 275.
    Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol. 2003;24:937–41.PubMedGoogle Scholar
  276. 276.
    Hall DE, Moffat BA, Stojanovska J, et al. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker. Clin Cancer Res. 2004;10:7852–9.PubMedCrossRefGoogle Scholar
  277. 277.
    Schubert MI, Wilke M, Muller-Weihrich S, Auer DP. Diffusion-weighted magnetic resonance imaging of treatment-associated changes in recurrent and residual medulloblastoma: preliminary observations in three children. Acta Radiol. 2006;47:1100–4.PubMedCrossRefGoogle Scholar
  278. 278.
    Mardor Y, Pfeffer R, Spiegelmann R, et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol. 2003;21:1094–100.PubMedCrossRefGoogle Scholar
  279. 279.
    Tomura N, Narita K, Izumi J, et al. Diffusion changes in a tumor and peritumoral tissue after stereotactic irradiation for brain tumors: possible prediction of treatment response. J Comput Assist Tomogr. 2006;30:496–500.PubMedCrossRefGoogle Scholar
  280. 280.
    Hamstra DA, Chenevert TL, Moffat BA, et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA. 2005;102:16759–64.PubMedCrossRefGoogle Scholar
  281. 281.
    Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA. 2005;102:5524–9.PubMedCrossRefGoogle Scholar
  282. 282.
    Chenevert TL, Ross BD. Diffusion imaging for therapy response assessment of brain tumor. Neuroimaging Clin N Am. 2009;19:559–71.PubMedCrossRefGoogle Scholar
  283. 283.
    Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol. 2004;25:201–9.PubMedGoogle Scholar
  284. 284.
    Kwee TC, Galban CJ, Tsien C, et al. Intravoxel water diffusion heterogeneity imaging of human high-grade gliomas. NMR Biomed. 2010;23:179–87.PubMedGoogle Scholar
  285. 285.
    Zeng QS, Li CF, Liu H, Zhen JH, Feng DC. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys. 2007;68:151–8.PubMedCrossRefGoogle Scholar
  286. 286.
    Asao C, Korogi Y, Kitajima M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26:1455–60.PubMedGoogle Scholar
  287. 287.
    Pruzincova L, Steno J, Srbecky M, et al. MR imaging of late radiation therapy- and chemotherapy-induced injury: a pictorial essay. Eur Radiol. 2009;19:2716–27.PubMedCrossRefGoogle Scholar
  288. 288.
    Tung GA, Evangelista P, Rogg JM, Duncan 3rd JA. Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol. 2001;177:709–12.PubMedGoogle Scholar
  289. 289.
    Jain R, Scarpace LM, Ellika S, et al. Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol. 2010;96:423–31.PubMedCrossRefGoogle Scholar
  290. 290.
    Sundgren PC, Fan X, Weybright P, et al. Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging. 2006;24:1131–42.PubMedCrossRefGoogle Scholar
  291. 291.
    Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am. 2009;19:657–68.PubMedCrossRefGoogle Scholar
  292. 292.
    Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol. 2001;22:969–76.PubMedGoogle Scholar
  293. 293.
    Horger M, Fenchel M, Nagele T, et al. Water diffusivity: comparison of primary CNS lymphoma and astrocytic tumor infiltrating the corpus callosum. AJR Am J Roentgenol. 2009;193:1384–7.PubMedCrossRefGoogle Scholar
  294. 294.
    Barajas Jr RF, Rubenstein JL, Chang JS, Hwang J, Cha S. Diffusion-weighted MR imaging derived apparent diffusion coefficient is predictive of clinical outcome in primary central nervous system lymphoma. AJNR Am J Neuroradiol. 2010;31:60–6.PubMedCrossRefGoogle Scholar
  295. 295.
    Forghani R, Farb RI, Kiehl TR, Bernstein M. Fourth ventricle epidermoid tumor: radiologic, intraoperative, and pathologic findings. Radiographics. 2007;27:1489–94.PubMedCrossRefGoogle Scholar
  296. 296.
    Bukte Y, Paksoy Y, Genc E, Uca AU. Role of diffusion-weighted MR in differential diagnosis of intracranial cystic lesions. Clin Radiol. 2005;60:375–83.PubMedCrossRefGoogle Scholar
  297. 297.
    Hakyemez B, Yildirim N, Gokalp G, Erdogan C, Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006;48:513–20.PubMedCrossRefGoogle Scholar
  298. 298.
    Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29:1147–52.PubMedCrossRefGoogle Scholar
  299. 299.
    Filippi CG, Edgar MA, Ulug AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol. 2001;22:65–72.PubMedGoogle Scholar
  300. 300.
    Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27:5–11.PubMedCrossRefGoogle Scholar
  301. 301.
    Kinoshita T, Moritani T, Hiwatashi A, et al. Conspicuity of diffuse axonal injury lesions on diffusion-weighted MR imaging. Eur J Radiol. 2005;56:5–11.PubMedCrossRefGoogle Scholar
  302. 302.
    Schaefer PW, Huisman TA, Sorensen AG, Gonzalez RG, Schwamm LH. Diffusion-weighted MR imaging in closed head injury: high correlation with initial glasgow coma scale score and score on modified Rankin scale at discharge. Radiology. 2004;233:58–66.PubMedCrossRefGoogle Scholar
  303. 303.
    Hou DJ, Tong KA, Ashwal S, et al. Diffusion-weighted magnetic resonance imaging improves outcome prediction in adult traumatic brain injury. J Neurotrauma. 2007;24:1558–69.PubMedCrossRefGoogle Scholar
  304. 304.
    Schaefer et al. Diffusion-weighted MR imaging of the brain. Radiology 2000;217:331–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of RadiologySir Mortimer B. Davis Jewish General HospitalMontrealCanada
  2. 2.McGill UniversityMontrealCanada
  3. 3.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations